• Nenhum resultado encontrado

Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci

N/A
N/A
Protected

Academic year: 2021

Share "Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci"

Copied!
8
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Food

Microbiology

Aminotransferase

and

glutamate

dehydrogenase

activities

in

lactobacilli

and

streptococci

Guillermo

Hugo

Peralta

a

,

Carina

Viviana

Bergamini

a,b,∗

,

Erica

Rut

Hynes

a,b

aInstituteofIndustrialLactology,NationalUniversityofLitoral,NationalCouncilofScientificandTechniqueResearch (INLAIN-UNL/CONICET),SantiagodelEstero,SantaFe,Argentina

bFacultyofChemicalEngineering,NationalUniversityofLitoral(FIQ-UNL),SantiagodelEstero,SantaFe,Argentina

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16March2015

Accepted22December2015

Availableonline22April2016

AssociateEditor:MaricêNogueira

deOliveira

Keywords:

Aminotransferaseactivity

Glutamatedehydrogenaseactivity

Lactobacilli Streptococci

a

b

s

t

r

a

c

t

Aminotransferasesandglutamatedehydrogenasearetwomaintypesofenzymesinvolved

intheinitialstepsofaminoacidcatabolism,whichplaysakeyroleinthecheeseflavor

development.Inthepresentwork,glutamatedehydrogenaseandaminotransferase

activ-itieswerescreenedintwentyonestrainsoflacticacidbacteriaofdairyinterest,either

cheese-isolatedorcommercialstarters,includingfifteenmesophiliclactobacilli,four

ther-mophiliclactobacilli,andtwostreptococci.ThestrainsofStreptococcusthermophilusshowed

thehighestglutamatedehydrogenaseactivity,whichwassignificantlyelevatedcompared

withthelactobacilli.Aspartateaminotransferaseprevailedinmoststrainstested,whilethe

levelsandspecificityofotheraminotransferaseswerehighlystrain-andspecies-dependent.

Theknowledgeofenzymaticprofilesofthesestarterandcheese-isolatedculturesishelpful

inproposingappropriatecombinationsofstrainsforimprovedorincreasedcheeseflavor.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Cheeseflavor developmentisa dynamicand complex

bio-chemical process, which results from catabolic reactions

involvingthemainmilkconstituents,i.e.,proteins,lipids,

lac-tose,and citrate.1Inparticular, proteolysisandsubsequent

aminoacidcatabolismplaysignificantrolesinthisprocess,

regardlessofthecheesevariety.Essentially,ithasbeen

estab-lishedthatmorethan50%ofvolatilecompoundsinvolvedin

thecheeseflavorareproducedviaaminoacid(AA)catabolism,

and lactic acid bacteria (LAB) are mainly responsible for

thesereactions in mostcheeses.1,2 One ofthe main

path-waysthatconvertAAsintoflavorcompoundsbeginswitha

Correspondingauthor.

E-mail:bergaminicarina@gmail.com(C.V.Bergamini).

transamination reaction catalyzed by specific

aminotrans-ferases(ATs).1,2Inthisreaction,AAsareconvertedintotheir

corresponding␣-ketoacidsduetothetransferofthe␣-amino

groupofanAAtoasuitableacceptor,usually␣-ketoglutarate,

althoughpyruvateandoxaloacetatehavealsobeenreported

as possible acceptors.3,4 The ␣-ketoacids produced during

transamination are intermediate compounds inthe aroma

development becausethey canbe metabolizedvia a range

ofenzymaticandchemicalreactionstoprovideseveral

com-pounds thatcan haveanimpact oncheese flavor,suchas

alcohols,aldehydes,carboxylicacids,andesters.1Ingeneral,

ATsarespecificforanAAgroup,suchasaromatic(Ar-AT)or

branched-chain(Bc-AT)AAs,orforasingleAA,suchas

aspar-tate(Asp-AT),althoughoverlappingintheiractivitieshasbeen

http://dx.doi.org/10.1016/j.bjm.2016.04.005

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

reported.2,5–8NospecificATformethioninehasbeenisolated

sofar,butotherATsshowactivityforthisaminoacid.6,7

Vari-ousATshavebeenidentifiedandcharacterizedinLactococcus

lactissubsp.lactisandL.lactissubsp.cremoris,5,7,9aswellasin Lactobacillusspp.8Inaddition,ithasbeenevidencedthat

trans-aminationisthefirststepofthecatabolismofseveralAAsin

strainsofLactobacilluscasei,L.helveticus, L.delbrueckiisubsp.

bulgaricus,andStreptococcusthermophilus.10–12Glutamate

dehy-drogenase (GDH) also plays a key role in transamination

becauseitcatalyzestheoxidativedeaminationofglutamateto

␣-ketoglutarate,providinganaminogroupacceptor.2,6,12

Sev-eralspeciesofLABhavedemonstratedGDHactivity,including

Lactobacillusspp., namely, L.casei, L.paracasei,L.plantarum, L.rhamnosus, L.pentosus, and L.acidophilus,13–16 Lactococcus lactis,13,14,17,18Leuconostocspp.,14,18andS.thermophilus.11

Thetransamination stepisconsidered thebottleneckin

theAAcatabolismandsubsequentproductionofflavor

com-poundsincheeses.Inparticular,ATactivitiesofstarterand

non-starter(NS)LAB,aswellastheavailabilityofanacceptor

ofthe aminogroup,suchas␣-ketoglutarate,are important

forthedevelopmentofflavorincheeses.2,13Similarly,Tanous

etal.13 havefoundthattheabilityofLABtoproducearoma

compoundsfromAAsiscloselyrelatedtotheirGDHactivity,

dueto the productionofanaminogroup acceptor insitu.

