• Nenhum resultado encontrado

Use of electromyogram telemetry to assess the behavior of the Iberian barbel (Luciobarbus bocagei Steindachner, 1864) in a pool-type fishway

N/A
N/A
Protected

Academic year: 2021

Share "Use of electromyogram telemetry to assess the behavior of the Iberian barbel (Luciobarbus bocagei Steindachner, 1864) in a pool-type fishway"

Copied!
12
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Ecological

Engineering

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / e c o l e n g

Use

of

electromyogram

telemetry

to

assess

the

behavior

of

the

Iberian

barbel

(Luciobarbus

bocagei

Steindachner,

1864)

in

a

pool-type

fishway

C.M.

Alexandre

a,b,c

,

B.R.

Quintella

a,d,∗

,

A.T.

Silva

b,f

,

C.S.

Mateus

a,c,e

,

F.

Romão

a

,

P.

Branco

b

,

M.T.

Ferreira

b

,

P.R.

Almeida

a,c

aCentrodeOceanografia,FaculdadedeCiências,UniversidadedeLisboa,CampoGrande,1749-016Lisboa,Portugal bCentrodeEstudosFlorestais,InstitutodeAgronomia,UniversidadeTécnicadeLisboa,Lisboa,Portugal

cDepartamentodeBiologia,EscoladeCiênciaseTecnologia,UniversidadedeÉvora,LargodosColegiais2,7004-516Évora,Portugal dDepartamentodeBiologiaAnimal,FaculdadedeCiências,UniversidadedeLisboa,CampoGrande,1749-016Lisboa,Portugal

eMuseuNacionaldeHistóriaNaturaleDepartamentodeBiologiaAmbiental,UniversidadedeLisboa,RuadaEscolaPolitécnica58,1250-102Lisboa,Portugal fFaculdadedeEngenharia,UniversidadedeManitoba,WinnipegMBR3T5V6,Canada

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received9July2012 Receivedinrevisedform 30November2012 Accepted3December2012 Available online 3 January 2013 Keywords: EMGtransmitters Fishpassage Cyprinids Riverconnectivity Potamodromousmigration

a

b

s

t

r

a

c

t

Declineinfishspeciespopulationsduetoriverregulationbydamsandweirspromotedthedevelopment offishways,whicharebecomingoneofthemostcommonmeasuresfortherestorationofconnectivity inrivers.Fishwaysefficiencycanbespeciesspecificandthusmonitoringandevaluation,andsubsequent adjustmentstodesignandhydraulicfeatures,arerequiredtoinformpotentialuserspriortoinstallation. Inthisstudywetestedtheapplicabilityofelectromyogramtelemetrytostudytheswimmingbehavior ofacyprinidpotamodromousspecies,theIberianbarbelLuciobarbusbocageiSteindachner,1864,inan experimentalpool-typefishway.Intotal,24barbelswereusedintheexperiment,12ofwhichweretagged withEMGradiotransmittersequippedwithelectrodesthatregistermuscleactivity,whiletheother12 untaggedfishwereusedascontrol.Fortaggedfish,arelationshipbetweenswimmingspeedandEMG telemetrysignalswasdevelopedinaswimmingtunnel,whichwaslaterusedtoassessbarbelsswimming behaviorwithintheexperimentalfishway.Taggedfishexhibitedhighpassagesuccessandanaerobicburst swimmingwasonlyrequiredtomovethroughthesubmergedorificesofthefishway.Barbelsspent suc-cessivelylesstimewhentransversingthepoolsintheupstreamdirection.Measuredhydraulicvariables thatwererelatedwithbarbels’swimmingspeedwithinthefishwayswerethewatervelocity,turbulent kineticenergy,turbulenceintensityand,especially,thehorizontalcomponentofReynoldsshearstress, highlightingtheimportanceoftheseparameterswhendesigningpool-typefishways.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Fragmentationandlossofaquatichabitat,originatedwiththe

construction ofartificial barrierssuchas dams,weirs, roadsor

bridges,aretwoofthemostimpactinganthropogenicactionsin

riverineecosystems(DynesiusandNilsson,1994;Jungwirthetal.,

2000;Nilssonetal.,2005).Inthesesystems,fragmentationiseasy

toaccomplishsinceasingledammingeventisenoughtoisolate

adjacentriversegments,contributingforthedramaticdeclinein

therangeandabundanceoffreshwaterfish(CowxandWelcomme,

1998;Jageretal.,2001;LucasandBaras,2001;LucasandFrear,

1997).Migratoryfishthat includeriversystemsin theirroutes,

∗ Correspondingauthorat:CentrodeOceanografia,FaculdadedeCiências, Uni-versidadedeLisboa,CampoGrande,1749-016Lisboa,Portugal.

Tel.:+351217500148;fax:+351217500009. E-mailaddress:bsquintella@fc.ul.pt(B.R.Quintella).

namelydiadromousandpotamodromousspecies,areparticularly

affectedbythisproblem(Poulet,2007).

Thecontinuousdeclineofmanyfishspecies’stockspromoted

thedevelopmentoffishways,whichemergedashydraulic

struc-turesbuilttoaidthemovementoffishpastthebarriersandare

becoming one of the most commonmeasures for the

restora-tionoflongitudinalconnectivityinrivers(Alvarez-Vázquezetal.,

2007;Clay,1995;Katopodis,2005;Knaepkensetal.,2007).The

importanceofsuchdeviceswasrecentlyreinforcedwiththe

devel-opmentandapplicationofwatermanagementtools,suchasthe

EuropeanWaterFrameworkDirective(EWFD,2000/60/CE),which

demandsaneffectiveandundisturbedmigrationoffishspeciesas

akeycomponentofwatershedrestoration(EuropeanCommission,

2000).Pool-typefishwaysarethemostcommontypeoffishways

builtatriverbarrierssuchassmallhydropowerplantsandweirs

(Larinier,2002;Santosetal.,2012).Thesestructuresgenerally

con-sistofaseriesofpools,arrangedinasteppedpattern,separated

bycross-walls thatcanbeequippedwithsubmergedorificesat

0925-8574/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

thebottomandsurfacenotches,wherebyfishmovefrompoolto

poolbyleapingoverthesurfacenotchesorswimmingthroughthe

bottomorifices.Theirmainpurposeistoensuretheadequate

dis-sipationofwaterenergyandofferrestingareasfor,predominantly

upstream,migratingfishes(Katopodis,2005).

Studiesonfishwayshaveprovidedinformationonhowfishuse

thesefacilitiesduringtheirupstreammigrations.Trappingfishin

fishways atdamshasbeencommonlyusedtoassessthe

num-berandspecies offishthatsuccessfullynegotiatethepass(e.g.

Barasetal.,1994;Prchalováetal.,2006).Nonetheless,thismethod

doesnotprovideinformationontheeffortandbehavior offish

in thevicinityof theobstructionand during ascent(Lucasand

Frear,1997).Furthermore,mostofthestudiesdevelopedtoassess

theeffectivenessofthesestructuresmainlyfocusondiadromous

species,namelysalmonids,duetotheirhigheconomicaland

recre-ationalvalue(e.g.Bunt,1999;Katopodis,2005;Laineetal.,2002;

Naughtonetal.,2007),withalowemphasisgiventocoarse,

pota-modromousspecies,suchascyprinids,oflowcommercialvalue

(Buntetal.,2012;Puertasetal.,2012;Noonanetal.,2012;Roscoe andHinch,2010).Therefore,studiesconcerningthemovements

andbehaviorofthesespeciesarenecessary,consideringtheir

bio-logicalimportanceonthecompositionoffishassemblages.This

challengeisspeciallyhighlightedinIberianrivers,wherecyprinid

fishesarefrequentlythemostdominantandabundantgroupof

species(Cabraletal.,2005;Doadrio,2001).

Fishtelemetrywasreportedforthefirsttimein1956andsince

then ithasbeenusedextensively tomonitortheactivitiesand

movementsofmigratoryandresidentfishesthroughouttheworld

(Cookeetal.,2004).Conventionaltelemetrymethodsonlylocate

individuals,beingusefulindeterminingpositionsandmovements

ofindividualfish.Recently,biotelemetrytechnologyhasdeveloped

intoavarietyofhighlysophisticatedtechniquesthatmeasureand

transferwirelessinformationfromfree-swimmingfishon

phys-iologicalvariablessuchasheartrate,opercularrateandmuscle

activity(Cooke etal.,2004).Aradiotransmitter wasdeveloped

whichdetectsandtransmitstheelectromyograms(EMG)produced

duringaxialmusclerecruitment(Cookeetal.,2004;Thorstadetal.,

2000).EMGarechangesinbioelectricalvoltagestronglycorrelated

withstrengthanddurationofmusclecontractionsand,when

mea-sured,canbeuseddirectlyasindicatorsoftherelativefishactivity.

Thisrelativelyrecenttelemetrytechniqueofferstheopportunity

toobtainquantitativeestimatesofthemetaboliccostsofactivity

byfreerangingfishreleasedinthewildbycalibratingEMGto

tail-beatfrequency,swimmingspeedoroxygenconsumption(Cooke

etal.,2004;Kaselooetal.,1992).UseofEMGcanprovideinsights

intotherelativeswimmingeffortandenergeticcostsofmigration

throughparticulartypesofhabitatandpassagestructuresandit

isapromisingtoolforwatershedrestorationand,inparticular,for

theevaluationoffishwaydesignswheredirectvisualobservations

arefrequentlynotpossible(Hinchetal.,1996).

