• Nenhum resultado encontrado

Search for pair production of excited top quarks in the lepton plus jets final state

N/A
N/A
Protected

Academic year: 2021

Share "Search for pair production of excited top quarks in the lepton plus jets final state"

Copied!
23
0
0

Texto

(1)

SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://www.sciencedirect.com/science/article/pii/S0370269318300571

DOI: 10.1016/j.physletb.2018.01.049

Direitos autorais / Publisher's copyright statement:

©2018 by Elsevier. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO Cidade Universitária Zeferino Vaz Barão Geraldo

CEP 13083-970 – Campinas SP Fone: (19) 3521-6493 http://www.repositorio.unicamp.br

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

pair

production

of

excited

top

quarks

in

the

lepton

+

jets

final

state

.TheCMS Collaboration CERN, Switzerland a r t i c l e i n f o a b s t ra c t Article history: Received29November2017

Receivedinrevisedform16January2018 Accepted17January2018

Availableonline3February2018 Editor:M.Doser

Keywords:

CMS Physics

Beyondtwogenerations Excitedtopquark

Asearchisperformedforthepairproductionofspin-3/2 excitedtopquarks,eachdecayingtoatopquark andagluon.ThesearchusesthedatacollectedwiththeCMSdetectorfromproton–protoncollisionsat acenter-of-mass energy of13 TeV,corresponding toan integratedluminosity of 35.9 fb−1.Eventsare selected byrequiring an isolatedmuon or electron, animbalance in the transverse momentum, and atleastsix jetsofwhichexactly twomustbe compatiblewith originatingfrom thefragmentationof abottom quark.No significantexcessoverthestandard model predictionsis found.Alower limitof 1.2 TeV issetat95%confidencelevelonthemassofthespin-3/2 excitedtopquarkinanextensionof the Randall–Sundrummodel,assuming a100% branchingfraction ofitsdecayintoatop quarkand a gluon.Thesearethebestlimitstodateinasearchforexcitedtopquarksandthefirstat13 TeV.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Thestandardmodel(SM)ofparticlephysicsprovidesa success-fuldescription of the properties of the elementary particles and theirinteractions.Despiteitssuccess,theSMisassumedtobean effectivemodelofamorecompletetheory.Manyextensionsofthe SM predict that the top quark is a compositeparticle and not a fundamentalobject[1–4].Adirectconfirmationofthishypothesis couldbeachievedbythediscoveryofanexcitedtopquark(t∗).

In models that describe the proposed excited top quark [5, 6], weak isodoublets are used to represent both left- and right-handedcomponentsofthet∗ quark, allowingforadescriptionof finitemassespriortotheonsetofelectroweaksymmetrybreaking. Thus,incontrasttotheheavytopquarkfromasequential fourth-generation model, in these models the existence of t∗ quarks is notstronglyconstrainedbythediscoveryofaSM-likeHiggsboson [7–9]. In string realizations of the Randall–Sundrum (RS) model [10,11],the right-handed t∗ quark is expected to be the lightest spin-3/2 excitedstate[12].

Aspin-3/2 t∗ quark isdescribed bytheRarita–Schwinger [13] vector spinor Lagrangian. At the energy of LHC, the production crosssection ofspin-3/2 quarksis proportional tosˆ3,where ˆs is thesquareoftheenergyintheparton–partoncollisionrestframe, ratherthan ˆs−1,asitisforspin-1/2 quarks[14].Therefore,when

integrating over the parton momentum fractions (x) in proton–

 E-mail address:cms-publication-committee-chair@cern.ch.

protoncollisions,spin-3/2 quarksreceiveacontributionatlarge x values that is greater than that fromspin-1/2 quarks. In the RS model,thespin-3/2 t∗ quarkisexpectedtohaveapairproduction cross sectionof theorder ofa fewpicobarns at√s=13TeV, for at∗ ofmassmt∗=1TeV[1,14,15],whichdominatesoversinglet∗

productionformostoftheparameterspaceinthemodel[12].The t∗ quark decays predominantlyto atop quark through the emis-sionofagluon[1,12,15,16].

InthisLetter, wepresentasearch forpair-producedt∗ quarks, where each t∗ quark decaysexclusively to a top quark (t)anda gluon (g). We use data recorded in 2016 with the CMS detec-tor in proton–proton (pp) collisions at √s=13TeV at the LHC, corresponding to an integratedluminosity of 35.9 fb−1. We con-sider the case where one top quark decays via a hadronically decaying W boson, and the W boson originating from the sec-ond top quark decays to an electron or muon and a neutrino: t∗t∗→ (tg)(tg)→ (Wbg)(Wbg)→ (qqbg)(νbg). We refer to the resultingfinal state(onereconstructed muonorelectron,missing transversemomentum,andmultiplejets)asthelepton+jets de-caytopology.

Asearchforpair-producedt∗ quarkswaspreviouslyperformed byCMSusingpp collisionsat√s=8TeV[17].ThisLetterpresents amoresensitivesearchbecauseofthehighercollisionenergyand thereforelarger signal crosssections,andthelarger datasample, whichisnearlytwicethesize.Inaddition,thesimulationhasbeen improvedby explicitlyincludingthe Rarita–SchwingerLagrangian inthe generator,resultingin thecorrectspin correlationsforthe signal.

https://doi.org/10.1016/j.physletb.2018.01.049

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

2. TheCMSdetectorandsimulatedsamples

The central feature of the CMS apparatus is a superconduct-ing solenoidof 6 m internal diameter, providinga magnetic field of3.8 T. Withinthe solenoidvolume area siliconpixel andstrip tracker,aleadtungstatecrystalelectromagneticcalorimeter(ECAL), andabrass andscintillatorhadroncalorimeter(HCAL),each com-posedof abarrel andtwo endcapsections.Forwardcalorimeters extendthepseudorapidity(η)coverageprovidedbythebarreland endcap detectors. Muons are measured in gas-ionization detec-torsembedded inthesteelflux-return yokeoutsidethesolenoid. A moredetaileddescription oftheCMSdetector,together witha definition of the coordinate system used and the relevant kine-maticvariables,canbefoundinRef.[18].

Simulated t∗t∗ signal events are generated in 100 GeV steps with mt∗ in the range 700–1600 GeV, using the MadGraph5_

amc@nlo [19] event generator and NNPDF3.0 [20] for the par-ton distribution functions (PDFs). The t∗t∗ production cross sec-tionrangesfrom≈5 pb atmt∗=700GeV,downto≈4 fb atmt∗=

1600GeV.Thiscrosssection iscalculatedatleading orderin per-turbationtheory,withthefactorizationandrenormalizationscales setto mt∗; thecalculation is cut offat 7mt∗ toprevent unitarity

violation. TheRarita–Schwinger Lagrangian,included inthe Mad-Graph 5 generator, is used for simulating spin-3/2 t∗t∗ events. Thisimplementationandthecorrespondingphysicsparametersare providedbytheauthorsofRef.[14].Thewidthofthet∗ quark is assumedtobe10 GeV, whichismuchnarrowerthanthedetector resolution. Parton shower andhadronization processes are mod-eled using pythia 8.212[21].The generatedeventsare processed through asimulation ofthe CMSdetectorbased on Geant4[22], andarereconstructedusingthesamealgorithmsasusedfordata. We estimate SM backgrounds using a data-derived approach. SimulatedsamplesforSMprocessesareusedtostudythe model-ingofthebackgroundandtoprovideacross-checkoftheanalysis procedures. The simulated SM samples relevant to this analysis are: tt production;single topquark productionvia thes-channel, t-channel,andtWprocesses;W and Z boson productionin asso-ciationwithjets;thett+W, tt+H,andtt+Z processes.Thett and tt+H processesaresimulatedusing powheg 2.0[23–27],whilethe otherSM processesare simulatedusing MadGraph5_amc@nlo up tonext-to-leadingorder[19,28,29].Allsimulatedsamplesinclude theadditionalcontributionsfromoverlappingpp collisionswithin the same and nearby bunch crossings (“pileup”) at large instan-taneousluminosity.Simulatedeventsaregivenindividualweights tomatchthedistributionoftheaveragenumberofpileup interac-tionsindata.

3. Eventreconstruction

EventreconstructionisbasedontheCMSparticle-flow(PF) al-gorithm[30],whichtakesintoaccountinformationfromall subde-tectors,includingmeasurementsfromthetrackingsystem, energy deposits in the ECAL and HCAL, and tracks reconstructed in the muon detectors.Giventhisinformation,all particles inthe event are reconstructed as electrons, muons, photons, and charged or neutralhadrons.PhotonsareidentifiedasECALenergyclustersnot linkedtotheextrapolationofanycharged-particletrajectorytothe ECAL.Muonsareidentifiedasatrackinthecentraltracker consis-tent witheither atrack orseveralhits inthe muon system, and not associatedwithenergyclustersin thecalorimeters.Electrons areidentifiedasaprimarychargedparticletrackthatextrapolates to atleastone ECAL energycluster. The trackmaybe associated withbremsstrahlungphotonsemitted alongthe waythroughthe trackermaterial.Chargedhadronsareidentifiedascharged-particle tracksneitheridentifiedaselectrons,norasmuons.Finally,neutral

hadrons areidentified asHCAL energyclustersnot linked to any charged-hadron trajectory, orto ECAL and HCAL energyexcesses withrespecttotheexpectedchargedhadronenergydeposits.