Onthe other hand,it has been proposedthat competition

exists between ATs for the available ␣-ketoglutarate, and

thereforeATactivityprofilesoflacticculturesmayaffectthe

volatilecompoundsproducedincheeses.19 Thus,screening

forenzymesplayingkeyrolesincheeseflavordevelopmentis

relevanttotheselectionofstrainsaspotentialflavor-forming

cultures.

Thiswork aimedto study the profiles of ATsand GDH

activitiesintwentyoneLABstrainsofdairyinterest,

includ-ingfifteenmesophiliclactobacillistrains(14ofNSoriginand

awildstrain),fourstrainsofthermophiliclactobacilli(three

strainsisolatedfromwheyculturesandonefroma

commer-cialsource),andtwocommercialstrainsofS.thermophilus.

Materials

and

methods

Chemicals

l-Methionine (Met), l-tryptophan (Trp), l-tyrosine (Tyr),

l-leucine(Leu),l-isoleucine(Ile),l-valine(Val),l-phenylalanine

(Phe), l-aspartic acid (Asp), l-glutamic acid (Glu),

␣-ketoglutaricaciddisodiumsaltdihydrate(␣-KGA),pyridoxal

5-phosphate (P5P), Tris–HCl, and Tris base were obtained

from Sigma Chemical Co. (St. Louis, MO, USA). Potassium

phosphate monobasic and potassium phosphate dibasic

were obtainedfrom Anedra(Buenos Aires,Argentina). The

Bradford protein estimation kit was from Pierce Chemical

Company (Rockford, IL, USA), and the l-Glu assay kit was

fromR-Biopharm/BoehringerMannheim(Germany).

Strains

Twenty-one strains of LAB were studied, including fifteen

mesophiliclactobacilli,fourthermophiliclactobacilli,andtwo

streptococci. Oneof the mesophiliclactobacilli wasa wild

strain,L.caseiBL23,whosegenomehadbeensequenced.20The

other14strainsofmesophiliclactobacilliwereisolatedfrom

two-month-oldgoodqualityTybocheeseandbelongedtothe

collectionofourInstitute(InstitutodeLactologíaIndustrial,

INLAIN).Theywereasfollows:L.plantarum29,33,87,89,and

91,L.rhamnosus73,75,77,and78,L.casei72,81,and90,andL. fermentum28and46.21Threeofthestrainsofthermophilic

lac-tobacilliwereisolatedfromwheyculturesandalsobelonged

totheINLAINcollection,includingL.delbrueckii133andL.

hel-veticus138and209.22,23Finally,threecommercialstrainswere

studied,including S.thermophilus1and2andL.helveticus3

(suppliersarenotmentionedforconfidentialityreasons).

Stock cultures of all strains were maintained frozenat

−80◦C in appropriate broths supplementedwith 15% (v/v)

glycerolasacryoprotectiveagent.Ellikerbroth(Biokar

Diag-nostics,France)wasusedforthestreptococci,andMRSbroth

(BiokarDiagnostics)wasusedforthelactobacilli.Beforeuse,

the strains were grownovernight twice intheir respective

broths.

Growthcurves

Anovernight cultureofeach strainofthe streptococciand

lactobacilliwasusedtoinoculate(2%,v/v)100mLofElliker

orMRSbroth,respectively.Themesophiliclactobacilliwere

incubated at37◦C, whilethe thermophilic lactobacilli and

streptococci were incubated at42◦C.Bacterial growth was

monitored by assessing optical density (OD) at 560nm in

a spectrophotometer (UV/VIS Lambda 20, Perkin Elmer) at

appropriateintervalstoobtaingrowthcurvesanddetermine

thelateexponentialgrowthphaseforeachstrain.

Cell-freeextractpreparation

Cell-freeextracts(CFEs)were obtainedfrom culturesatthe

lateexponentialphasebymechanicaldisruptionofthecells

withglassbeads(106␮m,Sigma,G8893)inamini-beadbeater

8TMcelldisruptor(BiospecProducts,Bartlesville,IL,USA).Ina

preliminaryexperiment,weidentifiedthebestconditionsfor

thebeateroperationtoobtainaproperdegreeofcell

disrup-tion.Forthat,weassessedthreedifferentratiosofbeads(g)to

cells(mL)(1.2,0.7,and0.3g/mL)andusedthreeorfivecycles

ofdisruption,1mineach,atthehighestspeedofthedisruptor

forarandomlyselectedstrain,L.plantarum91.Theefficiency

ofcelldisruptionwasquantifiedastheratiobetweenplate

countsafterandbeforethedisruption.

Eachstrainwasinoculatedat2%(v/v)andgrowninthe

medium underthe conditions described previouslyuntil it

reachedthelateexponentialphase,determinedbythevalue

of OD560 associated with this growth stage according to

each growth curve. Cells were harvested bycentrifugation

(10,000×g,10min,4◦C),washedtwicewith50mMpotassium

phosphatebuffer(pH7.0),andsuspendedinanappropriate

volumeofthesamebuffertogivea30-foldconcentrationof

thecells.Thesesuspensionsweretransferredtomicrotubes

(2mL), which contained different quantities of previously

sterilized beads. CFEs were obtained under the following

conditionsestablishedinthepreliminaryexperiment:three

cyclesof1mineachatthemaximumspeedofthebeater,

(3)

of1.2g/mL.ACFEconsistedofthecelllysatecentrifugedat

16,000×g/10◦Cfor15mininordertoseparatethebeads,cells,

andcelldebrisandwasthenfilteredthrougha0.45-␮mpore

diametermembrane(Millipore,SaoPaulo, Brazil).TheCFEs

were storedat−20◦C until usedforanalysis ofenzymatic

activities.DuplicateCFEswere obtainedfrom two

indepen-dentculturesofeachstrainstudied.