TheIberianbarbel(LuciobarbusbocageiSteindachner,1864)is

apotamodromouscyprinidendemictotheIberianPeninsulaand

occursinawiderangeofloticandlentichabitatsandinalmostall

theriverbasinsofnorthernandcentralPortugal(Lobón-Cerviáand

Fernández-Delgado,1984;Magalhães,1992;Oliveiraetal.,2002).

Itisconsideredanon-threatenedspeciesintheIberianPeninsula

(Cabral etal., 2005;Doadrio,2001).During spring,this species

migrates upstream tospawnin gravel or sandy riverbed areas

withfastwater flow, thus beingconsidereda reophilicspecies

(BarasandCherry,1990;Barasetal.,1994;Rodríguez-Ruizand Granado-Lorencio,1992).Thisspecies hasreceivedsome

atten-tioninrecentyearsthroughstudiesonitsmigrationecology(e.g.

Santosetal.,2005)andaerobicswimmingcapacity(Mateusetal.,

2008).Morerecently,someworkhasbeendonetoinvestigatethe

species’behaviorwhenmovingthroughanexperimentalpool-type

fishway(Silvaetal.,2009,2011,2012a,b).However,thereisstilla

lackofknowledgeaboutsomespecificaspectsofIberiancyprinids

behaviorwithinsuchdevicesandtheuseofnewlydeveloped

tech-nology,suchasphysiologicaltelemetry,remainsapowerfuland

untestedtooltoassesstheinfluenceoffishwaydesignand

asso-ciatedhydraulicfeaturesonthebehavior,swimmingperformance

andenergeticcostsrelatedwiththefishwaypassageofthesefish.

Themainobjectiveofthisstudywastotesttheapplicabilityofa

biotelemetrytechnique,theEMGtelemetry,asamethodtoassess

thebehaviorofL.bocageiinanexperimentalfishway.Specifically,

thefollowingquestionswereposed:(i)isEMGtelemetryavalid

methodforassessingthebehavioroffishwithinthesestructures?;

(ii)doesthis speciesshow anytype of learningpattern during

thenegotiationoftheobstacle;(iii)isthisfishwayconfiguration

suitableforacost-efficientpassageofthisspeciesand(iv)which

hydraulicparametersaffectthebarbels’swimmingperformance

withinthistype offishway.Weexpectthis studytocontribute

tothevalidationoftheelectromyogramtelemetryasa

monitor-ingmethodforpool-typefishwaysandforimprovedknowledge

andunderstandingof L.bocageibehaviorduringpassageofthis

typeoffishways.Datacollectedwiththisbiotelemetrytechnique

maybeusefulforengineersinvolvedinwatershedrestoration

pro-gramstohelpthedesignofnewfishwaysandtomodifyexisting

onesinorder toimprove attractionand passageefficiency and

guaranteethelongitudinalconnectivityenhancement(Cookeetal.,

2004).

2. Methodology

2.1. Fishcaptureandtaggingprocedure

Between May and July 2009 a total of 24 barbels of

comparable size (mean Lt±S.D.=45.1±34.3cm, mean

Wt±S.D.=798.19±200.40g) were caught in River Sorraia

(38◦59N; 08◦17E), a tributary of River Tagus basin, Portugal,

using an electrofishing gear (Hans Grassl EL 62 generator, DC,

600V, 10A). Twelveof thesefish wereused ascontrols inthe

fishwayexperimentsand12weretaggedwithimplantablecoded

electromyogram radio transmitters (CEMG-R11-25; 12g in air,

12mmindiameterand56mminlength),manufacturedbyLotek

Wireless, Newmarket, Ontario. The transmitters weighted less

than2%ofbarbels’bodyweightintheair(Jepsenetal.,2002).

Elec-tromyogramtransmittersdetectthevoltagedifference(potential)

betweenelectrodes in themuscles of fish(Brown etal., 2007;

Cookeet al., 2004; Enders et al.,2007).The CEMG transmitter

outputwasdetectedandrecordedbyaportablecombinedreceiver

anddatalogger(SRX400fromLotekWireless)throughacoaxial

antenna.Datawereloadedintoacomputerforstorage,processing

andstatistical analysis,through a RS-232serialcommunication

portusingthesoftwareWINHOST.

ThetaggingprocedurewassimilartothatdescribedbyBooth

etal.(1997),Quintellaetal.(2004),Thorstadetal.(2000),among

others.Experimentalfishwereanaesthetizedbyimmersionin

2-phenoxyethanolata concentrationof0.4ml/land measuredfor

totallength(Lt)andtotalbodyweight(Wt).Thefishwereplaced

onaV-shapedsurgicaltable,ventralsideup,andcontinuously

sup-pliedwithanestheticsolutionatalowerconcentration(0.3ml/l)to

maintainsedationandgillsoxygenationduringthetagging

proce-dure.Thetransmitterwasplacedposteriorlyintheintraperitoneal

cavityandthepairofgold-tippedelectrodeswaspositioned,in

par-allel,intotheleftredaxialmusculatureabovethelateralline.The

distanceandlocationoftheelectrodeswasstandardizedinorder

toallowagoodEMGsignalreception,aswellasaccurateand

(3)

McKinley,1999;Bunt,1999;Cookeetal.,2004).Thecomplete

sur-gicalproceduretookca.10min.Allfishwerelefttorecoverfor

2days ina 2000lcircularfiberglassholdingtankundera

con-trolledphotoperiod(12hlight:12hdark)andwatertemperature

(18±1◦C).

2.2. CalibrationofCEMGtransmitteroutputwithswimming

speed

Followingthe2-dayrecoveryperiod,anindividualcalibration

procedurewas developed to convert CEMGtransmitter output

fromthetaggedfishintoinstantaneousswimmingspeeds.This

procedurewasconductedin amodifiedBrett-typeswimtunnel

(formoredetailsontheswimapparatusseeMateusetal.,2008).

Inthebeginningofthecalibrationprocedure,fishunderwentan

acclimationperiodof30minintheswimchamberatalowwater

velocityofca.0.1m/s.TransmissionsfromCEMGtransmitterwere

recordedwhilethefishswamat14differentspeeds(0.2–1.5m/sin

0.1m/sincrements).Eachswimmingspeedwasmaintainedfora

maximumperiodof5minandCEMGreadingswererecordedwhile

thefishwasswimmingsteadilyinplace.RestingCEMGvalueswere

recordedwhentheanimalwassubjectedtonullwatervelocity,

remainingcompletelymotionlessfortheentireprescribedinterval.

Thecalibrationproceduretookabout4hperfish,dependinglargely

onfishbehavior.Thecalibrationprocedurewasvideotapedwitha

time-synchronizeddigitalvideocamerarecorder(SonyDCR-PC1E).

Videorecordingswere reviewedafter testingto excludeCEMG

readingsthatoccurredwhenfishwerenotswimmingsteadily.The

remainingCEMGreadingswereexpressedasanaverageforeach

swimmingspeed.Attheendofthecalibrationprocedure,thefish

werereturnedtotheholdingtank.

2.3. Experimentalfishway

The study was conducted in an experimental full-scale

pool-typefishway installedat theHydraulics andEnvironment

Department of the National Laboratory for Civil Engineering

(LNEC),inLisbon(Portugal).Thepool-typefishwayprototypewas

comprisedofaflume(10mlong×1mwide×1.20mhigh)ona

8.5%slopewith6pools(1.90mlong×1.0mwide×1.2mhigh),

dividedbyfivecompactpolypropylenecrosswalls,eachequipped

withasubmergedorifice(23cm×23cm)andsidewallsmadeof

acrylicglasspanels.Thisexperimentalapparatusalsoencompassed

twoconcretetanks,locatedattheupstreamanddownstreamend

oftheflume,with1.5mlong×1.0mwide×1.2mhighand4.0m

long×3.0mwide×4.0mhigh,respectively.Thefirsttankensured

thatsmoothflowenteredtheflume,whilethelatterwasusedas

anacclimationchamber.Foradetailedschemeofthefishwaysee

Silvaetal.(2011)andSantosetal.(2012).

2.4. Hydraulics

Duringtheexperiments,theflowinthefishwaywas65l/s,and

themeanwatervelocityinthesubmergedorificesandpoolswas

1.48m/sand0.27m/s,respectively.Thesubmergedorificeswere

placedinanoffsetarrangement,whichwaspreviouslyfoundto

bemorebeneficialforthepassageoftheIberianbarbelina

sim-ilarstudyconcerningthis species(Silvaet al.,2012b),where it

wasobservedahigherrateofpassagesuccessrelativetoastraight

orificeconfiguration.