Foreachevent,jetsfromthesereconstructedparticlesare clus-tered withthe infrared andcollinear safeanti-kT algorithm [31],

using a distance parameter R=0.4. Charged hadrons associated withpileup verticesareexcluded fromjet reconstruction.The jet momentum isthe vectorial sum ofthe momenta ofall particles containedinthejet.Thereconstructedjetmomentumisfoundin simulationtobewithin 5to10%ofthetruemomentumoverthe whole pTspectrumanddetectoracceptance.Jetenergycorrections

are derived from the simulation and measurements in collision data [32]. The jet energy resolution amounts typically to 15% at 10 GeV, 8%at100 GeV, and4% at1 TeV[32].The jetenergy reso-lutioninsimulationisdegradedtomatchthatobservedindata.

Jetsare identifiedasoriginatingfromabottom quark through a combined secondary vertexalgorithm CSVv2 [33,34].The algo-rithmusesamultivariatediscriminatortocombineinformationon the significance ofthe impact parameter, the jet kinematics,and the locationof thesecondary vertex.A workingpointof the dis-criminator with ≈70% b quark identification efficiency and ≈1% mistagefficiencyforlight quarksandgluonsis usedinthis anal-ysis. Small differences in b tagging efficiencies and mistag rates betweendataandsimulatedeventsareaccountedforbyapplying additionalcorrectionstosimulation.

Themissingtransversemomentumvectorisdefinedasthe neg-ativevectorsumofthemomentaofallreconstructedPFcandidates inan eventprojected ontotheplaneperpendicular tothebeams. Itsmagnitudeisreferredtoaspmiss

T .

4. Eventselection

Thisanalysissearchesfort∗t∗production,witheacht∗decaying to t+g and thett pairintheeventreconstructedinthelepton+ jetsfinalstate.Eventsarerequiredtocontainexactlyone isolated lepton, pmiss

T , andatleastsixjets, exactlytwo of whichmust be

b tagged.

Eventscontainingamuonareselectedwithasingle-muon trig-gerthatrequiresthepresenceofanisolatedmuonwithtransverse momentum pT>27GeV. Events containing an electron are

se-lected withasingle-electrontriggerthat requiresthepresenceof anisolatedelectronwithpT>32GeV.Thebackgroundrateforthe

single electrontriggerwasmuch higherthanforthesingle muon trigger, requiringmorestringentselection criteriafortheelectron channel.Adeterministicannealingalgorithmisusedtoreconstruct the candidate primary vertices [35]; the vertex withthe highest trackmultiplicityisselectedastheprimary eventvertex.Selected eventsarerequiredtohavethisprimaryvertexwithin2 cm ofthe center ofthe detector inthe x– y plane, andwithin 24 cm along thez-direction.

Offline,muonsarerequiredtohave pT>30GeV and |η|<2.1.

The trackassociatedwitha muon isrequired tohavehitsin the pixel and muon detectors,a good quality fit, andtransverse and longitudinalimpactparameterswithrespecttotheprimaryvertex smallerthan2and5 mm,respectively.Anisolation factorI is de-fined asthescalarsum, dividedby themuon pT,ofthe pT ofall

photons, chargedhadrons,andneutralhadronswithinan angular cone of R≡(η)2+ (φ)2<0.4 (where φ is theazimuthal

angle)aroundthetrack,correctedfortheeffectsofpileup[36].An isolationselectionI<0.15,correspondingtoanefficiencyof≈95% isused.

ElectronsarerequiredtohavepT>35GeV andtobewithinthe

region|η|<2.1.Electronswithin1.44<|η|<1.56,corresponding to theECALbarrel–endcaptransitionregion,arerejectedtoavoid poor reconstruction performance. Electrons are selected using a

(4)

Table 1

Expectednumbersofselectedeventsforthesimulatedsignalprocessasa func-tionof mt∗.AlsoshownaretheexpectednumbersofeventspredictedbytheSM, togetherwith thesystematicuncertaintiesdiscussedinSection7andthe uncer-taintiesinthecrosssectionsofthevariousprocesses,aswellasthenumbersof selectedeventsobservedindata.

μ+jet final state e+jet final state t∗t∗signal, mt∗ 700 GeV 3670 2730 800 GeV 1230 1010 900 GeV 483 369 1000 GeV 200 148 1100 GeV 92 69 1200 GeV 40 29 1300 GeV 20 15 1400 GeV 9 7 1500 GeV 4 4 1600 GeV 2 2 SM processes (4.66±0.38)×104 (3.07±0.23)×104 Data 44 573 28 942

cutoff-basedselectionmethod[37]basedontheshowershape,the trackquality,thespatialmatchbetweenthetrackandthe electro-magneticcluster, thefractionoftotalcluster energyintheHCAL, andtheresulting levelof activityinthe surroundingtracker and calorimeterregions. Thecriteria imposed intheseelectron selec-tionalgorithmshaveacombinedefficiencyof≈70%.

Inadditiontotheselectionsabove,theleptonsarerequiredto havean angularseparation R<0.1 withrespect to the lepton reconstructedbythetriggersystem. Theleptonselection efficien-ciesfordataandsimulationaremeasuredusingthetag-and-probe method [37]. Additional corrections are applied to simulation to account forobserved differencesinthe efficiencies betweendata andsimulation.

The pmissT isrequiredtobe greaterthan20GeV,whilethejets arerequiredtohavepT>30GeV,|η|<2.4,andangularseparation

R>0.4 with respect to well-identified electrons ormuons. In orderto reject misreconstructed, poorly reconstructed, and noisy jets,thefractional energycontributionfrombothECALandHCAL mustbenon-zeroandnon-unity. Exactlytwo jetsarerequiredto passtheb taggingcriteria.

The expected yields after event selection are summarized in Table 1. Simulated signal events pass the selection criteriawith acceptance times efficiency of 1.4–2.2%, depending on the chan-nelandonthesignal mass.Aftertheapplicationofall selections, 44573 events are observed in the μ + jetschannel and 28942 eventsinthee+jetschannel.Theyieldspredictedfromthe sim-ulatedSMbackgroundprocessesare46600 eventsinthe μ+jets channeland30700 eventsinthee+jetschannel.

Small differences between data and the SM predictions are within the estimated uncertainties of the simulation, with the dominantuncertaintybeingthechoiceoftherenormalizationand factorizationscalesusedinthegeneratorofthett events.Detailsof theuncertaintiesaregiveninSection7.Furthermore,the differen-tialdistributionsofkinematicvariablesofsimulatedSMprocesses arealsoinagreementwithdata,asshowninFig. 1.Inparticular, thedistributionofthe invariant massofa t + jetsystem(mt+jet,

seeSection 5 fordetails) indata isin agreement withthe back-groundestimation.

5. Massreconstruction

SincethedominantbackgroundisSMtt productionwithextra jets,thereconstructedinvariantmassspectrumofthet+jet sys-temsisusedtodistinguishbetweent∗t∗signalandtt background. The pmiss

T isassumedto becarriedaway entirelybytheneutrino

from theleptonically decaying W boson (Wlep). We assume that

the parent W boson is on shell andthe neutrino is massless in ordertodeterminethelongitudinalmomentumoftheneutrino.

Giventhehighjetmultiplicityoftheeventselection,ameasure was designed for evaluating different associations of the recon-structedjetswiththepartonobjectsinthefinalstate.Forthejets, the sixjetswiththe highest pT values are takeninto

considera-tion.Theb taggedjetsareassignedtooneoftheb quarkpartons, andtheotherjetsareassociatedwiththedecaydaughtersofthe hadronicallydecayingW (Whad)orwiththegluonsfromt∗ decay.

Thequalityofthejet-partonassignmentforasingleeventis evalu-atedwithan S valuebasedonhowwelltheintermediatephysical objectsarereconstructed:

S=  mqq−mW σW 2 + m qqb−mt σt,had 2 +  mνlb−mt σt,lep 2 +  mqqbg−mνlbg σt∗ 2 , (1)

where mqq is the invariant mass of the jets assigned to Whad

daughters. Invariant masses of the physical objects assigned to hadronically and leptonically decaying t (t∗) quarks are denoted bymqqb (mqqbg) andmνlb (mqqbg), respectively.mW andmt are

themass oftheW bosonandtop quark recordedbythe particle datagroup [38],being80.4and173.34 GeV, respectively.The ex-pecteddetectorresolutionsoftheintermediateparticles σW, σt,had, σt,lepand σt∗ areestimatedtobe24,34,30,and230 GeV,

respec-tively.Theseestimates areobtainedby reconstructing thet∗t∗, tt andWhad inthedecaytopologyusingthetruthinformationfrom

simulatedsignal samples.Additionalstudies haveshownthatthe massreconstructionisinsensitivetochangesinthedetector reso-lutionvalues.

Thejet-partonassignmentwiththesmallestS valueistakento representthe decay topology ofa single event, underthe t∗ hy-pothesis.Theaveragevalueofthemqqbg andmνlbg computedfor

thisassignmentistakentorepresentthereconstructedt∗ massof anevent,notatedasmt+jet.Therateatwhichallsixjetsareall

cor-rectly assignedis around11%, withthe maindifficulty being the correctassignmentofthejetsfromthehadronicallydecaying W. 6. Backgroundmodeling

Todeterminethepresenceofsignaleventsindata,anunbinned extended maximum likelihood fit of a signal-plus-background modelisperformedonthemt+jet>400GeV spectrum.