Determinationofglutamatedehydrogenaseactivity

TheGDHactivitywasdeterminedcolorimetricallyby

measur-ingtheGlu-dependentreductionofNAD+inacoupledreaction

withdiaphoraseusingthecommerciall-Gluassaykit.24ACFE

(50–150␮L)was incubated inareactionmixturecontaining

potassiumphosphate/triethanolamine buffer,pH8.6,l-Glu,

NAD+,iodonitrotetrazoliumchloride,anddiaphorase(all

pro-vided in the l-Glu assay kit) for 1h at 37◦C. Endogenous

(Glu-independent)NAD+ reductionbytheCFEwasassessed

in control samples without Glu addition.15 GDH activity

wasexpressedpermilligramofproteinasthedifferencein

absorbanceat492nmbetweenthesampleanditsrespective

control.

Determinationofaminotransferaseactivities

ATactivitiesagainstAsp,Met,branched-chain(Leu,Val,and

Ile),andaromatic (Tyr,Trp,andPhe)AAswereanalyzedby

quantifyingtheGluderivedfromatransaminationreaction.

Forthispurpose,aCFE(15–50␮L)wasincubatedfor20min

at 37◦C in a reaction mixture (250␮L) containing 200mM

Tris buffer (pH 8.0), 1mM P5P, freshly prepared 50mM

␣-KGA,and15mMeachAAsubstrate.Inthisreaction,anAA

istransaminatedto the corresponding ␣-ketoacid, and the

␣-KGA,whichactsasanacceptoroftheaminogroup,is

con-verted to Glu. EndogenousGlu formation was assessed in

controlsampleswithouttheadditionofasubstrateAA.The

reactionwasstoppedbyheatingat80◦Cfor15min,andthe

leveloftheGluproducedwasquantifiedwiththesamel-Glu

kitdescribedforGDH.13,25,26Forthat,analiquotofthe

sam-plewasincubatedinareactionmixturecontainingpotassium

phosphate/triethanolaminebuffer,pH8.6,NAD+,

iodonitrote-trazoliumchloride,diaphorase,andGDHfor45minat37◦C.26

SpecificATactivitywasexpressedasmicrogramsofGlu

pro-ducedperminutepermilligramofprotein.

Proteindetermination

TheproteinconcentrationoftheCFEwasdeterminedbythe

Bradfordmethod27withtheCoomassieproteinassayreagent

providedbyPierceChemicalCompany.Bovineserumalbumin

wasusedasanexternalstandard.Allproteindeterminations

wereperformedinduplicate.

Statisticalanalysis

Analysisofvariance(ANOVA)wasappliedtodetectsignificant

differencesinthelevelsofATactivitiesagainstdifferentAAs

(p<0.05).Whendifferenceswerefound,homogenousgroups

ofmeanswereidentified(Duncantest).Principalcomponent

analysis(PCA),withstandardizationtoameanofzeroand

toastandarddeviationofone(correlationmatrix),was

per-formedfortheATdatainordertomapculturesbytheirAA

transformation abilities. BesidesPCAmapping,hierarchical

clusteranalysis(HCA)wasappliedtothefirsttwoprincipal

componentstogroupthestrainsobjectivelyinascoreplot.

IBMSPSSStatistics20.0(SPSS,Inc.,Chicago,IL,USA)was

usedforthestatisticalanalysis.

Results

and

discussion

Cell-freeextractpreparation

Inthepresentwork,weobtainedCFEsbyamechanical

dis-ruptioninabeadmillusingthebeadsof106␮m,whichare

optimalforbacterialcelldisruption.28Weperformed

prelimi-naryexperimentstooptimizethebeateroperationconditions

andfoundthattheamountofdisruptedcellsincreased

signif-icantlywhenthebead/cellratioincreased,whichisattributed

toanincreasedbead-to-beadinteraction.28Contrarily,no

dif-ferenceindisruptionwasfounddependingonwhetherthree

orfivecycleswereapplied.Basedontheseresults,weuseda

bead/cellratioof1.2g/mLforthesubsequentexperiments.

All cultures reachedthe end of the exponentialgrowth

phasebetween8and12hofincubation(datanotshown),with

valuesofOD560from1.6to2.1(Table1).Thecellloadsat

har-vestingweresimilarforallthestrainstested,withthetotal

averageof1.94×109colony-formingunitsmL−1.Thecell

dis-ruptiondegreeswerevariableamongtheculturesandranged

between74.4and99.8%,withameanof93%(Table1).In

addi-tion,the proteincontentinthe CFEswas6.6±1.7mgmL−1

(datanotshown).

Glutamatedehydrogenaseandaminotransferaseactivities

DifferentlevelsofNAD-dependentGDHweredetectedinthe

strainsassayed(Fig.1).ThetwostrainsofS.thermophilushad

thehighestlevelsofGDHandwereseparatedfromtherestof

thestrains,especiallyS.thermophilus2.TheGDHlevelsinthe

otherstrainswerelowerandsimilarbetweenthestrains;the

lowestactivitiesweredetectedinthethermophiliclactobacilli

andL.caseistrains.Overall,thestrainsofL.plantarum,L. rham-nosus,andL.fermentumhadintermediatelevelsofGDH.The

GDHenzymecatalyzestheinterconversionof␣-ketoglutarate

andGlu,withNADorNADPasacofactor.Ithasbeenreported

thatthecofactorfortheanabolicenzymeduringGlu

produc-tion isthe reduced form,NADP, whileNADis thecofactor

forthecatabolicenzymeinvolvedintheGlubreakdownand

subsequentproductionof␣-ketoglutarate.15Helincketal.11

reported the presence ofNADP-dependent GDH activity in

fiveofsixstrainsofS.thermophilus,whileonlyonestrainhad

NAD-dependentGDHactivity.ThepresenceandlevelsofGDH

activity anditscofactordependencehavebeenfoundtobe

species-and strain-dependent inlactobacilli.In agroupof

isolatesofNSorigin, thehighest frequencyandactivity of

GDHweredetectedinL.plantarumstrains.15Similarly,Tanous

etal.13foundhigherlevelsofNADP-dependentGDHactivityin

L.plantarumstrainsincomparisonwithL.caseiandLactococcus.