Instantaneouswatervelocitymeasurements wereconducted

usinga3DAcousticDopplerVelocimeter(ADV)(NortekAS),placed

verticallydown.Thisdevicewasselectedforthemeasurements

becauseofitsabilitytocorrectlymeasurethethree-dimensional

velocitycomponents(x,y,z)offlowing water(Eadetal.,2004;

Guiny et al.,2003).Flowpattern and headdrop (h)between

poolsweresimilarinallpools(h=0.16m).Consequently,

mea-surements weremadeintheseconddownstreampool(P1) and

consideredrepresentativeofthehydraulicconditionswithinthe

fishway.Themeasurementswereperformedatdistinct

horizon-talplanesparalleltotheflumebottom,at25,50and80%ofthe

poolmeandepth(hm).Apredefinedgridof48measuringpoints

wasusedasreferencetothemeasurementsineachplane.Intotal,

2500instantaneousmeasurementswererecordedforeach

samp-lingpoint.Measurementswererecordedat25Hzforasampling

periodof90sineachpointonthegridtodeterminethewater

veloc-ity(WV),turbulentkineticenergy(TKE),turbulenceintensity(TI)

andReynoldsshearstress(RSS).The90ssamplingperiodwas

con-sideredtoberepresentativeforanappropriatedeterminationof

meanvelocityandturbulencewithinthepool(Silvaetal.,2011).To

understandandcharacterizethemajorhydraulicforcesactingon

thefishandaffectingitsupstreammovementwithinthefishway,

theRSSwasdeterminedforitsthreecomponents:horizontal(XY,

−␳uv),vertical(XZ,−␳uw)andtransversal(YZ,−␳vw),with

beingthewaterdensity(1000kg/m3)andu,

v

andwarethe

fluc-tuatingvelocitiesintheX,YandZdirections,respectively.Toallow

forcomparisons,allhydraulicparametersmeasuredweremade

dimensionlessbyusingmaximumflowvelocityattheorifice(V0)

(Liuetal.,2006).Amoredetaileddescriptionofmeasurement

pro-cedures,theoreticalassumptionsaboutthesehydraulicvariables

andhydraulicpatternswithinthefishway(Fig.1)areincludedin

Silvaetal.(2011,2012b).

2.5. Fishwayexperiments

Atotalof24barbelsweretestedinthefishwayexperiment,of

which12weretaggedwithCEMGtransmitters.Nosurgerywas

performedoncontrolfish,whichwereheldunderthesame

condi-tionsastheexperimentalfish.Theseindividualswereusedtotest

possibleeffectsofCEMGtransmitterimplantationandsubsequent

manipulationduringthecalibrationprocedure,bycomparingthe

swimmingbehaviorbetweentransmitter-implantedfishand

con-trols.Theuseofuntaggedfishwasalsoimportanttoreducethe

stressofthetaggedfishatthetimeofreleaseintheexperimental

fishwaysincethisspeciesiscommonlyseenschoolingduringthe

spawningmigration.

Fishbehaviorwasmonitoreddirectlythroughtheacrylicglass

side-wallsoftheflumeandthroughaglasswindowlocatedinthe

downstream tankbymeansof directobservation. These

obser-vations weresupplemented by video recording, usingan array

oftwovideocameras.Atthebeginningoftheexperiments,one

taggedbarbelandonecontroluntaggedanimalwereplacedinto

theattractionpool(P0)tofreelyascendthefishway.Additionally,

amoredetailedobservationwasfocusedonthebarbels’behavior

intheseconddownstreampool,whichwasconsideredtobe

rep-resentativeofthehydraulicconditionsintheremainingupstream

pools.Onecamerawasplacednearthesidewallofthispool

(lat-eralview)andanotheronewaspositionedabovethewatersurface,

facingdownwards(topview).Bothcameraswereplacedatafixed

distancefromthepool.Areferencegridofcellswasplacedabove

thepoolandguidinglinesrepresentingthethreehorizontalplanes

(0.25,0.50and0.80),wereplacednearthesidewalltoaidinthe

videomonitoringprocess.Eachtrialwasconductedforamaximum

durationof180min.CEMGreadingsfromthetransmitterssignal

wereusedtodeterminetheswimspeedofL.bocageiinthefishway,

basedonthecalibrationcurveequation.

Videorecordsoftheseconddownstreampoolwereanalyzed

usingtheIVisionLabviewsoftwarefromNationalInstruments

Cor-poration,allowingthecollectionofexactlocationandtimingof

(4)

Fig.1. Hydraulicpatternsassociatedwithwatervelocity,turbulentkineticenergy,turbulenceintensityandthethreevectorsofReynoldsshearstress(horizontal– uv, vertical– uw,tranversal– vw),measuredatthethreehorizontalplanes(0.25,0.50and0.80hm)intheseconddownstreampool,inanoffsetarrangementofthesubmerged

orifices.ThesizeofthevectorsintheWVfigurerepresentsthemagnitudeofthisparametervalues.Inthecolorfigures,thewaterflowsfromthebottomrighttothetopleft side.

cell,whenmorethanhalfofitsbodylengthwaswithinacell’s

boundaries.

2.6. Statisticalanalysis

RegressionanalysisbetweenaverageCEMGtransmitteroutput

(dependentvariable)andswimmingspeed(independentvariable)

wasperformedforallfishsuccessfullycalibratedintheexperiment.

Theadoptedmodelwasexponentialbecauseitwasthebest

adjust-menttothedata.Ananalysisofcovariance(ANCOVA)wasused

tocomparethelinearslopesandinterceptsoftherelationships

betweenindividualsandtransmittersoutput(independent

vari-able),usingswimmingspeed ascovariate.Theobjectiveof this

analysiswastotestifindividualCEMGtransmittersproduce

signif-icantlydifferentresultsindifferentfishesandtoassessifasingle

calibrationequationcouldbeusedinfuturestudiestocalculate

swimmingspeedforalltaggedfish.

Toassessifthetaggingprocedureinfluencedthebehaviorof

thetestedbarbels,Mann–WhitneyU-testswereusedtocompare

thebehavioroftaggedandcontrolbarbelsregardingtheirpassage

timeineachoneofthefourpoolsandthetotalamountoftimethey

(5)

Swimmingspeedvalues,derivedfromtheEMGsignalrecorded

duringfishwaytrials,weregroupedineightclasses(0–0.2;0.2–0.4;

0.4–0.6;0.6–0.8;0.8–1.0;1.0–1.2;1.2–1.4;>1.4m/s)foranalysisof

swimmingspeedfrequencydistribution.Aone-wayPERMANOVA

analysiswasperformedtocomparebarbelswimmingspeed

fre-quencydistributionbetweeneachoneofthepools(P1–P4)during

theirfirstascentofthefishway.Thisanalysiswasperformedusing

the add-on package PERMANOVA for PRIMER+v6.0 (Anderson

etal.,2008).

Kruskal–Wallistests,withaSimultaneousTestProcedure(STP)

(SiegelandCastellan,1988)formultiplecomparisons,wereusedto

comparetheaverageswimmingspeedandpassagetimeexhibited

bythebarbelsin eachoneofthepools.Thesameanalysiswas

appliedtocomparetheaverageswimmingspeedintheattraction

pool(P0)amongthegroupoffishthatdidnotenterthefishway,

thegroupthatenteredthefishwaybutdidnotsuccessfullyascend

theentirefishwayandthegroupoffishthatsuccessfullyascend

theentirefishway.

AWilcoxonsigned-ranktestwasusedtotestthedifferences

inthetotaltimespenttoascendthefishwayinthefirstand

sec-ondpassagesbythefishthatsuccessfullynegotiatedthefishway

atleasttwotimes.AGoodness-of-Fittest(SokalandRohlf,1981)

wasconductedtocomparetheswimmingspeedfrequencies

dis-tributionbetweenthefirst(expectedvalues)andsecond(observed

values)ascentofthefishwayforeachbarbel.

Correlations between swimming speed values and mean

velocity,turbulentkineticenergy,turbulenceintensityand

three-dimensional Reynolds shear stresses were analyzed using the

Spearmanrankcoefficient.Allstatisticalanalyses,withthe

excep-tionofPERMANOVA,wereconductedwithRpackage(v2.11.1).

3. Results

3.1. CalibrationofCEMGtransmitteroutputwithswimming

speed

Nomortalityoccurredasaresultofthesurgicalprocedureused

toimplantthetransmittersandnoinfectionwasdetectedaround

theincisionarea.Attheendofeachcompleteexperimental

pro-cedure,thebarbelsweresacrificed toconfirmcorrectelectrode

placementand there wasnoevidenceof internaldamage from

theimplantationofthetagandelectrodes.Apparently,electrodes

remainedinplace(7.37mm±1.35averagedistancebetween

elec-trodes),thoughminordisplacementmayhaveoccurredbutdid

notresultinperceptiblechangeintheEMGsignal.Allsuccessfully

calibratedfishexhibitedastrongrelationship(R2rangedbetween

0.744and0.960;P<0.001)betweenCEMGtransmitteroutputand

swimmingspeed(Table1).TheANCOVAanalysisconductedtotest

thepossibilityofusingthesamecalibrationequationforallanimals

tagged withthe CEMG transmitters revealed significant

differ-ences intheintercepts(F11,124=6527.281;P<0.001)and slopes

(F11,113=4.812;P<0.001)ofthelinearregressionsofthetagged

barbels.Therefore,individualcalibrationofCEMGtransmitter

out-putwithswimmingspeedwasperformedforeachtaggedbarbel

usedinthesubsequentanalyses.

3.2. Experimentalfishwaystudy

No behavioral differences were observed between the fish

taggedwiththetransmittersandtheuntaggedfishusedas

con-trol,sinceMann–Whitneytestsrevealednosignificantdifferences

between thetime spentby each group of barbelsin each one

of the four pools (maximum U=42.00; P>0.05) and the total

amount of time they spent to ascend the fishway (U=41.00,

P>0.05).

WithinthetaggedbarbelsreleasedinP0,75%(N=9)managed

toenterthefishwaywithinthetrialperiodwhiletheremaining

25%(N=3)didnotleavetheattractionpool.Fromtheninetagged

barbels that entered the fishway, seven managed to arrive at

theupstreamend ofthefishwaywhiletwo didnotachievethe

upstreamendwithinthetrialperiodandonlyreachedoneofthe

fourintermediatepools(P1–P4).Thesefishpresentedsome

activ-ity inthepools allowingtherecordof suitablebehavioral data

(Table2).Alloftheuntaggedcontrolbarbelsmanagedtoenterthe

fishwayand67%ofthemreachedtheupstreamendofthefishway.