Themasstemplateofthet∗t∗signalisconstructedby smooth-ingthemassdistributionfromsimulations,usinganadaptive ker-nel estimation [39] with a Gaussian kernel and withno restric-tionontheboundary.Thesmoothnessparameter ρ introducedin Ref. [39] isdetermined by the square rootof the standard devi-ation ofthesignal distributionoverthe subsetwith≥4 correctly assignedpartons.

The background distribution is modeled using a log-normal function(uptoanormalizationfactor):

fbkg(m)= 1 m√2π exp  −a2ln2  m m0  , (2)

wherem isthemass,anda2andm0aretheparametersthat

deter-minetheshapeofthebackground.Duringthefittotheobserved data,thenumber ofbackgroundevents,aswellasthe shape pa-rametersofthebackgroundfunction,arefreeparameters.

Toverifywhetherthefitissensitivetothepresenceoft∗t∗ sig-nal,apseudo-datasetisgeneratedwiththemt+jetspectrumofthe

(5)

Fig. 1. Kinematicdistributionsofselectedeventswithasingleleptonandsixormorejetsofwhichexactlytwoareb tagged.Dataevents(points),simulatedbackground processes(stackedhistograms),andasimulated800 GeV signalprocess(dashedline)areshown.Eventsselectedintheμ+jetfinalstateareshownontheleftwhilethose inthee+jetfinalstateareshownontheright.Fromuppertolower,thekinematicvariablesdisplayedarethelepton pT,thejet pTandthe mt+jet.Theshadedregionisthe totaluncertaintyofthesimulatedbackgroundprocesses,whichincludesstatisticalandsystematicuncertainties.(Forinterpretationofthereferencestocolorinthisfigure, thereaderisreferredtothewebversionofthisarticle.)

signalspectrumforvarioushypothesesofthesignalcrosssection. Performing the same fit over multiple sets of pseudo-data with varyingsignalcrosssectionsshowednoevidenceofbias.

To ensure that the log-normal function is sufficient to model thebackground,a likelihoodratiotestisconductedbycomparing theresultsoffittingthespectrumofthesimulatedSMbackground toanextendedlog-normalfunctionsoftheform:

fbkg,N(m)= 1 m√2π exp  −a2ln2  m m0  −a3ln3  m m0  − . . . −aNlnN  m m0  . (3)

Increasing the number of parameters does not improve the de-scriptionofthebackground.

Theresultsofthefitperformedondatawiththe800 GeV signal spectrumareshowninFig. 2.Thedistributionofeventsindatais in agreementwitha nullhypothesis. Based onthe resultsof the Kolmogorov–Smirnovtests,thesignal+backgroundmodelandthe background-onlymodelbothyieldgoodfitstothedata.

7. Systematicuncertainties

The impact of experimental and theoretical sources of uncer-taintiesisconsideredandsummarizedinTable 2.Foreachsource

(6)

Fig. 2. The mt+jetspectrumfordata(points),thesignal+backgroundfit(green),thebackgroundcomponentofthesignal+backgroundfit(blue),andtheexpectedspectrum forasimulated800 GeV signalprocess(red dashed)normalizedtotheintegrated luminosityofdata.Since thereisnosignificantexcessofsignalfoundindata, the signal+backgroundcurveoverlapsthe background-onlycomponent.The distributionsfortheμ +jetsdataareshown ontheleftwhilethosefor e+jetsdataare shownontheright.TheprobabilitiesoftheKolmogorov–Smirnovtestbetweenthedataversusthesignal+backgroundmodelandbetweenthedataversusthebackground componentaredenotedby Kalland Kbkg,respectively.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthis article.)

Table 2

Sourcesofsystematicuncertaintiesandthemethodsusedtoevaluatetheireffect onthesimulatedsignalsample.

Source of uncertainty Implementation on simulated signal sample Integrated luminosity Normalization shift by±2.5%

Statistical uncertainty Normalization shift by±1 s.d. Jet correction Correction factor varied by±1 s.d. Jet resolution Jet resolution shift by±1 s.d. b tagging SF SF varied by±1 s.d. Lepton efficiency SF SF varied by±1 s.d.

Pileup pp inelastic cross section shifted by±4.6%[41]

Modeling Smoothing parameterρvaried over range[1.17,1.66] PDF uncertainty Generator parameter varied by±1 s.d.

Scale uncertainty Generator parameter varied by±1 s.d. s.d.:standarddeviation,SF:correctionscalefactor.

ofuncertainty, alternative templates for thedistribution of mt+jet

aregeneratedbyadjustingtherelevantparameters inthe simula-tion.

The uncertainties in the jet energy scale and jet resolutions depend on the pT and η of the jets. Alternative mass templates

aregeneratedbyrescalingthenominaljetfour-momentuminthe simulationby±1 standarddeviation(s.d.)oftheassociated uncer-taintiesinenergyscaleandresolution.Suchuncertaintiesarealso coherentlypropagatedto all observables,including pmissT .Varying the jet energy used forreconstruction has<0.1% impact on the signalacceptance.

The b tagging and lepton selection scale factors for residual differencesbetweendataandsimulationhavetheirrespective sys-tematicandstatisticaluncertainties.Alternativetemplatesare gen-eratedbyshiftingthe correctionscalefactorsby ±1 s.d. fortheir respectiveuncertainties.Onaverage,theb taggingscalefactorand lepton scalefactors affect the signal acceptanceby 2.8 and2.5%, respectively.

Becauseofuncertaintiesinthe totalinelasticpp crosssection, whencalculating the data pileup scenario alternative pileup cor-rectionsaremadewiththeinelasticcrosssectionscaledby±1 s.d. Variationsinthepileupcorrectionshaveanaverageimpactonthe signalacceptanceof0.7%.Thenumberofsignal eventsisalso af-fectedby the uncertainty on the integrated luminosity,which is knowntoaprecisionof2.5%[40].

The theoretical uncertainties considered are those associated withthe choice of the PDF, andthe renormalization and factor-izationscalesusedbytheeventgenerator.Theeffectsofthe

theo-retical uncertaintiesareobtainedbychangingthevarious genera-torparameterswithintheirestimateduncertaintiesandgenerating newmt+jetfittemplatesthatareusedtocalculatenewsensitivities.

In addition to the statisticaluncertainty originating fromthe signal+backgroundfit,systematicuncertaintiesareintroducedto coverthechoiceofmodeling.Alternativesignaltemplatesare gen-erated withdifferent choicesof ρ by changing the subset to re-quire≥3 and≥5 correctlyassignedpartons.Thebackgroundshape isdeterminedfromdata.Simulatedeventswithdifferent configu-rations,aswellasseveralalternativemodelshavebeentested.The chosen model, with the parameters floated in the limit compu-tation, has proven to describe the dataand cover theassociated systematicuncertaintiessufficientlywell.

8. Statisticalanalysisandextractionoflimits

No excessaboveSM backgroundisobserved.Wesetan upper bound on the t∗t∗ production cross section usingthe asymptotic modified frequentist CLs criterion [42–45]. The null hypothesis

likelihoodfunctionistakenfromthebackgroundcomponentofthe signal+backgroundfitdescribedinSection6.Fortheuncertainties describedinSection7,ajointtemplateisused,wherethenominal template islinearly interpolatedto thetemplates generatedwith therelevantparametersshiftedby ±1 standarddeviation.Eachof theinterpolationvariablesistakenasanuisanceparameterwitha standardGaussianprior.

Thefitisperformedseparatelyinthemuonandelectron chan-nels, andthe resultsofboth are usedto obtain combinedlimits. Fig. 3showstheobservedandexpectedupperlimitsat95% confi-dencelevelfortheproductofthet∗t∗productioncrosssectionand thesquareofthebranchingfraction,asafunctionofthet∗ mass. The lowerlimit formt∗ isgivenbythe valueatwhich theupper

limit intersects with the theoretical cross section from Ref. [14]. Both theobservedandexpectedlower limitsofmt∗ forthe

com-binedmuonandelectrondataare1.2 TeV,withinuncertainties. 9. Summary

A search has been conducted forpair production of spin-3/2 excited top quarks t∗ inproton–protoninteractions, witheach t∗ decaying exclusivelyto a standard modeltop quark and agluon. Eventsthathaveasinglemuonorelectronandatleastsixjets, ex-actlytwoofwhichmustbeidentifiedasoriginatingfromabottom

(7)

Fig. 3. Theexpectedandobserved95%confidencelevelupperlimitsfortheproduct oftheproductioncrosssectionoft∗t∗andthesquareofthebranchingfraction,as afunctionofthet∗mass,forthecombinedlepton+jetsanalysis.Thetheoretical productioncrosssectionassuminga100%t∗→tg branchingfractionisshownalong withitsuncertainties,describedinSection7.(Forinterpretationofthereferences tocolorinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

quark,areselectedfortheanalysis.Assumingt∗t∗ production,the final-state objects are associated withthe t∗ candidates in each event. No significant deviations fromstandard model predictions are observed inthe t + jet system, and an upperlimit is set at 95%confidence levelonthepairproduction crosssectionof t∗t∗, asafunctionofthet∗ mass.Interpretingtheresultsinthe frame-workofaspin-3/2 t∗ model,assuminga100% branchingfraction ofitsdecayintoatopquarkandagluon,t∗ massesbelow1.2 TeV are excluded. These are the best limits to date on the mass of spin-3/2 excitedtopquarksandthefirstat13 TeV.