Wefoundasimilartrend,i.e.,thehighestlevelsofGDHwere

(4)

Table1–Cellloadsforculturesinthebrothbeforeharvesting,inthebufferbeforeandafterthedisruptiontreatment, andtheefficiencyofthedisruptionforeachstraintested.

Species Strain Medium(MRSorElliker) Buffer

Opticaldensitya Cellcounts

(logCFUmL−1)b

Cellcounts(logCFUmL−1) Disruption(%)d

Initialc Finalc L.plantarum 33 2.010 8.73 10.24 8.93 94.3 91 2.020 9.25 9.30 7.18 99.2 89 2.071 8.95 10.46 7.00 99.9 29 1.971 8.51 10.50 9.02 94.3 87 1.963 9.28 10.64 9.72 89.2 L.casei 81 1.960 9.17 10.56 9.93 74.4 72 2.007 9.84 10.31 8.87 96.3 BL23 2.080 9.65 9.45 7.70 99.0 L.paracasei 90 1.980 9.40 10.57 9.27 96.1 L.rhamnosus 73 1.847 9.46 10.15 8.04 99.2 77 2.003 9.54 10.58 9.79 89.4 78 1.958 9.22 10.74 8.08 99.8 75 2.030 9.75 10.08 9.24 85.5 L.fermentum 28 1.985 8.99 9.51 8.00 96.7 46 2.005 9.05 10.13 7.00 99.9 L.delbrueckii 133 2.056 8.93 10.33 8.24 99.1 L.helveticus 138 1.949 8.75 10.35 9.04 95.5 209 2.059 8.79 10.15 8.08 99.2 3 2.112 8.81 10.06 9.06 90.0 S.thermophilus 1 1.604 8.45 10.04 8.94 92.4 2 1.793 9.57 10.65 9.88 75.6

Thevaluesrepresenttheaverageoftwoindependentexperiments.

a Opticaldensityoftheculturesatharvesting. b Cellcountsinculturesatharvesting.

c Cellcountsofthesuspensionsinpotassiumphosphatebufferbeforeandafterthedisruptiontreatmentwiththebeadmill.

dPercentagesofcelldisruptionexpressedas[(cellcountbeforetreatmentcellcountaftertreatment)/cellcountbeforetreatment]×100.

strains,whileL.caseiandL.helveticusshowedloweractivities.

DeAngelisetal.16alsofoundthehighestlevelsofGDHinL.

plantarumstrains,buttheL.caseiandL.rhamnosusstrainsthat

theycharacterizedhadsimilarlevels.

On the other hand, the strains described in this study

showed different levels of AT activity against Asp, Met,

branched-chain,andaromaticAAswith␣-ketoglutarateasan

aminogroupacceptor(Table2).ATspecificitytowardAspwas

themainATactivityamongtheculturesstudied,anditslevels

were3–6timeshigherthanthoseofanyotherATsspecificfor

theAAstested.TheexceptionswereL.rhamnosus78,L.casei

72,andthefourtestedstrainsofthermophiliclactobacilli,in

whichactivitiesofallATsweresimilarorshowedlowabsolute

differences,withoutaprevalenceofAsp-AT.Overall,strains

thatshowedpreferentialATactivityagainstAsphadsimilarly

lowATactivitiesagainsttheremainingAAs,withfew

excep-tions.Thus,thesecondpreferentialATactivityafterAsp-AT

wasagainstTyrinL.plantarum89(p<0.05).ForL.casei81,the

secondAAbenefitingfromATactivitywasVal,whileTrp,Phe,

andMetwerelesstransformed,andintermediatevalueswere

foundfortheremainingAAs.Finally,forS.thermophilus2the

ATactivityagainstLeuandTyrwasthesecondafterAsp-AT.

Similartootherauthors,2,8,29weconfirmedspeciesandstrain

variabilityinATprofiles.

InthePCAofthelevelsofATactivities,twoprincipal

com-ponentsexplained91.1%ofthetotalvariance.Fig.2showsthe

scoreandloadingplots;theellipsesinthescoreplotenclose

strainsaccordingtoHCA.Inthefirstgroup,threestrainsofL.

casei(72,81,andBL23),onestrainofS.thermophilus(2),andone

replicaofL.rhamnosus73weregroupedinthepositive

hemi-planeofPC1.Thesestrainswerecharacterizedbythehighest

activityofATs.Amongthestrainsclusteredinthisgroup,L.

casei72hadthelowestAsp-ATactivity,whichwasevidenced

byanegativescoreonPC2.

In thesecond group, locatedinthe positivehemi-plane

ofPC2,therewerethreestrainsofL.plantarum(89,33,and

91),andonereplicaofeachoneofthefollowingfourstrains:

L.rhamnosus73and75,L.paracasei90,andL.plantarum87.

ThesestrainswerecharacterizedbytheprevalenceofAsp-AT

activity.