The PERMANOVA analysis conducted to test differences in

swimmingspeedfrequencydistributionsdidnotrevealed

signif-icant differencesbetweenanyofthepools(F=0.449;P=0.734).

Frequencydistributions of swimmingspeeds inP1–P4are

rep-resented in Fig. 2. The Kruskal–Wallis analysis conducted to

test differences in barbels’average swimming speeds, alsodid

notrevealsignificantdifferencesbetweenthepools(2=1.273;

P=0.757). On the contrary,the same analysis revealed

signifi-cantlydifferentpassagetimesbetweenthefourpools(2=16.157;

P<0.001).Thetestformultiplecomparisons(STP)revealedthat

barbelssignificantlyspentmoretimenegotiatingP1thantheother

pools(Fig.3a).Fortheseanalyses,onlythesevenbarbelsthat

com-pletelyascendedthefishwayintotheupstreampool,atleastonce,

wereconsidered.

Theaverageswimmingspeedintheattractionpool(P0)was

significantlydifferentbetweenthethreegroupsofbarbels

clus-tered considering theirperformance in thefishway ascent(i.e.

notentered,enteredorpassed)(Kruskall–Wallistest;2=6.471;

P<0.05).Thesimultaneoustestrevealedaloweraverage

swim-mingspeedinP0forthebarbelsthatdidnotlefttheattraction

poolduringtheentirefishwaytrial,intermediateforthosethatonly

enteredinthefishwayandthehigheractivitylevelswheredetected

amongthebarbelsthatpassedtheentirefishwaystructure(Fig.3b).

Table1

RelationshipsbetweenCEMGtransmitteroutputandswimmingspeed(m/s)forthe12barbelstestedintheswimtunnelduringthecalibrationprocedure.Allregression modelswerehighlysignificant(P-value<0.001).

BarbelID Surgerydate Calibrationdate Fishwaytrialdate Calibrationequation R2

#86 18-05-2009 21-05-2009 22-05-2009 y=2.824e1.084x 0.907 #87 18-05-2009 21-05-2009 22-05-2009 y=2.565e0.732x 0.816 #90 25-05-2009 28-05-2009 29-05-2009 y=2.165e0.749x 0.858 #91 25-05-2009 28-05-2009 29-05-2009 y=2.311e0.804x 0.729 #94 01-06-2009 04-06-2009 05-06-2009 y=5.462e0.671x 0.807 #95 01-06-2009 04-06-2009 05-06-2009 y=3.678e1.213x 0.940 #98 08-06-2009 11-06-2009 12-06-2009 y=5.111e0.708x 0.858 #99 08-06-2009 11-06-2009 12-06-2009 y=3.261e1.155x 0.900 #102 15-06-2009 18-06-2009 19-06-2009 y=5.614e1.139x 0.862 #103 15-06-2009 18-06-2009 19-06-2009 y=3.420e1.484x 0.960 #106 22-06-2009 25-06-2009 26-06-2009 y=9.056e0.565x 0.744 #107 22-06-2009 25-06-2009 26-06-2009 y=4.789e0.823x 0.916

(6)

Table2

Dataonindividualbarbelstestedinthefishway.

BarbelID TimeinP0(min) Totaltimeinpools(min) SSinP0(m/s) SSinpools(m/s) %TimeaboveUcrit Ascentofthefishway

#86 72.3 21.0 0.59 0.43 10.7 Passed #87 180.0 0.0 0.34 – 3.4 Notentered #90 145.5 34.5 0.42 1.02 32.9 Entered #91 75.3 15.3 0.62 0.71 17.3 Passed #94 27.1 9.4 0.50 0.30 7.4 Passed #95 109.5 24.1 0.45 0.53 9.9 Passed #98 180.0 0.0 0.29 – 5.7 Notentered #99 142.1 37.8 0.40 0.32 8.8 Entered #102 75.4 9.2 0.49 0.39 3.3 Passed #103 135.5 35.5 0.34 0.40 4.6 Passed #106 180.0 0.0 0.18 – 0.4 Notentered #107 136.7 43.3 0.65 0.71 27.9 Passed

SS:averageswimmingspeed;P0:acronymforattractionpool;Ucrit:criticalswimmingspeed;ascentbehavior:notentered–fishthatdidnotenterthefishway,entered–

fishthatenteredthefishwaybutdidnotsuccessfullyascendtheentirestructure,passed–fishthatsuccessfullyascendedthefishway.

Fig.2.Swimmingspeeds(m/s)recordedwithtaggedbarbelsduringthepassagetimeinpools(Pool1–Pool4)oftheexperimentalfishway.SS:averageswimmingspeed.

Fig.3.Averageswimmingspeed(m/s)andpassagetime(min)inthefourpools (Pool1–Pool4)oftheexperimentalfishway(a)andaverageswimmingspeed exhib-itedintheattractionpool(P0)bythethreegroupsoffishes(b).

Fig.4 presentsa typicalswimmingspeedvs. timegraph for

aselectedbarbel(#103) thatcompletelyascended thefishway.

Anaerobicburstswimming(aboveUcrit)wasonlyrequiredtomove

throughthesubmergedorificesofthefishway,sincethemajority

ofthebarbels’swimmingvelocitiesduringthatperiodwerebelow

thetheoreticalUcritlevelsforabarbelofthatparticularLt.The

pro-portionoftimespentbythetaggedbarbelsbelowthetheoretical

Ucritwasmuchhigherthantheproportionoftimespentabovethis

value.

Fromtheninebarbelsthatenteredthefishwayintoanyofthe

poolsorthatcompletelypassedthroughit,fivemanagetoascendit

atleasttwotimesallowingthecomparisonofswimmingspeed

fre-quenciesbetweenthefirstandthesecondpassage(Fig.5).Mostof

theanalyzedbarbelsdidnotexhibitedsignificantswimmingspeed

differencesbetweenthefirstandsecondfishwayascents,withthe

exceptionof fish#102and #107who presenteda significantly

higherproportion ofthelowerswimming speed classesduring

thesecondfishwayascent(2=190.04;P<0.001and2=85.13;

P<0.001,respectively).Ontheotherhand,thetotalamountoftime

thatbarbelsspenttoascendthefishwayforthesecondtimewas

significantlylower(Wilcoxon’stest;Z=5.031;P<0.05)thanthe

timespentforthefirstpassage.

Eightof the tested barbelsentered the second downstream

(7)

Fig.4. Behaviorofthetaggedbarbel#103(recordedasswimmingspeeds,m/s)duringtheascentoftheexperimentalfishway.Thepiechartrepresentstheaveragepercentage oftimespentbyallthebarbelsaboveandbelowthetheoreticalcriticalswimmingspeed(Ucrit).TheoreticalUcritandcalculatedswimmingspeedscorrespondingtoCEMG

transmitteroutputareshownintheY-axis.Passagesfromonepooltotheotherarealsoidentified(Px–Py):P0–fishwayattractionpool;P1–fishwayfirstrestpool;P2– fishwaysecondrestpool;P3–fishwaythirdrestpool;P4–fishwayfourthrestpool;P5–fishwayupstreampool.

Fig.5. Swimmingspeeds(m/s)andtotaltimespentbythebarbelsduringthefirstandsecondascentoftheexperimentalfishway.SS:averageswimmingspeed.n.s.: non-significant;**P-value<0.001.

Table3

SummaryoftheresultsfromSpearmanrankcorrelationsconductedtotesttheeffectsofthehydraulicparametersmeasuredattheseconddownstreampool(P1),namely watervelocity(WV),turbulentkineticenergy(TKE),turbulenceintensity(TI)andReynoldsshearstressatthehorizontal(RSSuv),vertical(RSSuw)andtransversal(RSSvw)

planes,onfishswimmingspeed.

Dependentvariable Independentvariables Spearmanranktest, P-value

Swimmingspeed(m/s) WV(m/s) 0.22 <0.001 TKE(m2/s2) 0.33 <0.001 TI 0.22 <0.001 RSSuv(N/m2) 0.53 <0.001 RSSuw(N/m2) 0.04 0.093 RSSvw(N/m2) −0.02 0.435

(8)

Fig.6. Swimspeedofanexamplebarbel(#86)duringpassagetimeinthefirstpool(P1)oftheexperimentalfishway.(a)Watervelocity,turbulentkineticenergy,(b) Reynoldsshearstressatthethreeplanes(uv,uwandvw)and(c)turbulenceintensityarealsopresented.Hydraulicparametersvaryaccordingtofishlocationwithinthe pool.

the collection of suitable data for assessing the effects of the

hydraulicvariables onfishswimmingspeedwithineachone of

thegridcells.Regardingthisanalysis,asignificantpositive

rela-tionbetweenswimmingspeedandmeanWV(=0.22;P<0.001)

wasfoundforthetestedfishes(Table3;Fig.6).Asimilar

rela-tionshipwithfishswimspeedwasalsofoundforTKE(=0.33;

P<0.001)andforTI(=0.22;P<0.001).Liketheprevious

param-eters,thehorizontalvectorofRSSwasfoundtobesignificantly

correlated withswimmingspeed (=0.53;P<0.001).Of allthe

hydraulic variables tested, this wasthe one that exhibited the

highestcorrelationcoefficientwithbarbels’swimspeed.No

sig-nificantcorrelations werefoundbetweenfishswimmingspeed

andtheothertwoRSSvectors,namelytheverticalandtransversal

planes.