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technicalandadministrativestaffs atCERN andatother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentresand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythe computinginfrastructureessential to ouranalyses. Finally, we acknowledge the enduring support for the construc-tionandoperation oftheLHCandthe CMSdetectorprovidedby thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIEN-CIAS(Colombia);MSESandCSF(Croatia);RPF(Cyprus);SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Fin-land,MEC,andHIP(Finland);CEAandCNRS/IN2P3(France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hun-gary);DAEandDST(India);IPM(Iran);SFI(Ireland);INFN(Italy); MSIPandNRF(RepublicofKorea);LAS (Lithuania);MOE andUM (Malaysia); BUAP, CINVESTAV,CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT(Portugal);JINR(Dubna);MON,ROSATOM, RAS,and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand);TUBITAK and TAEK (Turkey);NASU andSFFR(Ukraine);STFC(UnitedKingdom);DOEandNSF(USA). References

[1] H. Georgi, L. Kaplan,D.Morin, A.Schenk, Effectsoftop quark composite-ness,Phys.Rev.D51(1995)3888,http://dx.doi.org/10.1103/PhysRevD.51.3888, arXiv:hep-ph/9410307.

[2] B.Lillie,J.Shu,T.M.P.Tait,TopcompositenessattheTevatronandLHC,J.High Energy Phys. 04 (2008) 87, https://doi.org/10.1088/1126-6708/2008/04/087, arXiv:0712.3057.

[3] A.Pomarol, J. Serra,Top quark compositeness:feasibility and implications, Phys. Rev. D 78 (2008) 74, http://dx.doi.org/10.1103/PhysRevD.78.074026, arXiv:0806.3247.

[4] K. Kumar, T.M.P. Tait, R. Vega-Morales, Manifestations of top composite-nessatcolliders,J.HighEnergyPhys. 05(2009)22,https://doi.org/10.1088/ 1126-6708/2009/05/022,arXiv:0901.3808.

[5] U.Baur,M.Spira,P.M.Zerwas,Excited-quarkand-leptonproductionathadron colliders,Phys.Rev.D42(1990)815,https://doi.org/10.1103/PhysRevD.42.815. [6]R.M.Harris,Discoverymassreachforexcitedquarksathadroncolliders,in: 1996DPF/DPB SummerStudyonNewDirectionsforHigh-EnergyPhysics: Pro-ceedings,vol. C960625,Snowmass1996,1996,arXiv:hep-ph/9609319,1996.

[7] ATLASand CMSCollaborations, CombinedmeasurementoftheHiggsboson mass inpp collisions at √s=7 and 8TeV with the ATLAS and CMS ex-periments,Phys.Lett.14(2015)191803,http://dx.doi.org/10.1103/PhysRevLett. 114.191803,arXiv:1503.07589.

[8] CMSCollaboration, Observationofanewboson atamass of125 GeV with theCMSexperimentattheLHC,Phys.Lett.B716(2012)30,http://dx.doi.org/ 10.1016/j.physletb.2012.08.021,arXiv:1207.7235.

[9] ATLASCollaboration,Observationofanewparticleinthesearchforthe Stan-dardModelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716 (2012)1,http://dx.doi.org/10.1016/j.physletb.2012.08.020,arXiv:1207.7214. [10] L.Randall,R.Sundrum,Analternativetocompactification,Phys.Lett.3(1999)

4690,https://doi.org/10.1103/PhysRevLett.83.4690.

[11] L. Randall,R.Sundrum,Largemasshierarchyfromasmallextradimension, Phys.Lett.3(1999)3370,https://doi.org/10.1103/PhysRevLett.83.3370. [12] B. Hassanain, J. March-Russell, J.G. Rosa, On the possibility oflight string

resonancesatthe LHCand TevatronfromRandall–Sundrumthroats, J.High Energy Phys. 07 (2009) 77, https://doi.org/10.1088/1126-6708/2009/07/077, arXiv:0904.4108.

[13] W.Rarita,J.Schwinger,Onatheoryofparticleswithhalf-integralspin,Phys. Rev.60(1941)61,https://doi.org/10.1103/PhysRev.60.61.

[14] W.J.Stirling,E.Vryonidou,Effectofspin-3/2topquarkexcitationontt pro-ductionat the LHC,J.HighEnergyPhys. 01(2012)55, http://dx.doi.org/10. 1007/JHEP01(2012)055,arXiv:1110.1565.

[15] D.A. Dicus, D. Karabacak, S. Nandi, S.K. Rai,Search for spin-3/2 quarksat the LargeHadronCollider,Phys. Rev.D 87(2013) 15023,http://dx.doi.org/ 10.1103/PhysRevD.87.015023,arXiv:1208.5811.

[16] B. Moussallam, V.Soni, Productionofheavyspin-3/2 fermionsincolliders, Phys.Rev.D39(1989)1883,https://doi.org/10.1103/PhysRevD.39.1883. [17] CMS Collaboration,Search for pairproduction ofexcitedtopquarksinthe

lepton+jetsfinalstate,J.HighEnergyPhys.06(2014)125,http://dx.doi.org/ 10.1007/JHEP06(2014)125,arXiv:1311.5357.

[18] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008),

https://doi.org/10.1088/1748-0221/3/08/S08004.

[19] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli,M. Zaro,The automated computation of tree-levelandnext-to-leading orderdifferentialcross sections,andtheir match-ingtopartonshowersimulations,J.HighEnergyPhys.07(2014)079,http:// dx.doi.org/10.1007/JHEP07(2014)079,arXiv:1405.0301.

[20] R.D.Ball,etal.,NNPDFCollaboration,PartondistributionsfortheLHCrunII, J.HighEnergyPhys.04(2015)40,http://dx.doi.org/10.1007/JHEP04(2015)040, arXiv:1410.8849.

[21] T.Sjöstrand,S.Ask,J.R.Christiansen,R.Corke,N.Desai,P.Ilten,S.Mrenna,S. Prestel,C.O.Rasmussen,P.Z.Skands,AnintroductiontoPYTHIA8.2,Comput. Phys. Commun. 191 (2015) 159, http://dx.doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[22] S. Agostinelli, et al., GEANT4 Collaboration, GEANT 4—a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250, https://doi.org/10.1016/S0168-9002(03)01368-8.

[23] P. Nason, A new method for combining NLO QCD with shower Monte Carloalgorithms,J.HighEnergy Phys.11(2004)40,https://doi.org/10.1088/ 1126-6708/2004/11/040,arXiv:hep-ph/0409146.

[24] S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod,J.HighEnergyPhys.11(2007)70,

https://doi.org/10.1088/1126-6708/2007/11/070,arXiv:0709.2092.

[25] S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implement-ingNLOcalculations in showerMonteCarlo programs: the POWHEGBOX, J.HighEnergyPhys.06(2010)43,http://dx.doi.org/10.1007/JHEP06(2010)043, arXiv:1002.2581.

[26] J.M.Campbell,R.K.Ellis,P.Nason,E.Re,Top-pairproductionanddecayatNLO matchedwithpartonshowers,J.HighEnergyPhys.04(2015)114,http://dx. doi.org/10.1007/JHEP04(2015)114,arXiv:1412.1828.

[27] H.B.Hartanto,B.Jager,L.Reina,D.Wackeroth,Higgsbosonproductionin as-sociationwithtopquarksinthePOWHEGBOX,Phys.Rev.D91(2015)94003,

(8)

[28] R.Frederix,S. Frixione,Merging meets matching inMC@NLO, J. High En-ergy Phys. 12 (2012) 061, http://dx.doi.org/10.1007/JHEP12(2012)061, arXiv: 1209.6215.

[29] J.Alwall,etal.,Comparativestudyofvariousalgorithms forthemergingof partonshowersandmatrixelementsinhadroniccollisions,Eur.Phys.J.C53 (2008)473,https://doi.org/10.1140/epjc/s10052-007-0490-5,arXiv:0706.2569. [30] CMSCollaboration,Particle-flow reconstructionandglobalevent description

withtheCMSdetector,J.Instrum.12(2017)P10003,http://doi.org/10.1088/ 1748-0221/12/10/P10003,arXiv:1706.04965.

[31] M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High

Energy Phys. 04 (2008) 63, https://doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[32] CMSCollaboration, Jet energy scaleand resolutioninthe CMS experiment in pp collisions at 8 TeV, J. Instrum. 12 (2017) P02014, https://doi.org/ 10.1088/1748-0221/12/02/P02014,arXiv:1607.03663.

[33] CMSCollaboration, Identificationofb-quarkjetswith theCMSexperiment, J. Instrum.8(2013) P04013,https://doi.org/10.1088/1748-0221/8/04/P04013, arXiv:1211.4462.

[34] CMSCollaboration,Identification ofbquarkjetsat the CMSexperimentin theLHCrun2,CMSPhysicsAnalysisSummaryCMS-PAS-BTV-15-001,https:// cds.cern.ch/record/2138504,2016.

[35] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9 (2014) P10009,

https://doi.org/10.1088/1748-0221/9/10/P10009,arXiv:1405.6569.

[36] CMS Collaboration, Performance of CMS muon reconstruction in pp colli-sioneventsat√s=7TeV,J.Instrum.7(2012)10002,https://doi.org/10.1088/ 1748-0221/7/10/P10002,arXiv:1206.4071.

[37] CMS Collaboration, Performance of electron reconstruction and selection with the CMS detector in proton–proton collisions at √s=8TeV, J. In-strum. 10 (2015) P06005, https://doi.org/10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.