Finally,thethirdgroupcontainedallstrainsofthermophilic

lactobacilli(L.delbrueckii133andL.helveticus138,209,and3),

thetwostrainsofL.fermentum(28and46),L.rhamnosus77,and

78,S.thermophilus1,L.plantarum29,andonereplicaofeachone

ofthefollowingthreestrains:L.plantarum87,L.paracasei90,

andL.rhamnosus75.Overall,thisgroupwasplacedonthe

neg-ativesidesofPC1andPC2,whichindicatesthatthesestrains

(5)

S. thermophilus 2

Str

ain

Glutamate dehydrogenase activity

0 1 2 (ΔAbs/mg proteins) S. thermophilus 1 Lb. helveticus 3 Lb. helveticus 209 Lb. helveticus 138 Lb. delbruekii 133 Lb. fermentum 46 Lb. fermentum 28 Lb. rhamnosus 75 Lb. rhamnosus 78 Lb. rhamnosus 77 Lb. rhamnosus 73 Lb. paracasei 90 Lb. casei BL23 Lb. casei 72 Lb. casei 81 Lb. plantarum 87 Lb. plantarum 29 Lb. plantarum 89 Lb. plantarum 91 Lb. plantarum 33

Fig.1–GlutamatedehydrogenaseactivityintheCFEsofthe21testedstrains.Valuesaremeans±standarddeviationofthe resultsoftwoindependentexperiments.

Table2–Aminotransferaseactivitiesforeightaminoacids.

Species Strain Asp BcAA ArAA Met

Leu Val Ile Tyr Trp Phe

L.plantarum 33* 7.46±0.35a 0.81±0.11b 0.84±0.11b 0.69±0.06b 0.74±0.05b 0.80±0.05b 0.85±0.11b 0.79±0.17b 91* 7.36±1.42a 0.78±0.04b 1.08±0.07b 0.30±0.07b 1.36±0.07b 1.25±0.07b 1.25±0.07b 1.17±0.07b 89* 9.46±0.16a 0.19±0.01b,c 0.08±0.06c 0.02±0.01c 0.69±0.42b 0.49±0.21b,c 0.54±0.36b,c 0.05±0.01c 29* 3.12±0.34a 1.00±0.62b 1.02±0.66b 0.84±0.65b 1.12±0.69b 1.13±0.64b 1.06±0.69b 0.93±0.70b 87* 6.53±2.80a 1.06±0.36b 0.83±0.26b 0.83±0.25b 1.16±0.46b 1.35±0.65b 1.28±0.56b 1.02±0.51b L.casei 81* 7.18±0.36a 3.03±0.18b,c 3.31±0.11b 2.74±0.06c,d 2.31±0.20d,e 2.18±0.07e 1.92±0.03e 1.92±0.35e 72 3.34±0.52 2.61±0.45 2.96±0.67 2.73±0.61 3.02±0.52 2.90±0.56 2.58±0.56 2.07±0.55 BL23* 5.83±0.71a 1.95±0.18b 1.95±0.23b 1.34±0.15b 1.70±0.36b 1.53±0.08b 1.39±0.05b 1.65±0.19b L.paracasei 90* 5.76±2.34a 1.34±0.07b 1.26±0.26b 1.89±1.07b 0.99±0.49b 1.86±0.07b 0.64±0.37b 0.86±0.51b L.rhamnosus 73* 6.97±1.75a 2.50±0.28b 1.80±0.12b 1.65±0.03b 1.84±0.09b 2.43±0.47b 2.39±0.41b 2.25±0.31b 77* 3.97±0.21a 1.19±0.20b,c 1.06±0.17b,c 0.89±0.01c 1.21±0.11b,c 1.19±0.14b,c 1.35±0.25b 0.88±0.01c 78 1.51±1.03 1.26±0.52 0.96±0.23 0.85±0.10 1.17±0.66 1.62±0.75 1.70±0.98 1.19±0.04 75* 4.33±2.21a 0.53±0.32b 0.57±0.51b 0.55±0.40b 0.53±0.60b 0.60±0.43b 0.62±0.43b 0.61±0.26b L.fermentum 28* 3.42±0.17a 0.32±0.10b 0.30±0.01b 0.24±0.03b 0.38±0.01b 0.35±0.04b 0.34±0.01b 0.24±0.02b 46* 3.36±0.21a 0.23±0.14b 0.21±0.11b 0.23±0.01b 0.21±0.16b 0.21±0.13b 0.23±0.04b 0.21±0.01b L.delbrueckii 133* 0.81±0.07b,c 1.11±0.03a 0.99±0.03a,b 0.97±0.07b 0.89±0.05b,c 0.87±0.04b,c 0.92±0.07b,c 0.86±0.07b,c

L.helveticus 138* 1.20±0.24a,b 1.29±0.15a,b 1.12±0.09b 1.29±0.29a,b 1.77±0.39a 1.23±0.24a,b 1.25±0.28a,b 1.16±0.22a,b

209 1.21±0.15 1.71±0.21 1.44±0.32 1.52±0.18 1.45±0.32 1.14±0.09 1.14±0.29 1.18±0.10 3 1.02±0.45 0.99±0.38 1.06±0.41 1.17±0.54 1.37±0.51 1.04±0.48 0.98±0.44 1.14±0.51

S.thermophilus 1* 3.04±0.01a 0.90±0.07b 0.79±0.10b 0.74±0.14b 0.91±0.06b 0.81±0.02b 0.89±0.06b 0.72±0.10b

2* 5.78±0.73a 4.37±0.41b,c 2.90±0.33d 2.53±0.07d 4.70±0.66b 3.00±0.07d 3.40±0.50c,d 3.03±0.48d

Asp,branched-chainaminoacids(BcAA:Leu,Val,Ile),aromaticaminoacids(ArAA:Tyr,TrpPhe),andMet,inCFEofthe21strainstested. Activitiesareexpressedas␮gofglutamicproducedfrom␣-ketoglutarateperminuteandmilligramofprotein.