4. Discussion

Studiesanalyzingtheswimmingbehavioroffishaccordingto

differentphysiologicalandenvironmentalconditionscanprovide

valuabletoolsforenvironmentalmanagerstoassessthequality

oftheaquaticenvironmentanditseffects ontargetspecies.For

example,amanagerthatwishestoimprovethedesignofa

fish-waytoallowthepassageofatargetfishspeciescanusethesedata

todeterminetheadequatehydraulicarrangementtoincreasethe

efficiencyofthatfacility(Peakeetal.,1997).Knowledgeoffish

bio-logicalresponsewithinfishwayscanalsobeusedtodevelopor

improvecomputermodelsoftenusedbyengineerstoevaluatethe

efficiencyofoldornewfishwaydesigns(Puertasetal.,2012).By

allowingthephysiologicalanalysisoffishswimmingspeed

varia-tionsandenergeticcostsrelatedwithdifferenthydraulicscenarios,

theoutputresulting fromtheuseof thesetransmittersbridges

agapassociatedtofishwaydesignsbasedpurelyonswim

tun-nelperformance,whichinsomecasesdoesnotaccuratelyreflect

realfieldperformances(Peake,2004).Theworkdescribedinthe

presentstudy isparticularlynovelin itsareabecause it

repre-sentsthefirstattempttoanalyzeacyprinidbehaviorwithinan

experimentalpool-typefishway,whereseveralhydraulic

condi-tionsandstructuraldesignscanbesimulated,byusingnotonly

thedirectobservationoffishbutalsomoredetailedand

instan-taneousinformationaboutfishphysiologicalresponsetodifferent

hydraulicconditions,throughtheuseofEMGsensorsthatrecord

(9)

Highlysignificantregressionswere obtainedbetweenCEMG

transmitteroutputandswimspeed,whichrevealsthatthis

tech-nologyisagoodindicatorofswimmingactivity,andthusbehavior,

ofthisspeciesinthewild.Also,duringthecalibrationprocedure,

alltaggedbarbelsperformedwellintheswimmingchamberand

didnotseemtobeaffectedbythetransmitters’implantationin

termsofswimmingcapacityandbehaviorwhencomparedwith

theMateusetal.(2008)study.Theseresultsclearlyvalidatethe

useof electromyogram telemetry asa methodto studybarbel

swimmingphysiologyandrevealitspotentialtobeusedinfuture

studiesaboutthisspeciesbehaviorwhilemovingthroughfishways

orotherhydraulicstructures.Moreover,ourfindingscorroborate

othertelemetrystudies,focusingondifferentspecies,which

vali-datetheuseofelectromyogramtelemetryasamethodtostudyfish

swimmingphysiologyandrecommenditsusefortheassessment

offishwayefficiencyfortherespectivetargetedspecies.(Almeida

etal.,2007;Brownetal.,2007;Hinchetal.,1996;Øklandetal., 1997;Thorstadetal.,2000).Despitethestrongpotentialofthis

typeoftransmitters,therearesomeissuesthatmustbetakeninto

accountinfutureapplicationsofthismethodology.EMGoutput

and swimmingspeed relationshipssignificantly differedamong

testedbarbels.Therefore,consideringtheresultsfromthisstudy

andpreviousones(Brownetal.,2007;Cookeetal.,2004;Geistetal.,

2002;Thorstadetal.,2000),allfishimplantedwithEMG

transmit-tersshouldbeindividuallycalibratedpriortoreleasetobeableto

determinetheirspecificinstantaneousswimmingspeedwiththe

electromyogramrecords.Also,duringthecalibrationprocedure,

unsteadyswimmingand,consequently,lesshomogeneousCEMG

recordsathigherspeeds(generallyabove1.0m/s)wereobserved

inmostfish.Accordingtoseveralauthorsthathadthesameresults

withdifferentspecies(Almeidaetal.,2007;Thorstadetal.,2000),

this behavior is probably related to a less uniformswimming

behaviorneartheUcrit.Athighspeedsofburstswimming,which

canbefrequentlyrequiredinpoordesigned orunsuitable

fish-ways,theredmusclerecruitmentdecreaseswhiletheintensity

ofwhitemuscleactivityincreases(JainandLauder,1994).Infact,

insomeofthetaggedbarbelstheCEMGsignalsrecordedatthe

highestspeedsdecreased.Therefore,infuturefishwayevaluations

usingthistelemetrymethod,oneshouldhaveinmindthat the

higherswimmingspeedrecordsmaybeunderestimatedwiththis

samplingtechniqueiftheelectrodesareimplantedintheredaxial

musculature.

Learningtousethefavorableflowpatternstoswimduring

fish-wayascenthasbeensuggestedasanexplanationoffishimproved

movementthroughthesefacilities(Laine,1990).Theoretically,in

thisstudy,duringthesuccessivepassagesoffourpoolswith

sim-ilarflowconditionsorbetweentwocompletefishwayascents,it

wasexpectedthatthebarbelswouldacquiresomeknowledgeof

theflowpatternswithintheexperimentalfacilityand,therefore,

wouldchoosemorestableareasthatrequirelessmusculareffort

tonegotiatetheobstacle.Thisassumptionwasnotdemonstrated

inthisstudy,sincethetaggedbarbelsdidnotexhibitsignificant

differencesinswimmingspeedbetweenanyofthefourpoolsand

onlytwoofthempresentedadistinctswimspeedfrequency

dis-tributionbetweenthefirstandsecondfishwayascent.Regardless

ofthis,significantdifferenceswerefoundbetweenthefourpools

whenthecomparedvariablewasthepassagetime.Also,barbels

spentsignificantlylesstimetoperformthesecondcompleteascent

ofthefishwaywhencomparedtothefirstoneandthetimewas

consistentlyreducedinfollowing passes.The“learning”pattern

foundinthisstudywasmostlyreflectedintheknowledgeofhow

togetinandoutofthepoolsandoftheentirefishwayandit

prob-ablytakesmoretime,andattempts,forthefishestolearnhowto

performalessphysiologicallydemandingpath.Theseresultshave

tobelookedcarefullybecauseoftherelativelylowsamplesizeof

fishthatperformedasecondfishwayascentandmoretests,with

aprolongeddurationthanthisoneandinlargerfishways,should

beconductedusingEMGtransmitterstofurtherclarifythisissue.

InastudydevelopedbyCollinsetal.(1962)withsalmonidsinan

experimentalfishway,ittookalmosttwodaysofpassageattempts

beforethefishesstartedtoshowanincreaseinpassagesuccess

rateandadecreaseintheblood-lactatelevel,usedasanindexof

muscularfatigue,afterthefishwayascent.

In thepresentstudy,barbelswithdifferentactivitylevelsin

theattractionpoolalsoobtaineddistinctsuccessinascendingthe

fishway.Fishesthat completelyascendedthefishwayexhibited

higheraverageswimmingspeed valuesinthefirstdownstream

poolthantheonesthatonlyascendedtothemiddleofthe

struc-tureordidnotleavetheattractionpoolduringtheentiretrial,

somehowmakingitpossibletopredictthefishpassagesuccess

basedontheirlevelofactivityinthefishwayentrance.

Nonethe-less,thehydraulicconditions(flowpatterns,water velocityand

flowdischarges)inthevicinityoftheentranceofafishwayarethe

main factordeterminingits’attraction(Larinier, 2002).Ascited

by Scruton et al. (2007),previous workperformed in fishways

determinedthatAtlanticsalmon(SalmosalarL.)mayspend

sev-eraldaysmillingatthefishwayentranceandmakingattemptsto

enteritbeforeproceedingthroughthefishway.Thiscouldmean

that,inthisstudy,barbelsthatdidnotenterthefishwayduringthe

establishedtrialperiod,eventually,mighthaveenteredlater.More

studiesconcerningtheseaspectsoffishwaydesignandoperation,

usingahighernumberoffishanddifferenthydraulicconditions,

shouldbeconductedinordertoclarifythisquestion.

TheEMGtelemetryappliedrevealedthatbarbelshadtoexceed

their criticalswimming speed (defined byMateus et al., 2008)

onlyduringpassagethroughthesubmergedorifices.Although

fish-wayascentwasnottoomuchenergeticallydemandingforbarbels,

observationsofburstswimmingwhilepassingtheorificessuggest

thatenergyusecouldbehighatthesepoints(Ponetal.,2009).