[38] ParticleDataGroup,C.Patrignani,etal.,Reviewofparticlephysics,Chin.Phys. C40(2016)100001,https://doi.org/10.1088/1674-1137/40/10/100001. [39] K.Cranmer,Kernelestimationinhigh-energyphysics,Comput.Phys.Commun.

136(2001)198,https://doi.org/10.1016/S0010-4655(00)00243-5.

[40] CMS Collaboration, CMS luminosity measurements for the 2016 data tak-ingperiod,CMSPhysicsAnalysisSummaryCMS-PAS-LUM-17-001,https://cds. cern.ch/record/2138504,2017.

[41] ATLASCollaboration,Measurementoftheinelasticproton–protoncrosssection at√s=13TeV withtheATLASdetectorattheLHC,Phys.Rev.Lett.117(2016) 182002,http://dx.doi.org/10.1103/PhysRevLett.117.182002,arXiv:1606.02625. [42] T. Junk, Confidence level computation for combining searches with small

statistics, Nucl. Instrum. Methods A 434 (1999) 435, https://doi.org/ 10.1016/S0168-9002(99)00498-2,arXiv:hep-ex/9902006.

[43] A.L.Read,Presentationofsearchresults:theCLstechnique,J.Phys.G28(2002) 2693,https://doi.org/10.1088/0954-3899/28/10/313.

[44] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554,

https://doi.org/10.1140/epjc/s10052-011-1554-0,arXiv:1007.1727;

G.Cowan,K.Cranmer,E.Gross,O.Vitells, https://doi.org/10.1140/epjc/s10052-013-2501-z(Erratum).

[45] ProcedurefortheLHCHiggsBosonSearchCombinationinSummer2011, Tech-nicalReportCMS-NOTE-2011/005,ATL-PHYS-PUB-2011-011,2011,https://cds. cern.ch/record/2138504.

TheCMSCollaboration

A.M. Sirunyan,A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

W. Adam, F. Ambrogi, E. Asilar,T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö,

A. Escalante Del Valle,M. Flechl, M. Friedl,R. Frühwirth1,V.M. Ghete, J. Grossmann, J. Hrubec,

M. Jeitler1,A. König, N. Krammer, I. Krätschmer,D. Liko, T. Madlener, I. Mikulec,E. Pree, N. Rad,

H. Rohringer,J. Schieck1, R. Schöfbeck, M. Spanring, D. Spitzbart,W. Waltenberger, J. Wittmann,

C.-E. Wulz1,M. Zarucki

Institut für Hochenergiephysik, Wien, Austria

V. Chekhovsky, V. Mossolov,J. Suarez Gonzalez

Institute for Nuclear Problems, Minsk, Belarus

E.A. De Wolf,D. Di Croce, X. Janssen,J. Lauwers, M. Van De Klundert, H. Van Haevermaet,

P. Van Mechelen,N. Van Remortel

Universiteit Antwerpen, Antwerpen, Belgium

S. Abu Zeid,F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi,

S. Lowette,I. Marchesini, S. Moortgat, L. Moreels,Q. Python, K. Skovpen, S. Tavernier,W. Van Doninck,

P. Van Mulders,I. Van Parijs

Vrije Universiteit Brussel, Brussel, Belgium

D. Beghin,B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker,H. Delannoy, B. Dorney, G. Fasanella,L. Favart,

R. Goldouzian, A. Grebenyuk,A.K. Kalsi,T. Lenzi, J. Luetic, T. Maerschalk,A. Marinov, T. Seva, E. Starling,

C. Vander Velde, P. Vanlaer,D. Vannerom, R. Yonamine,F. Zenoni, F. Zhang2

Université Libre de Bruxelles, Bruxelles, Belgium

T. Cornelis,D. Dobur, A. Fagot,M. Gul, I. Khvastunov3,D. Poyraz, C. Roskas, S. Salva, M. Tytgat,

W. Verbeke,N. Zaganidis

(9)

H. Bakhshiansohi,O. Bondu, S. Brochet,G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher,

C. Delaere, M. Delcourt, B. Francois,A. Giammanco, M. Komm, G. Krintiras,V. Lemaitre, A. Magitteri,

A. Mertens, M. Musich, K. Piotrzkowski,L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz,J. Zobec

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

W.L. Aldá Júnior, F.L. Alves,G.A. Alves, L. Brito,M. Correa Martins Junior,C. Hensel, A. Moraes,M.E. Pol,

P. Rebello Teles

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato4,E. Coelho, E.M. Da Costa, G.G. Da Silveira5,

D. De Jesus Damiao,S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson,M. Melo De Almeida,

C. Mora Herrera,L. Mundim, H. Nogima,L.J. Sanchez Rosas, A. Santoro,A. Sznajder, M. Thiel,

E.J. Tonelli Manganote4,F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

S. Ahujaa, C.A. Bernardesa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb,P.G. Mercadanteb,

S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb,J.C. Ruiz Vargasa

aUniversidade Estadual Paulista, São Paulo, Brazil bUniversidade Federal do ABC, São Paulo, Brazil

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev,M. Misheva, M. Rodozov, M. Shopova,G. Sultanov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

A. Dimitrov, L. Litov,B. Pavlov, P. Petkov

University of Sofia, Sofia, Bulgaria

W. Fang6, X. Gao6,L. Yuan

Beihang University, Beijing, China

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen,M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao,Z. Liu,

F. Romeo,S.M. Shaheen, A. Spiezia, J. Tao, C. Wang,Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao

Institute of High Energy Physics, Beijing, China

Y. Ban, G. Chen, J. Li,Q. Li, S. Liu, Y. Mao,S.J. Qian, D. Wang, Z. Xu

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

Y. Wang

Tsinghua University, Beijing, China

C. Avila,A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández,J.D. Ruiz Alvarez,

M.A. Segura Delgado

Universidad de Los Andes, Bogota, Colombia

B. Courbon, N. Godinovic, D. Lelas,I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

Z. Antunovic, M. Kovac

University of Split, Faculty of Science, Split, Croatia

V. Brigljevic,D. Ferencek, K. Kadija,B. Mesic, A. Starodumov7, T. Susa

(10)

M.W. Ather,A. Attikis, G. Mavromanolakis, J. Mousa,C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

University of Cyprus, Nicosia, Cyprus

M. Finger8,M. Finger Jr.8

Charles University, Prague, Czech Republic

E. Carrera Jarrin

Universidad San Francisco de Quito, Quito, Ecuador

E. El-khateeb9,S. Elgammal10,A. Mohamed11

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

R.K. Dewanjee,M. Kadastik, L. Perrini, M. Raidal, A. Tiko,C. Veelken

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

P. Eerola,H. Kirschenmann, J. Pekkanen,M. Voutilainen

Department of Physics, University of Helsinki, Helsinki, Finland

J. Havukainen, J.K. Heikkilä, T. Järvinen,V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini,S. Laurila,

S. Lehti,T. Lindén, P. Luukka, H. Siikonen, E. Tuominen, J. Tuominiemi

Helsinki Institute of Physics, Helsinki, Finland

T. Tuuva

Lappeenranta University of Technology, Lappeenranta, Finland

M. Besancon,F. Couderc, M. Dejardin, D. Denegri,J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh,P. Gras,

G. Hamel de Monchenault,P. Jarry, I. Kucher, C. Leloup,E. Locci, M. Machet, J. Malcles,G. Negro,

J. Rander,A. Rosowsky, M.Ö. Sahin, M. Titov

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

A. Abdulsalam,C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro,C. Charlot,

R. Granier de Cassagnac,M. Jo, S. Lisniak,A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando,

G. Ortona,P. Paganini, P. Pigard,R. Salerno, J.B. Sauvan, Y. Sirois,A.G. Stahl Leiton, T. Strebler, Y. Yilmaz,

A. Zabi,A. Zghiche

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France

J.-L. Agram12,J. Andrea, D. Bloch,J.-M. Brom, M. Buttignol,E.C. Chabert, N. Chanon, C. Collard,

E. Conte12,X. Coubez, J.-C. Fontaine12, D. Gelé, U. Goerlach,M. Jansová, A.-C. Le Bihan, N. Tonon,

P. Van Hove

Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

S. Gadrat

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Beauceron,C. Bernet, G. Boudoul,R. Chierici, D. Contardo, P. Depasse,H. El Mamouni, J. Fay, L. Finco,

S. Gascon,M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier,L. Mirabito,

A.L. Pequegnot, S. Perries,A. Popov13,V. Sordini, M. Vander Donckt, S. Viret

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

T. Toriashvili14

(11)

Z. Tsamalaidze8

Tbilisi State University, Tbilisi, Georgia

C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten,C. Schomakers, J. Schulz,

M. Teroerde,V. Zhukov13

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres,M. Erdmann, S. Erdweg, T. Esch,R. Fischer, A. Güth,

M. Hamer,T. Hebbeker,C. Heidemann, K. Hoepfner,S. Knutzen, M. Merschmeyer,A. Meyer, P. Millet,

S. Mukherjee,T. Pook, M. Radziej, H. Reithler,M. Rieger, F. Scheuch,D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

G. Flügge, B. Kargoll, T. Kress, A. Künsken, T. Müller,A. Nehrkorn, A. Nowack, C. Pistone,O. Pooth,

A. Stahl15

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

M. Aldaya Martin,T. Arndt, C. Asawatangtrakuldee, K. Beernaert,O. Behnke, U. Behrens,

A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras16,V. Botta, A. Campbell, P. Connor,