Valuesarethemeans±standarddeviationoftheresultsoftwoindependentexperiments.

StrainsthatshowedsignificantdifferencesinATsactivitytowarddifferentAA(p<0.05).

(6)

1.0 0.5 0.0 –0.5 –1.0 3 2 1 0 –1 –2 –2 –1 0 133 138 138 78 3 133 209 3 209 78 77 87 77 11 29 75 28 4628 46 29 90 75 91 90 87 91 33 89 89 33 73 Lb. casei Lb. delbrueckii Lb. fermentum Lb. helveticus Lb. paracasei Lb. plantarum Lb. rhamnosus S. thermophilus 72 72 73 2 2 81 81 BL23 BL23 1 2 3 –1.0 –0.5 0.0 0.5 AspAT

A

B

TrpAT PheAT MetAT TyrAT ValAT lleAT PC1 (78.7%) PC1 (78.7%) PC2 (12.4%) PC2 (12.4%) LeuAT 1.0

Fig.2–Principalcomponentanalysis(PCA)ofATactivitiestowardeightAAsforthe21strains:A–Loadingplot(PC1vs. PC2),B–Scoreplot(PC1vs.PC2).Ellipsesenclosesamplesgroupedaccordingtohierarchicalclusteranalysis(HCA).

thefourstrainsofthermophiliclactobacilliandL.rhamnosus

78werecharacterizedbythelowestlevelsofATforAsp.

In agreement with our results, other researchers have

reportedhighAsp-ATactivitiesinL.paracaseiandL.plantarum

strains.8,19 ThisATprofileisinterestingforadjunctcultures

whendiacetylandacetoinarethedesiredflavorcompounds

produced via an alternative or complementary metabolic

pathway for the catabolism of citrate by citrate-positive

strains.2,30DiacetylandacetoinformationfromAsphasbeen

demonstratedinreactionmixtureswith␣-ketoglutarate,30as

wellasincheesemodels.19,31

Ontheotherhand,whilescreeningcheese-relatedcultures

for AT activity, Smit et al.32 found that Leu-AT

predomi-natedinLactococcusstrains, followedbyS.thermophilusand

L.acidophilus;thelowestlevelswerefoundinL.casei,L. helveti-cus,andPropionibacterium,Leuconostoc,andBifidobacteriumspp.

Also,Kieronczyk etal.19 reported higherlevelsofAT

activ-ityagainstbranched-chainAAsinLactococcuslactiscompared

withL.paracasei.In thepresent work,thehighestlevelsof

Leu-ATwerefoundinS.thermophilus2,followedbytheL.casei

strains,whilethelowestlevelswererevealedbytheL.

(7)

Table3–EndogenousaminotransferaseactivityinCFE ofthe21testedstrains.

Species Strain EndogenousATactivity

L.plantarum 33 0.67±0.07 91 1.23±0.04 89 0.03±0.03 29 1.20±0.04 87 0.79±0.38 L.casei 81 1.51±0.03 72 2.18±0.55 BL23 0.93±0.17 L.paracasei 90 1.13±0.04 L.rhamnosus 73 1.19±0.15 77 0.82±0.05 78 0.84±0.17 75 0.45±0.33 L.fermentum 28 0.29±0.01 46 0.20±0.01 L.delbrueckii 133 0.83±0.08 L.helveticus 138 1.27±0.27 209 1.11±0.14 3 0.84±0.19 S.thermophilus 1 0.60±0.09 2 2.46±0.32

Activities are expressed as ␮g of glutamic produced from ␣-ketoglutarate per min and mg protein. Values are the means±standard deviation of the results of two independent experiments.

Thermophiliclactobacillicultureshavebeenless charac-terizedfortheirATprofilesthanotherlactobacilli.Jensenand

Ardö26reportedATspecificitytowardaromaticand

branched-chainAAsinsixstrainsofL.helveticus,whileAsp-ATwasvery

loworundetectable.Weconfirmedthesametrendfor

Asp-AT,buttheotherATsshowedequallylowlevelsinthefour

thermophiliclactobacillistrainstested.

EventhoughnoATspecificforMethasyetbeenisolated,

activitytowardthisAAcanbequantifiedinlacticcultures,

and it is crucial for the production of important volatile

compounds suchasdimethyl disulfide,dimethyl trisulfide,

methanethial,andmethanethiol.33Amongourstrains,

trans-formationofMetwasmainlyevidencedforS.thermophilus2,

thethreestrains ofL.casei, and L.rhamnosus73,whilethe

lowestlevelswere foundinthetwostrainsofL.fermentum.

Hanniffyetal.18foundhighlevelsofATactivityforMetinall

Lactococcusstrainsstudied,whilelowerorundetectablelevels

werefoundinstrainsofL.casei,L.plantarum,andL.fermentum.

Otherresearchershavealsoreportedthisactivityinstrainsof

L.caseiandL.plantarum,3 aswellasinLactococcusstrains.34

Metmetabolismisprobablyaresultofnon-specificactivityof

otherATs,suchasAr-ATorBc-AT,asoverlappinghasbeen

suggested.7

Finally,allstrainsshowedendogenousATactivityranging

fromaminimallevelof0.03forL.plantarum89tolevelshigher

than2.0forS.thermophilus2andL.casei72(Table3).Forsome

strains,includingL.plantarum29and91andL.fermentum28

and46,thisactivitywasrelevantasitwasatthelevelsof

Ar-AT,Bc-AT, andMet-AT.However,evenforthesestrains,the

Asp-AT activity wasalwaysmuchhigher than the

endoge-nousATactivity.EndogenousATactivityhasbeenexplained

byahighintracellularpoolofGluornon-specific

transamin-ationofdiverseAAsinCFEs.29Williamsetal.29detectedthis

activityin60%ofthe29strainsoflactococciandmesophilic

lactobacilli;insomecases,theleveloftheendogenousactivity

wascomparabletothatofAr-ATorMet-AT.