ThishasbeenalsoreportedbyBoothetal.(1997),whofoundthat,

for Atlanticsalmon,theascentofanexperimentalfishwaymay

involveactivitybeyonditsaerobicscope.Theseauthorsdescribed

arapidincreaseinsalmonmuscularactivitytoaboveUcritvalues,

whichremainedelevatedthroughoutthefishwayascent.Previous

studieshaveshownthatasignificantoxygendebtisacquired

dur-ingfishanaerobicactivity(Woodetal.,1983)andtheenergetic

costsofrecovering fromthismaybegreaterthantheiraerobic

scope(Beamish,1978).Thefishwayconfigurationanalyzedinthis

studythroughtheuseofEMGprovedtobeadequateforthe

suc-cessfulpassageofthetargetspeciesconfirmingpreviousstudies

conductedinthesamehydraulicinfrastructure(Silvaetal.,2009,

2011,2012b).However,evensuccessfulpassagethroughafishway

canhavedeleteriouseffectsonfishthatcouldleadtodelayed

mor-talityandnegativelyaffectfishfitnesstothepointofupsettingthe

posteriorsuccessoftheirspawningmigration andreproduction

(Brownetal.,2006;Gowansetal.,2003).Inastudytoevaluatethe

post-fishwaypassagesurvivalandreproductivesuccessofsockeye

salmon(Oncorhynchusnerka),Roscoeetal.(2011)foundthatthe

fishpassagethroughatailraceandaverticalslotfishway

involv-inganaerobicactivity,hadasignificantimpactonthesuccessofthe

speciesspawningmigrationsinceapproximatelyhalfofthe

migrat-ingadultsthat passedupstreamthroughthesestructuresfailed

onreachingspawninggrounds.HinchandBratty(2000),usingthe

sameEMGtechniquetoevaluatethefishwaypassageofsockeye

salmonsfoundthatfishthatspentlongertimeperiods(>10min)

abovetheirUcritcouldnotcompletetheirupstreammigrationeven

afterfishwaynegotiationinoppositiontofishthatspentreduced

periodsunderUcrit,whichweresuccessfulmigrants.Accordingto

Prchalováetal.(2006),severalfreshwatercyprinids(bleakAlburnus

(10)

LeuciscusleuciscusL.)usefishpassesnotonlyduringtheirspawning

migrationsbutalsoduringotherperiodsoftheyear.Smaller

bar-belsthantheonesusedinthepresentstudy,forwhichtheUcrit

values differsignificantly(Mateusetal.,2008), canmoreeasily

exceedtheiraerobicscopeandstayforlongerperiodsaboveit,thus

sufferingfrompost-passageeffects,anissuethatfishwaydesigners

andengineersshouldtakeintoaccountwhenimplementingthis

typeofstructures.However,accordingtoPenázetal.(2002)the

proportionofmobilebarbelsisrelativelylowinsmallerandmiddle

sizeclasses,increasingforthelargerclasses,whichmakesthe

lat-teramoreimportantstudyobjectwhendealingwithconnectivity

problems.

This study showed the existence of a positive relationship

betweenbarbels’swimmingspeedandsomehydraulicvariables,

namelythewatervelocity, turbulentkineticenergy, turbulence

intensityand horizontalReynolds shear stress,highlightingthe

importanceoftheseparameterswhenbuildingfishwaysforthis

species. Theswimming speed exhibitedby Iberian barbelswas

lowerincellswithreducedwatervelocityandturbulence,

imply-ingthatintheseareasthebarbelshadtodolessmusculareffort

tomaintaintheirposition(Endersetal.,2007;Pavlovetal.,2000).

Theseconditionswereprimarilyfoundnearthebottomofthe

fish-way,ontherecirculationzone,wherefisheswerefoundtospend

mostoftheirtimeduringthefishwayascent.Severalstudieshave

shownthatrecirculationareasonpool-typefishwayscanbecome

trapsforfishes,drasticallyincreasingthetransittimeineachpool

andthuscompromisingthepassagethroughthefacility(Tarrade

etal.,2008).Despitethefactthatthis phenomenoncouldhave

affectedsomeofthefishestestedinthisstudy,thehighproportion

ofbarbelsthatsuccessfullynegotiatedthefishwayinarelatively

shortperiod,indicatesthatmostofthefishusedtheseareas

essen-tiallyforrestingbeforemovingtowardhighervelocityandmore

turbulentregionsinthevicinityoftheorifices,whereburst

swim-mingwasrequired.Theseanaerobicswimmingefforts,apparently

recruitingfast-glycolytic(white)muscletoascendtheflume,are

verypowerful,butrestandrecoveryperiodsarenecessarytoclear

muscleH+ andlactatebuild-upsandtorestoreglycogenstores,

asshownforrainbowtrout(MilliganandWood,1986).However,

thisstudywasperformedundercontrolledlaboratorialconditions

andthehighpermanencetimeintheserestingareascouldhave

hadothernegativeimpactsonbarbelsifweweredealingwitha

realfishwayinthefield,sincedelayedfishwaypassagescouldalso

resultinincreasedpredation(HinchandBratty,2000;Peliciceand

Agostinho,2008).

Reynoldsshearstress,inparticularitshorizontalcomponent,

wasfoundtobethehydraulicvariablewiththehighestinfluenceon

fishswimmingspeed,suggestingtheimportanceofthisturbulent

descriptoronbarbels’behaviorandphysiologicalresponsewithin

thistypeoffishway.Themaximumshearstressvaluesobtainedin

thepresentstudy(near0.080N/m2)werefarfromthosereported

tocauseinjuriesormortalitiesonfishes(Cadaetal.,2006).

How-ever,accordingtotheresultspresentedinthisstudy,inareaswith

highershearstress,somedisorientationmayhavehappened,due

totheeffectoflargerturbulencevortexsystemsonthefishbody

surface (Odeh et al.,2002), andthe taggedbarbelshadto

per-format ahigher muscularcost tomaintaintheirpositionuntil

movingforwardorbeingdraggeddownstream.Silvaetal.(2011,

2012a,b),whenstudyingtherelationshipofthesehydraulic

vari-ableswithfishtransittimewithinthefishway,foundthatbarbels

tendtospendlesstimeonareaswithhighvelocity,turbulenceand

shearstress.Theseresultssupporttheonesobtainedinthepresent

study,thusimplyingthatduringthefishwayascentbarbelstendto

spendmoretimeinstablezones,avoidingturbulentareaswhere

theenergyexpenditureandmusculareffortwouldincreaseto

val-uesneartheircriticalswimmingspeedandonlymovingtomore

turbulentareaswhentryingtopasstheorificetotheupstream

pool.Otherauthorspresentedsimilarresultsfordifferentspecies

indicatingthatturbulenceandotherassociatedmeasureslikeshear

stresstendtoinducehigherfishswimmingcosts(Cocherelletal.,

2011;Endersetal.,2007;TriticoandCotel,2010).Ontheother

hand,Lupandin(2005)describesanegativerelationshipbetween

turbulenceandswimmingperformance,mostlyreflectedonaloss

ofbalanceandaconsequentdecreaseinfishswimmingspeedwhen

facinghighturbulence, contradicting ourresults. However,this

authoruseda differentmethodology,implementing flow

incre-mentsuntilaturbulencelevelwasreachedthatwashighenough

forthefishtogiveupswimmingandbecarrieddownstream,

mea-suringthehydraulicvalueatthatpoint.Ourstudyprovidesmore

preciseandalmostinstantaneousinformationaboutthemuscular

effort(2saverage)exhibitedbyfishestomaintaintheirswimming

positionin differenthydraulic conditions,aresultonlypossible

withtheuseofelectromyogramtelemetry.

EMGtelemetrytechnologyhasbeen,andcanbe,usedinseveral

fieldsoffishresearchallowingareliableestimateofmuscleactivity

(orswimspeed)andthusenergyexpenditureinfieldexperiments.

Inthisstudy,thistechnologyofferedvaluableanddetailed

infor-mationaboutfishmovements,behaviorandrelationshipwiththe

hydraulicenvironment,whichcanbeusedtoimprovethedesignof

thesestructures,allowingthemigrationandaccesstonewhabitats

offishspecieswithminimumenergyexpenditure.Newfishways

oradaptationsmadetooldonescanbeplannedandadjustedtofit

thecapacityofthetargetspecies.Biologistsandengineersmaybe

abletouseEMGtelemetrytodeterminewhereandhowtorestore

riverenvironmentsinordertofacilitatefishmigration(Hinchetal.,

1996).ThisstudydemonstratedthatradiotransmittedCEMG

sig-nalscanbeusedtodeterminetheswimspeedandthusthebehavior

ofL.bocageiandtoevaluatefishwaydesigninrelationtotheir

effi-ciencyforthisparticularspecies,openinggoodperspectivesforthe

applicabilityofthistechniquetosimilarcyprinids.

Acknowledgements

TheauthorswishtothanktoSaraPinela,SílviaPedroandVera

Canastreirofortheirassistanceduringfishsamplingcampaigns.

Specialthanks aredue tothe Divisionof WaterResources and

Hydraulics Structuresof theNationalLaboratoryfor Civil

Engi-neeringfortheircollaboration,namelyforthecontributioninthe

designoftheexperimentalfishwayandforalltheassistanceduring

thefishtrials.Licensingtocollectthespecimenswasprovidedby

AutoridadeFlorestalNacional(AFN).Thisworkwasfinancially

sup-portedbytheScienceandTechnologyFoundationthroughgrants

to Carlos Alexandre (SFRH/BD/66081/2009) and Paulo Branco

(SFRH/BD/44938/2008)andthroughitspluriannualfunding

pro-gramtotheCentreofOceanography(PEst-OE/MAR/UI0199/2011).

References

Almeida,P.R.,Póvoa,I.,Quintella,B.R.,2007.Laboratoryprotocoltocalibratesea lam-prey(PetromyzonmarinusL.)EMGsignaloutputwithswimming.Hydrobiologia 582,209–220.

Alvarez-Vázquez,L.J.,Martínez,A.,Vázquez-Méndez,M.E.,Vilar,M.A.,2007.An opti-malshapeproblemrelatedtotherealisticdesignofriverfishway.Ecol.Eng.32, 293–300.

Anderson,M.J.,Gorley,R.N.,Clarke,K.R.,2008.PERMANOVAforPRIMER:Guideto SoftwareandStatisticalMethods.PRIMER-ELtd.,Plymouth,UnitedKingdom, 214pp.