C. Contreras-Campana, F. Costanza, C. Diez Pardos,G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren,

E. Gallo17,J. Garay Garcia, A. Geiser, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff,

A. Harb,J. Hauk, M. Hempel18,H. Jung,M. Kasemann, J. Keaveney, C. Kleinwort,I. Korol, D. Krücker,

W. Lange, A. Lelek, T. Lenz,J. Leonard, K. Lipka,W. Lohmann18, R. Mankel, I.-A. Melzer-Pellmann,

A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari,D. Pitzl, A. Raspereza,M. Savitskyi, P. Saxena,

R. Shevchenko, N. Stefaniuk,G.P. Van Onsem, R. Walsh, Y. Wen,K. Wichmann,C. Wissing, O. Zenaiev

Deutsches Elektronen-Synchrotron, Hamburg, Germany

R. Aggleton,S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti,D. Gonzalez, J. Haller,

A. Hinzmann, M. Hoffmann,A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk,S. Kurz, T. Lapsien,

D. Marconi,M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo15, T. Peiffer, A. Perieanu,C. Scharf,

P. Schleper, A. Schmidt, S. Schumann,J. Schwandt, J. Sonneveld,H. Stadie,G. Steinbrück, F.M. Stober,

M. Stöver, H. Tholen, D. Troendle,E. Usai, A. Vanhoefer, B. Vormwald

University of Hamburg, Hamburg, Germany

M. Akbiyik, C. Barth,M. Baselga, S. Baur, E. Butz,R. Caspart, T. Chwalek, F. Colombo, W. De Boer,

A. Dierlamm, N. Faltermann,B. Freund, R. Friese,M. Giffels,M.A. Harrendorf, F. Hartmann15,

S.M. Heindl,U. Husemann, F. Kassel15,S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge,

G. Quast, K. Rabbertz,M. Schröder, I. Shvetsov, G. Sieber,H.J. Simonis, R. Ulrich, S. Wayand, M. Weber,

T. Weiler, S. Williamson,C. Wöhrmann, R. Wolf

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

G. Anagnostou, G. Daskalakis,T. Geralis,A. Kyriakis, D. Loukas, I. Topsis-Giotis

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Karathanasis,S. Kesisoglou, A. Panagiotou, N. Saoulidou

National and Kapodistrian University of Athens, Athens, Greece

K. Kousouris

(12)

I. Evangelou,C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios,N. Manthos, I. Papadopoulos,

E. Paradas, J. Strologas,F.A. Triantis, D. Tsitsonis

University of Ioánnina, Ioánnina, Greece

M. Csanad,N. Filipovic, G. Pasztor,O. Surányi, G.I. Veres19

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

G. Bencze,C. Hajdu, D. Horvath20, Á. Hunyadi, F. Sikler,V. Veszpremi

Wigner Research Centre for Physics, Budapest, Hungary

N. Beni,S. Czellar, J. Karancsi21,A. Makovec,J. Molnar, Z. Szillasi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

M. Bartók19,P. Raics, Z.L. Trocsanyi, B. Ujvari

Institute of Physics, University of Debrecen, Debrecen, Hungary

S. Choudhury,J.R. Komaragiri

Indian Institute of Science (IISc), Bangalore, India

S. Bahinipati22,S. Bhowmik, P. Mal, K. Mandal, A. Nayak23, D.K. Sahoo22, N. Sahoo,S.K. Swain

National Institute of Science Education and Research, Bhubaneswar, India

S. Bansal,S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra,A. Kaur, M. Kaur, S. Kaur,R. Kumar, P. Kumari,

A. Mehta,J.B. Singh, G. Walia

Panjab University, Chandigarh, India

Ashok Kumar,Aashaq Shah, A. Bhardwaj, S. Chauhan,B.C. Choudhary, R.B. Garg,S. Keshri, A. Kumar,

S. Malhotra,M. Naimuddin, K. Ranjan,R. Sharma

University of Delhi, Delhi, India

R. Bhardwaj,R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey,S. Dutt, S. Dutta, S. Ghosh,

N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan,A. Purohit, A. Roy, S. Roy Chowdhury,

S. Sarkar,M. Sharan, S. Thakur

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

P.K. Behera

Indian Institute of Technology Madras, Madras, India

R. Chudasama,D. Dutta, V. Jha, V. Kumar, A.K. Mohanty15, P.K. Netrakanti,L.M. Pant, P. Shukla,A. Topkar

Bhabha Atomic Research Centre, Mumbai, India

T. Aziz,S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar

Tata Institute of Fundamental Research-A, Mumbai, India

S. Banerjee, S. Bhattacharya, S. Chatterjee,P. Das, M. Guchait,Sa. Jain, S. Kumar, M. Maity24,

G. Majumder,K. Mazumdar, T. Sarkar24, N. Wickramage25

Tata Institute of Fundamental Research-B, Mumbai, India

S. Chauhan,S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

(13)

S. Chenarani26, E. Eskandari Tadavani,S.M. Etesami26,M. Khakzad, M. Mohammadi Najafabadi,

M. Naseri, S. Paktinat Mehdiabadi27,F. Rezaei Hosseinabadi, B. Safarzadeh28,M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Felcini,M. Grunewald

University College Dublin, Dublin, Ireland

M. Abbresciaa,b, C. Calabriaa,b,A. Colaleoa,D. Creanzaa,c, L. Cristellaa,b,N. De Filippisa,c,

M. De Palmaa,b, F. Erricoa,b, L. Fiorea, G. Iasellia,c, S. Lezkia,b, G. Maggia,c,M. Maggia, G. Minielloa,b,

S. Mya,b, S. Nuzzoa,b,A. Pompilia,b,G. Pugliesea,c, R. Radognaa,A. Ranieria, G. Selvaggia,b, A. Sharmaa,

L. Silvestrisa,15,R. Vendittia,P. Verwilligena

aINFN Sezione di Bari, Bari, Italy bUniversità di Bari, Bari, Italy cPolitecnico di Bari, Bari, Italy

G. Abbiendia,C. Battilanaa,b,D. Bonacorsia,b,L. Borgonovia,b,S. Braibant-Giacomellia,b,

R. Campaninia,b, P. Capiluppia,b,A. Castroa,b,F.R. Cavalloa, S.S. Chhibraa,G. Codispotia,b,M. Cuffiania,b,

G.M. Dallavallea,F. Fabbria, A. Fanfania,b, D. Fasanellaa,b,P. Giacomellia,C. Grandia,L. Guiduccia,b,

S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa,b,A. Perrottaa, A.M. Rossia,b,T. Rovellia,b,

G.P. Sirolia,b,N. Tosia

aINFN Sezione di Bologna, Bologna, Italy bUniversità di Bologna, Bologna, Italy

S. Albergoa,b,S. Costaa,b,A. Di Mattiaa,F. Giordanoa,b,R. Potenzaa,b,A. Tricomia,b,C. Tuvea,b

aINFN Sezione di Catania, Catania, Italy bUniversità di Catania, Catania, Italy

G. Barbaglia, K. Chatterjeea,b,V. Ciullia,b,C. Civininia, R. D’Alessandroa,b, E. Focardia,b,P. Lenzia,b,

M. Meschinia, S. Paolettia,L. Russoa,29, G. Sguazzonia, D. Stroma, L. Viliania

aINFN Sezione di Firenze, Firenze, Italy bUniversità di Firenze, Firenze, Italy

L. Benussi, S. Bianco, F. Fabbri,D. Piccolo, F. Primavera15

INFN Laboratori Nazionali di Frascati, Frascati, Italy

V. Calvellia,b, F. Ferroa, F. Raveraa,b,E. Robuttia,S. Tosia,b

aINFN Sezione di Genova, Genova, Italy bUniversità di Genova, Genova, Italy

A. Benagliaa, A. Beschib, L. Brianzaa,b, F. Brivioa,b, V. Cirioloa,b,15,M.E. Dinardoa,b,S. Fiorendia,b,

S. Gennaia, A. Ghezzia,b,P. Govonia,b, M. Malbertia,b,S. Malvezzia,R.A. Manzonia,b, D. Menascea,

L. Moronia,M. Paganonia,b, K. Pauwelsa,b, D. Pedrinia,S. Pigazzinia,b,30, S. Ragazzia,b,

T. Tabarelli de Fatisa,b

aINFN Sezione di Milano-Bicocca, Milano, Italy bUniversità di Milano-Bicocca, Milano, Italy

S. Buontempoa, N. Cavalloa,c, S. Di Guidaa,d,15, F. Fabozzia,c,F. Fiengaa,b, A.O.M. Iorioa,b, W.A. Khana,

L. Listaa,S. Meolaa,d,15,P. Paoluccia,15,C. Sciaccaa,b,F. Thyssena

aINFN Sezione di Napoli, Napoli, Italy bUniversità di Napoli ‘Federico II’, Napoli, Italy cUniversità della Basilicata, Potenza, Italy dUniversità G. Marconi, Roma, Italy

P. Azzia,L. Benatoa,b, D. Biselloa,b, A. Bolettia,b, R. Carlina,b, A. Carvalho Antunes De Oliveiraa,b,

(14)