Conclusions

Knowledge of GDH activity and AT profiles may be useful

asselectioncriteriaforstarterandadjunctculturesinorder

toenhanceordiversifycheeseflavors.Inthepresentwork,

we identifiedseveral strains ofpotentialinterest as

flavor-formingcultures.Thus,bothS.thermophilusstrainsshowed

the potential of producing ␣-ketoglutarate from glutamic

acid duetotheirhighGDHactivity.AsfortheATdiversity,

most mesophilic lactobacilli seem appropriate to promote

the productionofAsp-related flavorcompounds, especially

L.plantarumstrains89,33,and 91,whichmay beproposed

asadjunctculturesforthispurpose.Branched-chainamino

acid-andaromaticaminoacid-derivedcompoundsarealso

expectablefromtheuseofL.casei81,72,andBL23,L.

rhamno-sus73,andS.thermophilus2,basedontheirprofilesandlevels

ofATs.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

ThisworkwassupportedbyAgenciaNacionaldePromoción

CientíficayTecnológica(AGENCIA)andConsejoNacionalde

InvestigacionesCientíficasyTécnica(CONICET).

r

e

f

e

r

e

n

c

e

s

1.SteeleJ,BroadbentJ,KokJ.Perspectivesonthecontribution

oflacticacidbacteriatocheeseflavordevelopment.Curr

OpinBiotechnol.2013;24(2):135–141.

2.YvonM.Keyenzymesforflavorformationbylacticacid

bacteria.AustJDairyTechnol.2006;61:16–24.

3.AmáritaF,RequenaT,TabordaG,AmigoL,PeláezC.

LactobacilluscaseiandLactobacillusplantaruminitiate

catabolismofmethioninebytransamination.JApplMicrobiol.

2001;90(6):971–978.

4.CaseyMG,BossetJO,BütikoferU,Fröhlich-WyderM-T.Effect

of␣-ketoacidsonthedevelopmentofflavourinSwiss

Gruyere-typecheese.LWTFoodSciTechnol.2004;37(2):269–273.

5.YvonM,ChambellonE,BolotinA,Roudot-AlgaronF.

Characterizationandroleofthebranched-chain

aminotransferase(BcaT)isolatedfromLactococcuslactis

subsp.cremorisNCDO763.ApplEnvironMicrobiol.

2000;66(2):571–577.

6.YvonM,ThirouinS,RijnenL,FromentierD,GriponJC.An

aminotransferasefromLactococcuslactisinitiatesconversion

ofaminoacidstocheeseflavourcompounds.ApplEnviron

(8)

7. EngelsWJM,AltingAC,ArntzMMTG,etal.Partial

purificationandcharacterizationoftwoaminotransferases

fromLactococcuslactissubsp.cremorisB78involvedinthe

catabolismofmethionineandbranched-chainaminoacids.

IntDairyJ.2000;10(7):443–452.

8. ThageBV,RattrayFP,LaustsenMW,ArdöY,BarkholtV,

HoulbergU.Purificationandcharacterizationofa

branched-chainaminoacidaminotransferasefrom

Lactobacillusparacaseisubsp.paracaseiCHCC2115.JAppl Microbiol.2004;96(3):593–602.

9. DudleyE,SteeleJL.LactococcuslactisLM0230containsasingle

aminotransferaseinvolvedinaspartatebiosynthesis,which

isessentialforgrowthinmilk.Microbiology.

2001;147(1):215–224.

10.GummallaS,BroadbentJR.Tryptophancatabolismby

LactobacilluscaseiandLactobacillushelveticuscheeseflavor

adjuncts.JDairySci.1999;82(10):2070–2077.

11.HelinckS,LeBarsD,MoreauD,YvonM.Abilityof

thermophiliclacticacidbacteriatoproducearoma

compoundsfromaminoacids.ApplEnvironMicrobiol.

2004;70(7):3855–3861.

12.TanousC,GoriA,RijnenL,ChambellonE,YvonM.Pathways

for␣-ketoglutarateformationbyLactococcuslactisandtheir

roleinaminoacidcatabolism.IntDairyJ.

2005;15(6–9):759–770.

13.TanousC,KieronczykA,HelinckS,ChambellonE,YvonM.

Glutamatedehydrogenaseactivity:amajorcriterionforthe

selectionofflavour-producinglacticacidbacteriastrains.

AntonieVanLeeuwenhoek.2002;82(1–4):271–278.

14.FernándezdePalenciaP,delaPlazaM,AmáritaF,RequenaT,

PeláezC.Diversityofaminoacidconvertingenzymesinwild

lacticacidbacteria.EnzymeMicrobTechnol.2006;38(1–2):88–93.

15.WilliamsAG,WithersSE,BrechanyEY,BanksJM.Glutamate

dehydrogenaseactivityinlactobacilliandtheuseof

glutamatedehydrogenase-producingadjunctLactobacillus

spp.culturesinthemanufactureofcheddarcheese.JAppl

Microbiol.2006;101(5):1062–1075.

16.DeAngelisM,CalassoM,DiCagnoR,SiragusaS,MinerviniF,

GobbettiM.NADPglutamatedehydrogenaseactivityin

nonstarterlacticacidbacteria:effectsoftemperature,pH

andNaClonenzymeactivityandexpression.JApplMicrobiol.

2010;109(5):1763–1774.