Baras,E.,Cherry,B.,1990.SeasonalactivitiesoffemalebarbelBarbusbarbus(L.) intheRiverOurthe(SouthernBelgium),asrevealedbyradiotracking.Aquat. LivingResour.3,283–294.

Baras,E.,Lambert,H.,Philippart,J.C.,1994.Acomprehensiveassessmentofthe fail-ureofBarbusbarbusspawingmigrationsthroughafishpassinthecanalized RiverMeuse(Belgium).Aquat.LivingResour.7,181–189.

Beamish,F.,1978.Swimmingcapacity.In:Hoar,W.S.,Randall,D.J.(Eds.),Fish Phys-iology.AcademicPress,NewYork,pp.101–187.

(11)

Beddow, T.A., McKinley, R.S., 1999. Importance of electrode positioning in biotelemetry studies estimating muscle activity in fish. J. Fish Biol. 54, 819–831.

Booth,R.K.,McKinley,R.S.,Økland,F.,Sisak,M.M.,1997.Insitumeasurementof swimmingperformanceofwildAtlanticsalmon(Salmosalar)usingradio trans-mittedelectromyogramsignals.Aquat.LivingResour.10,213–219.

Brown,R.S.,Geist,D.R.,Mesa,M.G.,2006.Useofelectromyogramtelemetrytoassess swimmingactivityofadultspringChinooksalmonmigratingpastaColumbia Riverdam.Trans.Am.Fish.Soc.135,281–287.

Brown,R.S.,Tatara,C.P.,Stephenson,J.R.,Berejikian,B.A.,2007.Evaluationofa newcodedelectromyogramtransmitterforstudyingswimmingbehaviourand energeticsinfish.N.Am.J.Fish.Manage.27,765–772.

Bunt,C.M.,1999.Atooltofacilitateimplantationofelectrodesforelectromyographic telemetryexperiments.J.FishBiol.55,1123–1128.

Bunt,C.M.,Castro-Santos,T.,Haro,A.,2012.Performanceoffishpassagestructures atupstreambarrierstomigration.RiverRes.Appl.28,457–478.

Cabral,M.J.(coord),Almeida,J.,Almeida,P.R.,Dellinger,T.,FerranddeAlmeida,N., Oliveira,M.E.,Palmeirim,J.M.,Queiroz,A.I.,Rogado,L.,Santos-Reis,M.(Eds.), 2005.LivroVermelhodosVertebradosdePortugal,InstitutodeConservac¸ãoda Natureza,Lisboa.

Cada,G.,Loar,J.,Garrison,L.,Fisher,R.,Neitzel,D.,2006.Effortstoreducemortality tohydroelectricturbine-passedfish:locatingandquantifyingdamagingshear stresses.Environ.Manage.37,898–906.

Clay,C.H.,1995.Designoffishwaysandotherfishfacilities,2nded.LewisPublishers, BocaRaton,LA,248pp.

Cocherell,D.E.,Kawabata,A.,Kratville,D.W.,Cocherell,S.A.,Kaufman,R.C., Ander-son,E.K.,Chen,Z.Q.,Bandeh,H.,Rotondo,M.M.,Padilla,R.,Churchwell,R., Kavvas,L.M.,CechJr.,J.J.,2011.Passageperformanceandphysiologicalstress responseofadultwhite sturgeonascending alaboratoryfishway.J. Appl. Ichthyol.27,327–334.

Collins,G.B.,Gauley,J.R.,Elling,C.H.,1962.Abilityofsalmonidstoascendhigh fishways.Trans.Am.Fish.Soc.91(1),1–7.

Cooke,S.J.,Thorstad,E.B.,Hinch,S.G.,2004.Activityandenergeticsoffree-swimming fish:insightsfromelectromyogramtelemetry.FishFish.5,21–52.

Cowx,I.G.,Welcomme,R.L.,1998.RehabilitationofRiversforFish.Oxford,Fishing NewBooks.

Doadrio,I.,2001.AtlasylibrorojodelospecescontinentalesdeEspa ˜na.Madrid, MuseoNacionaldeCienciasNaturales.

Dynesius,M.,Nilsson,C.,1994.Fragmentationandflowregulationofriversystems inthenorthernthirdoftheworld.Science266,753–762.

Ead,S.A.,Katopodis,C.,Sikora,G.J.,Rajaratnam,N.,2004.Flowregimesandstructure inpoolandfishways.J.Environ.Eng.Sci.3,379–390.

Enders,E.C.,Smokorowski,K.E.,Pennell,C.J.,Clarke,K.D.,Sellars,B.,Scruton,D.A., 2007.HabitatuseandfishactivityoflandlockedAtlanticsalmonandbrook charrinanewlydevelopedhabitatcompensationfacility.Hydrobiologia582, 133–142.

EuropeanCommission,2000.Directive2000/60/ECoftheEuropeanParliamentand oftheCouncilof23October2000establishingaframeworkfortheCommunity actioninthefieldofwaterpolicy.Off.J.Eur.Comm.-Legis.327,1–72. Geist,D.R.,Brown,R.S.,Lepla,K.,Chandler,J.,2002.Practicalapplicationof

elec-tromyogramradiotelemetry:thesuitabilityofapplyinglaboratory-acquired calibrationdatatofielddata.N.Am.J.Fish.Manage.22,474–479.

Gowans,A.R.,Armstrong,J.D.,Priede,I.G.,Mckelvey,S.,2003.MovementsofAtlantic salmonmigratingupstreamthroughafish-passcomplexinScotland.Ecol. Freshw.Fish12,177–189.

Guiny,E.,Armstrong,J.D.,Ervine,D.A.,2003.Preferencesofmaturemalebrown troutandAtlanticsalmonparrfororificeandweirfishpassentrancesmatched forpeakvelocitiesandturbulence.Ecol.Freshw.Fish12,190–195.

Hinch,S.G.,Bratty,J.M.,2000.Effectsofswimspeedandactivitypatternonsuccess ofadultsockeyesalmonmigrationthroughanareaofdifficultpassage.Trans. Am.Fish.Soc.129,604–612.

Hinch,S.G.,Diewert,R.E.,Lissimore,T.J.,Prince,M.J.,Healey,M.C.,Henderson,M.A., 1996.Useofelectromyogramtelemetrytoaccessdifficultpassageareasfor river-migratingadultsockeyesalmon.Trans.Am.Fish.Soc.125,253–260. Jager,H.I.,Chandler,J.A.,Lepla,K.B.,Winkle,W.V.,2001.Atheoreticalstudyofriver

fragmentationbydamsanditseffectsonwhitesturgeonpopulations.Environ. Biol.Fish.60,347–361.

Jain,B.C.,Lauder,G.V.,1994.Howswimmingfishuseslowandfastmusclefibres: implicationsformodelsofvertebratemusclerecruitment.J.Comp.Physiol.175, 123–131.

Jepsen,N.,Koed,A.,Thorstad,E.B.,Baras,E.,2002.Surgicalimplantationoftelemetry transmittersinfish:howmuchhavewelearned?Hydrobiologia483,239–248. Jungwirth,M.,Muhar,S.,Schmutz,S.,2000.Fundamentalsoffishecologicalintegrity andtheirrelationtotheextendedserialdiscontinuityconcept.Hydrobiologia 422,85–97.

Kaseloo,P.A.,Weatherley,A.H.,Lotimer,J.,Farina,M.D.,1992.Abiotelemetrysystem recordingfishactivity.J.FishBiol.40,165–179.

Katopodis,C.,2005.Developingatoolkitforfishpassage,ecologicalflow manage-mentandfishhabitatworks.J.Hydraul.Res.43,451–467.

Knaepkens,G.,Maerten,E.,Eens,M.,2007.Performanceofapool-and-weirfishpass forsmallbottom-dwellingfreshwaterfishspeciesinaregulatedlowlandriver. Anim.Biol.57(4),423–432.

Laine,A.,1990.Theeffectsofafishwaymodelhydraulicsontheascentof ven-dance,whitefishandbrowntroutinInari,northernFinland.AquaFenn.20, 191–198.

Laine,A.,Jokivirta,T.,Katopodis,C.,2002.Atlanticsalmon,SalmosalarL.,andsea troutSalmotruttaL.passageinaregulatednorthernriver—fishwayefficiency, fishentranceandenvironmentalfactors.Fish.Manage.Ecol.9,65–77. Larinier,M.,2002.Poolfishways,pre-barragesandnaturalbypasschannels.Bull.Fr.

PecheProt.MilieuxAquat.364(Suppl.),54–82.

Liu,M.,Rajaratnam,N.,Zhu,D.,2006.Meanflowandturbulencestructureinvertical slotfishways.J.Hydraul.Eng.132,765–777.

Lobón-Cerviá,J.,Fernández-Delgado,C.,1984.Onthebiologyofthebarbel(Barbus barbusbocagei)intheJaramariver.Fol.Zool.33,371–384.

Lucas,M.C.,Baras,E.,2001.MigrationofFreshwaterFishes.BlackwellScience, Oxford,UK.

Lucas,M.C.,Frear,P.A.,1997.Effectsofaflow-gaugingweironthemigratory behaviourofadultbarbel,ariverinecyprinid.J.FishBiol.50,382–396. Lupandin,A.I.,2005.Effectofflowturbulenceonswimmingspeedoffish.Biol.Bull.

32,461–466.