S. Lacapraraa,P. Lujan, M. Margonia,b, A.T. Meneguzzoa,b,M. Passaseoa, N. Pozzobona,b, P. Ronchesea,b,

R. Rossina,b, F. Simonettoa,b,E. Torassaa,S. Venturaa, M. Zanettia,b, P. Zottoa,b

aINFN Sezione di Padova, Padova, Italy bUniversità di Padova, Padova, Italy cUniversità di Trento, Trento, Italy

A. Braghieria, A. Magnania,P. Montagnaa,b, S.P. Rattia,b,V. Rea,M. Ressegottia,b,C. Riccardia,b,

P. Salvinia, I. Vaia,b,P. Vituloa,b

aINFN Sezione di Pavia, Pavia, Italy bUniversità di Pavia, Pavia, Italy

L. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia,C. Cecchia,b,D. Ciangottinia,b, L. Fanòa,b,R. Leonardia,b,

E. Manonia,G. Mantovania,b,V. Mariania,b,M. Menichellia, A. Rossia,b,A. Santocchiaa,b, D. Spigaa

aINFN Sezione di Perugia, Perugia, Italy bUniversità di Perugia, Perugia, Italy

K. Androsova, P. Azzurria,15,G. Bagliesia,T. Boccalia,L. Borrello, R. Castaldia, M.A. Cioccia,b,

R. Dell’Orsoa,G. Fedia, L. Gianninia,c, A. Giassia, M.T. Grippoa,29,F. Ligabuea,c, T. Lomtadzea,

E. Mancaa,c,G. Mandorlia,c, A. Messineoa,b, F. Pallaa,A. Rizzia,b, A. Savoy-Navarroa,31,P. Spagnoloa,

R. Tenchinia,G. Tonellia,b, A. Venturia,P.G. Verdinia

aINFN Sezione di Pisa, Pisa, Italy bUniversità di Pisa, Pisa, Italy

cScuola Normale Superiore di Pisa, Pisa, Italy

L. Baronea,b, F. Cavallaria,M. Cipriania,b, N. Dacia,D. Del Rea,b,15,E. Di Marcoa,b,M. Diemoza,

S. Gellia,b, E. Longoa,b, F. Margarolia,b,B. Marzocchia,b, P. Meridiania,G. Organtinia,b,R. Paramattia,b,

F. Preiatoa,b,S. Rahatloua,b, C. Rovellia,F. Santanastasioa,b

aINFN Sezione di Roma, Rome, Italy bSapienza Università di Roma, Rome, Italy

N. Amapanea,b,R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c,N. Bartosika,R. Bellana,b,C. Biinoa,

N. Cartigliaa,F. Cennaa,b, M. Costaa,b,R. Covarellia,b,A. Deganoa,b,N. Demariaa, B. Kiania,b,

C. Mariottia, S. Masellia,E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa,M.M. Obertinoa,b,

L. Pachera,b,N. Pastronea, M. Pelliccionia,G.L. Pinna Angionia,b,A. Romeroa,b,M. Ruspaa,c, R. Sacchia,b,

K. Shchelinaa,b, V. Solaa,A. Solanoa,b,A. Staianoa,P. Traczyka,b

aINFN Sezione di Torino, Torino, Italy bUniversità di Torino, Torino, Italy

cUniversità del Piemonte Orientale, Novara, Italy

S. Belfortea,M. Casarsaa, F. Cossuttia,G. Della Riccaa,b, A. Zanettia

aINFN Sezione di Trieste, Trieste, Italy bUniversità di Trieste, Trieste, Italy

D.H. Kim,G.N. Kim, M.S. Kim, J. Lee,S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen,D.C. Son,Y.C. Yang

Kyungpook National University, Daegu, Republic of Korea

A. Lee

Chonbuk National University, Jeonju, Republic of Korea

H. Kim,D.H. Moon,G. Oh

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

J.A. Brochero Cifuentes,J. Goh, T.J. Kim

(15)

S. Cho, S. Choi,Y. Go,D. Gyun, S. Ha, B. Hong, Y. Jo,Y. Kim, K. Lee,K.S. Lee, S. Lee,J. Lim,S.K. Park, Y. Roh

Korea University, Seoul, Republic of Korea

J. Almond, J. Kim,J.S. Kim, H. Lee,K. Lee, K. Nam,S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang,

H.D. Yoo,G.B. Yu

Seoul National University, Seoul, Republic of Korea

H. Kim,J.H. Kim, J.S.H. Lee, I.C. Park

University of Seoul, Seoul, Republic of Korea

Y. Choi,C. Hwang, J. Lee, I. Yu

Sungkyunkwan University, Suwon, Republic of Korea

V. Dudenas, A. Juodagalvis,J. Vaitkus

Vilnius University, Vilnius, Lithuania

I. Ahmed,Z.A. Ibrahim, M.A.B. Md Ali32,F. Mohamad Idris33,W.A.T. Wan Abdullah, M.N. Yusli,

Z. Zolkapli

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

R. Reyes-Almanza,G. Ramirez-Sanchez, M.C. Duran-Osuna, H. Castilla-Valdez, E. De La Cruz-Burelo,

I. Heredia-De La Cruz34, R.I. Rabadan-Trejo, R. Lopez-Fernandez,J. Mejia Guisao, A. Sanchez-Hernandez

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Universidad Iberoamericana, Mexico City, Mexico

J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

A. Morelos Pineda

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

D. Krofcheck

University of Auckland, Auckland, New Zealand

P.H. Butler

University of Canterbury, Christchurch, New Zealand

A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

H. Bialkowska, M. Bluj,B. Boimska, T. Frueboes,M. Górski, M. Kazana, K. Nawrocki, M. Szleper,

P. Zalewski

National Centre for Nuclear Research, Swierk, Poland

K. Bunkowski,A. Byszuk35, K. Doroba,A. Kalinowski, M. Konecki,J. Krolikowski, M. Misiura,

M. Olszewski, A. Pyskir,M. Walczak

(16)

P. Bargassa,C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli,B. Galinhas, M. Gallinaro, J. Hollar,

N. Leonardo,L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas,G. Strong,O. Toldaiev, D. Vadruccio, J. Varela

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

S. Afanasiev,V. Alexakhin,P. Bunin, M. Gavrilenko, A. Golunov, I. Golutvin, N. Gorbounov, V. Karjavin,

A. Lanev,A. Malakhov,V. Matveev36,37,V. Palichik, V. Perelygin, M. Savina, S. Shmatov, N. Skatchkov,

V. Smirnov,A. Zarubin

Joint Institute for Nuclear Research, Dubna, Russia

Y. Ivanov,V. Kim38,E. Kuznetsova39, P. Levchenko,V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov,

V. Sulimov,L. Uvarov, S. Vavilov, A. Vorobyev

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Yu. Andreev,A. Dermenev,S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,N. Krasnikov,

A. Pashenkov,D. Tlisov, A. Toropin

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn,V. Gavrilov, N. Lychkovskaya,V. Popov, I. Pozdnyakov,G. Safronov, A. Spiridonov,

A. Stepennov, M. Toms,E. Vlasov, A. Zhokin

Institute for Theoretical and Experimental Physics, Moscow, Russia

T. Aushev,A. Bylinkin37

Moscow Institute of Physics and Technology, Moscow, Russia

M. Chadeeva40, O. Markin,P. Parygin, D. Philippov,S. Polikarpov, V. Rusinov

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia

V. Andreev,M. Azarkin37,I. Dremin37, M. Kirakosyan37,A. Terkulov

P.N. Lebedev Physical Institute, Moscow, Russia

A. Baskakov,A. Belyaev, E. Boos,V. Bunichev, M. Dubinin41, L. Dudko, V. Klyukhin, N. Korneeva,

I. Lokhtin,I. Miagkov, S. Obraztsov,M. Perfilov, S. Petrushanko,V. Savrin, A. Snigirev

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

V. Blinov42, Y. Skovpen42,D. Shtol42

Novosibirsk State University (NSU), Novosibirsk, Russia

I. Azhgirey,I. Bayshev,S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov,

P. Mandrik,V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin,A. Uzunian, A. Volkov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic43,P. Cirkovic, D. Devetak,M. Dordevic, J. Milosevic,V. Rekovic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

J. Alcaraz Maestre,I. Bachiller, M. Barrio Luna,M. Cerrada, N. Colino, B. De La Cruz,A. Delgado Peris,

C. Fernandez Bedoya,J.P. Fernández Ramos, J. Flix, M.C. Fouz,O. Gonzalez Lopez, S. Goy Lopez,

J.M. Hernandez, M.I. Josa,D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda,

I. Redondo, L. Romero,M.S. Soares, A. Álvarez Fernández

(17)

C. Albajar, J.F. de Trocóniz, M. Missiroli

Universidad Autónoma de Madrid, Madrid, Spain

J. Cuevas, C. Erice,J. Fernandez Menendez, I. Gonzalez Caballero,J.R. González Fernández,

E. Palencia Cortezon,S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia

Universidad de Oviedo, Oviedo, Spain

I.J. Cabrillo, A. Calderon, B. Chazin Quero,E. Curras, J. Duarte Campderros, M. Fernandez,