17.Gutiérrez-MéndezN,Valenzuela-SotoE,González-Córdova

AF,Vallejo-CordobaB.␣-Ketoglutaratebiosynthesisinwild

andindustrialstrainsofLactococcuslactis.LettApplMicrobiol.

2008;47(3):202–207.

18.HanniffySB,PeláezC,Martínez-BartoloméMA,RequenaT,

Martínez-CuestaMC.Keyenzymesinvolvedinmethionine

catabolismbycheeselacticacidbacteria.IntJFoodMicrobiol.

2009;135(3):223–230.

19.KieronczykA,SkeieS,LangsrudT,LeBarsD,YvonM.The

natureofaromacompoundsproducedinacheesemodelby

glutamatedehydrogenasepositiveLactobacillusINF15D

dependsonitsrelativeaminotransferaseactivitiestowards

thedifferentaminoacids.IntDairyJ.2004;14(3):227–235.

20.MazéA,BoëlG,Zú ˜nigaM,etal.Completegenomesequence

oftheprobioticLactobacilluscaseistrainBL23.JBacteriol.

2010;192(10):2647–2648.

21.BudeUgarteM,GuglielmottiD,GiraffaG,ReinheimerJ,

HynesE.Nonstarterlactobacilliisolatedfromsoftand

semihardArgentineancheeses:geneticcharacterizationand

resistancetobiologicalbarriers.JFoodProt.

2006;69(12):2983–2991.

22.ReinheimerJ,SuárezV,BailoN,ZalazarCA.Microbiological

andtechnologicalcharacteristicsofnaturalwheycultures

forArgentinianhardcheeseproduction.JFoodProt.

1995;58(7):796–799.

23.ReinheimerJ,QuiberoniA,TailliezP,BinettiA,SuárezV.The

lacticacidmicrofloraofnaturalwheystartersusedin

Argentinaonhardcheeseproduction.IntDairyJ.

1996;6(8–9):869–879.

24.KieronczykA,SkeieS,LangsrudT,YvonM.Cooperation

betweenLactococcuslactisandnonstarterlactobacilliinthe

formationofcheesearomafromaminoacids.ApplEnviron

Microbiol.2003;69:734–739.

25.HansenBV,HoulbergU,ArdöY.Transaminationof

branched-chainaminoacidsbyacheeserelatedLactobacillus

paracaseistrain.IntDairyJ.2001;11(4–7):225–233.

26.JensenMP,ArdöY.Variationinaminopeptidaseand

aminotransferaseactivitiesofsixcheeserelatedLactobacillus

helveticusstrains.IntDairyJ.2010;20(3):149–155.

27.BradfordMM.Arapidandsensitivemethodforquantitation

ofmicrogramquantitiesofproteinutilizingtheprincipleof

protein-dyebinding.AnalBiochem.1976;72(1–2):

248–254.

28.GeciovaJ,BuryD,JelenP.Methodsfordisruptionofmicrobial

cellsforpotentialuseinthedairyindustry–areview.Int

DairyJ.2002;12(6):541–553.

29.WilliamsAG,NobleJ,BanksJM.Catabolismofaminoacids

bylacticacidbacteriaisolatedfromCheddarcheese.Int

DairyJ.2001;11(4–7):203–215.

30.LeBarsD,YvonM.Formationofdiacetylandacetoinby

Lactococcuslactisviaaspartatecatabolism.JApplMicrobiol.

2008;104(1):171–177.

31.MilesiMM,WolfIV,BergaminiCV,HynesER.Twostrainsof

nonstarterlactobacilliincreasedtheproductionofflavor

compoundsinsoftcheeses.JDairySci.2010;93(11):5020–5031.

32.SmitBA,EngelsWJM,WoutersJTM,SmitG.Diversityof

l-leucinecatabolisminvariousmicroorganismsinvolvedin

dairyfermentations,andidentificationofthe

rate-controllingstepintheformationofthepotentflavour

component3-methylbutanal.ApplEnvironMicrobiol.

2004;64(3):396–402.

33.MarilleyL,CaseyMG.Flavoursofcheeseproducts:metabolic

pathways,analyticaltoolsandidentificationofproducing

strains.IntJFoodMicrobiol.2004;90(2):139–159.

34.GaoS,SteeleJL.Purificationandcharacterizationof

oligomericspeciesofanaromaticaminoacid

aminotransferasefromLactococcuslactissubsp.lactisS3.J

Referências

Documentos relacionados

Contudo, a raça Canchim pode ser considerada como sendo de boa resistência, uma vez que a percenta- gem média de retomo foi baixa, e 93,3% dos animais apresentaram percentagem

Espera-se que a presente pesquisa colabore com a reflexão sobre a utilização do Trabalho de Projetos, das TDIC e da Modelagem Matemática na Educação em

No sentido de avaliar os processos de auto-regulação dos alunos, procedemos, de forma individual, a entrevistas semi-directivas, utilizando uma metodologia microanalítica, que

À luz da hipótese da hipervigilância, esperamos encontrar uma associação positiva entre os traços borderline e a interferência das palavras de conteúdo negativo,

O homem ir-se-á assim abrindo a novas perspectivas, chegando, a partir do desejo como forma da liberdade, a uma aproximação do Absoluto, entendido como uma presença ou

Effects of diets supple- mented with branched-chain amino acids on the performance and fatigue mechanisms of rats submitted to prolonged physical exercise. Blomstrand E, Hassmen P,

R: Sem dados disponíveis. Esta questão deve ser remetida para o CAP Nabuco, Cmdt da EMME do CFMTFA. f) O que pensa da aplicação de energias renováveis em infraestruturas da FA?

The branched chain amino acids (BCAA) are included in this class, represented by leucine, isoleucine, and valine. According to Rostagno et al. 2016), but standardized