Magalhães,M.F.,1992.FeedingecologyoftheIberiancyprinidBarbusbocagei Stein-dachner,1865inalowlandriver.J.FishBiol.40,123–133.

Mateus,C.S., Quintella,B.R.,Almeida, P.R.,2008.Thecriticalswimmingspeed ofIberianbarbelBarbusbocageiinrelationtosizeandsex.J.FishBiol.73, 1783–1789.

Milligan,L.C.,Wood,C.M.,1986.Tissueintracellularacid-basestatusandthefateof lactateafterexhaustiveexerciseintherainbowtrout.J.Exp.Biol.123,123–144. Naughton,G.P.,Caudill,C.C.,Peery,C.A.,Clabough,T.S.,Jepson,M.A.,Bjornn,T.C., Stuehrenberg,L.C.,2007.Experimentalevaluationoffishwaymodificationson thepassagebehaviourofadultChinooksalmonandsteelheadatLowerGranite Dam,SnakeRiver,USA.RiverRes.Appl.23,99–111.

Nilsson,C.,Reidy,C.A.,Dynesius,M.,Revenga,C.,2005.Fragmentationandflow regulationoftheworld’slargeriversystems.Science308,405–408.

Noonan,M.J.,Grant,J.W.A.,Jackson,C.D.,2012.Aquantitativeassessmentoffish pas-sageefficiency.FishFish.,http://dx.doi.org/10.1111/j.1467-2979.2011.00445.x

Odeh,M.,Noreika,J.F.,Haro,A.,Maynard,A.,Castro-Santos,T.,2002.Evaluation oftheEffectsofTurbulenceontheBehaviorofMigratoryFish.FinalReportto theBonnevillePowerAdministration,Contract00000022,Project200005700, Portland,OR.

Økland,F.,Finstad,B.,McKinley,R.S., Thorstad,E.B.,Booth, R.K.,1997. Radio-transmittedelectromyogramsignalsasindicatorsofphysicalactivityinAtlantic salmon.J.FishBiol.51,476–488.

Oliveira,J.M.,Ferreira,A.P.,Ferreira,M.T.,2002.Intrabasinvariationsinageand growthofBarbusbocageipopulations.J.Appl.Ichthyol.18,134–139. Pavlov,D.S.,Lupandin,A.I.,Skorobogatov,M.A.,2000.Theeffectsofflowturbulence

onthebehavioranddistributionoffish.J.Ichthyol.40,S232–S261.

Peake,S.,2004.Anevaluationoftheuseofcriticalswimmingspeedfor determina-tionofculvertwatervelocitycriteriaforsmallmouthbass.Trans.Am.Fish.Soc. 133,1472–1479.

Peake,S.,McKinley,R.S.,Scruton,D.A.,1997.Swimmingperformanceofvarious freshwaterNewfoundlandsalmonidsrelativetohabitatselectionandfishway design.J.FishBiol.51,710–723.

Pelicice,F.M.,Agostinho,A.A.,2008.Fish-passagefacilitiesasecologicaltrapsinlarge neotropicalrivers.Conserv.Biol.22,180–188.

Penáz,M.,Barus,V.,Prokes,M.,Homolka,M.,2002.Movementsofbarbel,Barbus barbus(Pisces:Cyprinidae).FoliaZool.51,55–66.

Pon,L.B.,Hinch,S.G.,Cooke,S.J.,Patterson,D.A.,Farrell,A.P.,2009.Physiological, energeticandbehavioralcorrelatesofsuccessfulfishwaypassageofadult sock-eyesalmonOncorhynchusnerkaintheSetonRiver,BritishColumbia.J.FishBiol. 74,1323–1336.

Poulet,N.,2007.Impactofweirsonfishcommunitiesinapiedmontstream.River Res.Appl.23,1038–1047.

Prchalová,M.,Vetesnik,L.,Slavik,O.,2006.Migrationsofjuvenileandsubadultfish throughafishpassduringlatesummerandfall.FoliaZool.55,162–166. Puertas,J.,Cea,L.,Bermúdez,M.,Pena,L.,Rodriguez,A.,Rabu ˜nal,J.R.,Balairón,L.,

Lara,A.,Aramburu,E.,2012.Computerapplicationfortheanalysisanddesignof verticalslotfishwaysinaccordancewiththerequirementofthetargetspecies. Ecol.Eng.48,51–60.

Quintella,B.R.,Andrade,N.O.,Koed,A.,Almeida,P.R.,2004.Behavioralpatternsof sealampreys’spawningmigrationthroughdifficultpassageareas,studiedby electromyogramtelemetry.J.FishBiol.65,961–972.

Rodríguez-Ruiz,A.,Granado-Lorencio,C.,1992.Spawningperiodandmigrationof threespeciesofcyprinidsinastreamwithMediterraneanregimen(SWSpain). J.FishBiol.41,545–556.

Roscoe,D.W.,Hinch,S.G.,2010.Effectivenessmonitoringoffishpassagefacilities: historicaltrends,geographicpatternsandfuturedirections.FishFish.11,12–33. Roscoe,D.W.,Hinch,S.G.,Cooke,S.J.,Patterson,D.A.,2011.Fishwaypassageand post-passageofup-rivermigratingsockeyesalmonintheSetonRiver,British Columbia.RiverRes.Appl.27,693–705.

Santos,J.M.,Ferreira,M.T.,Godinho,F.N.,Bochechas,J.,2005.Efficacyofanature-like bypasschannelinaPortugueselowlandriver.J.Appl.Ichthyol.21,381–388. Santos,J.M.,Silva,A.T.,Katopodis,C.,Pinheiro,P.,Pinheiro,A.,Bochechas,J.,Ferreira,

M.T.,2012.Ecohydraulicsofpool-typefishways:gettingpastthebarriers.Ecol. Eng.48,38–50.

Scruton,D.A.,Booth,R.K.,Pennell,C.J.,Cubbit,F.,McKinley,R.S.,Clarke,K.D.,2007. ConventionalandEMGtelemetrystudiesofupstreammigrationandtailrace attractionofadultAtlanticsalmonatahydroelectricinstallationontheExploits River,Newfoundland,Canada.Hydrobiologia582,67–79.

Siegel,S.,Castellan,N.J.,1988.NonparametricStatisticsfortheBehavioralSciences. McGraw-Hill,NewYork.

(12)

Silva,A.T.,Katopodis,C.,Santos,J.M.,Ferreira,M.T.,Pinheiro,A.N.,2012a.Cyprinid swimmingbehaviourinresponsetoturbulentflow.Ecol.Eng.44,314–328. Silva,A.T.,Santos,J.M.,Franco,A.C.,Ferreira,M.T.,Pinheiro,A.N.,2009.Selectionof

IberianbarbelBarbusbocagei(Steindachner,1864)fororificesandnotchesupon differenthydraulicconfigurationsinanexperimentalpool-typefishway.J.Appl. Ichthyol.25,173–177.

Silva,A.T.,Santos,J.M.,Ferreira,M.T.,Pinheiro,A.N.,Katopodis,C.,2011.Effectsof watervelocityandturbulenceonthebehaviourofIberianbarbell(Luciobarbus bocagei,Steindachner1864)inanexperimentalpool-typefishway.RiverRes. Appl.27,360–373.

Silva,A.T.,Santos,J.M.,Ferreira,M.T.,Pinheiro,A.N.,Katopodis,C.,2012b.Passage efficiencyofoffsetandstraightorificesforupstreammovementsofIberian barbelinapool-typefishway.RiverRes.Appl.28,529–542.

Sokal,R.E.,Rohlf,F.,1981.Biometry:ThePrinciplesandPracticeofStatisticsin BiologicalResearch,2nded.W.H.Freeman,NewYork.

Tarrade,L.,Texier,A.,David,L.,Larinier,M.,2008.Topologiesandmeasurementsof turbulentflowinverticalslotfishways.Hydrobiologia609,177–188. Thorstad,E.B.,Økland,F.,Koed,A.,McKinley,R.S.,2000.Radio-transmitted

elec-tromyogramsignalsasindicatorsofswimmingspeedinlaketroutandbrown trout.J.FishBiol.57,547–561.

Tritico,H.M.,Cotel,A.J.,2010.Theeffectsofturbulenteddiesonthestabilityand criticalswimmingspeedofcreekchub(Semotilusatromaculatus).J.Exp.Biol. 213,2284–2293.

Wood,C.M.,Turner,J.D.,Graham,M.S.,1983.Whydofishdieaftersevereexercise? J.FishBiol.22,189–201.

Imagem

Fig. 1. Hydraulic patterns associated with water velocity, turbulent kinetic energy, turbulence intensity and the three vectors of Reynolds shear stress (horizontal – uv, vertical – uw, tranversal – vw), measured at the three horizontal planes (0.25, 0.50
Fig. 2. Swimming speeds (m/s) recorded with tagged barbels during the passage time in pools (Pool 1–Pool 4) of the experimental fishway
Fig. 4. Behavior of the tagged barbel #103 (recorded as swimming speeds, m/s) during the ascent of the experimental fishway
Fig. 6. Swim speed of an example barbel (#86) during passage time in the first pool (P1) of the experimental fishway

Referências

Documentos relacionados

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

Este relatório relata as vivências experimentadas durante o estágio curricular, realizado na Farmácia S.Miguel, bem como todas as atividades/formações realizadas

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Caso utilizado em neonato (recém-nascido), deverá ser utilizado para reconstituição do produto apenas água para injeção e o frasco do diluente não deve ser