J. Garcia-Ferrero,G. Gomez, A. Lopez Virto, J. Marco,C. Martinez Rivero, P. Martinez Ruiz del Arbol,

F. Matorras, J. Piedra Gomez,T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro,N. Trevisani, I. Vila,

R. Vilar Cortabitarte

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

D. Abbaneo, B. Akgun,E. Auffray, P. Baillon,A.H. Ball, D. Barney, J. Bendavid,M. Bianco, P. Bloch,

A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d’Enterria,

A. Dabrowski,V. Daponte, A. David, M. De Gruttola, A. De Roeck, N. Deelen,M. Dobson, T. du Pree,

M. Dünser,N. Dupont, A. Elliott-Peisert,P. Everaerts, F. Fallavollita,G. Franzoni, J. Fulcher, W. Funk,

D. Gigi,A. Gilbert, K. Gill,F. Glege, D. Gulhan, P. Harris,J. Hegeman, V. Innocente, A. Jafari, P. Janot,

O. Karacheban18,J. Kieseler, V. Knünz, A. Kornmayer,M.J. Kortelainen, M. Krammer1,C. Lange, P. Lecoq,

C. Lourenço,M.T. Lucchini, L. Malgeri,M. Mannelli, A. Martelli,F. Meijers, J.A. Merlin, S. Mersi, E. Meschi,

P. Milenovic44, F. Moortgat, M. Mulders, H. Neugebauer,J. Ngadiuba, S. Orfanelli, L. Orsini, L. Pape,

E. Perez,M. Peruzzi, A. Petrilli, G. Petrucciani,A. Pfeiffer, M. Pierini,D. Rabady, A. Racz,T. Reis,

G. Rolandi45, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick,M. Seidel, M. Selvaggi,A. Sharma,P. Silva,

P. Sphicas46, A. Stakia,J. Steggemann, M. Stoye,M. Tosi, D. Treille, A. Triossi,A. Tsirou, V. Veckalns47,

M. Verweij, W.D. Zeuner

CERN, European Organization for Nuclear Research, Geneva, Switzerland

W. Bertl†, L. Caminada48, K. Deiters,W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,

U. Langenegger, T. Rohe, S.A. Wiederkehr

Paul Scherrer Institut, Villigen, Switzerland

M. Backhaus, L. Bäni, P. Berger, L. Bianchini, B. Casal, G. Dissertori,M. Dittmar, M. Donegà, C. Dorfer,

C. Grab,C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma,W. Lustermann, B. Mangano,

M. Marionneau, M.T. Meinhard,D. Meister, F. Micheli,P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata,

F. Pauss,G. Perrin, L. Perrozzi,M. Quittnat, M. Reichmann, D.A. Sanz Becerra,M. Schönenberger,

L. Shchutska,V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

ETH Zurich – Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland

T.K. Aarrestad, C. Amsler49, M.F. Canelli,A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus,

B. Kilminster, D. Pinna,G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi,

A. Zucchetta

Universität Zürich, Zurich, Switzerland

V. Candelise,Y.H. Chang, K.y. Cheng,T.H. Doan, Sh. Jain,R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov,

S.S. Yu

National Central University, Chung-Li, Taiwan

Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, Y.M. Chen, F. Fiori, W.-S. Hou,Y. Hsiung, Y.F. Liu,

R.-S. Lu, E. Paganis, A. Psallidas,A. Steen, J.f. Tsai

(18)

B. Asavapibhop,K. Kovitanggoon, G. Singh, N. Srimanobhas

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

M.N. Bakirci50,A. Bat, F. Boran,S. Cerci51, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis,

G. Gokbulut,Y. Guler, I. Hos52, E.E. Kangal53,O. Kara, U. Kiminsu, M. Oglakci,G. Onengut54,

K. Ozdemir55,S. Ozturk50,U.G. Tok, H. Topakli50,S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

G. Karapinar56, K. Ocalan57,M. Yalvac, M. Zeyrek

Middle East Technical University, Physics Department, Ankara, Turkey

E. Gülmez,M. Kaya58,O. Kaya59, S. Tekten, E.A. Yetkin60

Bogazici University, Istanbul, Turkey

M.N. Agaras,S. Atay, A. Cakir, K. Cankocak, I. Köseoglu

Istanbul Technical University, Istanbul, Turkey

B. Grynyov

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

L. Levchuk

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

F. Ball, L. Beck, J.J. Brooke,D. Burns, E. Clement, D. Cussans,O. Davignon, H. Flacher,J. Goldstein,

G.P. Heath, H.F. Heath,L. Kreczko, D.M. Newbold61, S. Paramesvaran,T. Sakuma, S. Seif El Nasr-storey,

D. Smith,V.J. Smith

University of Bristol, Bristol, United Kingdom

K.W. Bell,A. Belyaev62,C. Brew, R.M. Brown, L. Calligaris,D. Cieri, D.J.A. Cockerill, J.A. Coughlan,

K. Harder,S. Harper, J. Linacre, E. Olaiya,D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin,

T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom

G. Auzinger, R. Bainbridge,J. Borg,S. Breeze, O. Buchmuller, A. Bundock,S. Casasso, M. Citron,D. Colling,

L. Corpe,P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, A. Elwood, Y. Haddad, G. Hall,

G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan,S. Malik, L. Mastrolorenzo, T. Matsushita,

J. Nash, A. Nikitenko7,V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards,A. Rose, E. Scott,C. Seez,

A. Shtipliyski,S. Summers,A. Tapper, K. Uchida, M. Vazquez Acosta63,T. Virdee15,N. Wardle,

D. Winterbottom,J. Wright, S.C. Zenz

Imperial College, London, United Kingdom

J.E. Cole, P.R. Hobson,A. Khan, P. Kyberd,I.D. Reid, L. Teodorescu, S. Zahid

Brunel University, Uxbridge, United Kingdom

A. Borzou,K. Call,J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith

Baylor University, Waco, USA

R. Bartek,A. Dominguez

(19)

A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio,C. West

The University of Alabama, Tuscaloosa, USA

D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson,J. Rohlf, L. Sulak, D. Zou

Boston University, Boston, USA

G. Benelli, D. Cutts, A. Garabedian, M. Hadley,J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok,E. Laird,

G. Landsberg, J. Lee,Z. Mao, M. Narain, J. Pazzini, S. Piperov,S. Sagir, R. Syarif, D. Yu

Brown University, Providence, USA

R. Band,C. Brainerd, R. Breedon, D. Burns,M. Calderon De La Barca Sanchez, M. Chertok, J. Conway,

R. Conway, P.T. Cox, R. Erbacher,C. Flores, G. Funk, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett,

J. Pilot, S. Shalhout, M. Shi,J. Smith, D. Stolp, K. Tos, M. Tripathi,Z. Wang

University of California, Davis, Davis, USA

M. Bachtis,C. Bravo, R. Cousins,A. Dasgupta, A. Florent,J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard,

D. Saltzberg, C. Schnaible, V. Valuev

University of California, Los Angeles, USA

E. Bouvier, K. Burt, R. Clare, J. Ellison,J.W. Gary, S.M.A. Ghiasi Shirazi,G. Hanson, J. Heilman,

G. Karapostoli,E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva,W. Si, L. Wang, H. Wei,

S. Wimpenny,B.R. Yates

University of California, Riverside, Riverside, USA

J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein,G. Kole,

V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito,S. Padhi, M. Pieri, M. Sani, V. Sharma, M. Tadel,

A. Vartak, S. Wasserbaech64,J. Wood, F. Würthwein,A. Yagil, G. Zevi Della Porta

University of California, San Diego, La Jolla, USA

N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw,V. Dutta, M. Franco Sevilla,

L. Gouskos,R. Heller, J. Incandela, A. Ovcharova, H. Qu,J. Richman, D. Stuart, I. Suarez,J. Yoo

University of California, Santa Barbara – Department of Physics, Santa Barbara, USA

D. Anderson,A. Bornheim, J.M. Lawhorn,H.B. Newman, T. Nguyen, C. Pena,M. Spiropulu, J.R. Vlimant,

S. Xie, Z. Zhang, R.Y. Zhu

California Institute of Technology, Pasadena, USA

M.B. Andrews,T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev,M. Weinberg

Carnegie Mellon University, Pittsburgh, USA

J.P. Cumalat, W.T. Ford,F. Jensen, A. Johnson, M. Krohn,S. Leontsinis, T. Mulholland, K. Stenson,

S.R. Wagner

University of Colorado Boulder, Boulder, USA

J. Alexander, J. Chaves,J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson,D. Quach,

A. Rinkevicius, A. Ryd,L. Skinnari, L. Soffi, S.M. Tan,Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Cornell University, Ithaca, USA

S. Abdullin,M. Albrow, M. Alyari, G. Apollinari,A. Apresyan,A. Apyan, S. Banerjee, L.A.T. Bauerdick,

A. Beretvas,J. Berryhill, P.C. Bhat, G. Bolla†,K. Burkett, J.N. Butler,A. Canepa, G.B. Cerati, H.W.K. Cheung,

Referências

Documentos relacionados

Um dos crimes que ainda é pouco estudado dentro da Psicologia Forense é o crime de homicídio e é sobre o mesmo que este estudo se debruça, mais concretamente, no âmbito

contact avec des terres lointaines et des cultures inconnues rend possible une multiplicité d’échanges, notam- ment alimentaires et culinaires ; et les XIX e et XX e siècles, au

É com base nos fatores referidos e tendo como ponto de partida o manual de língua portuguesa do 4º ano de escolaridade, como produto e resultado de um discurso pedagógico

Grau de Explicitação Fontes de Recolha Modos de Informação Tratamentos de Dados Observações 0 1 2 3 4 5 Habilitações Funções (tarefas atribuídas e responsáveis) Estabilidade

Assim, com o intuito de buscar subsídios para permitir que a Medicina seja incluída, ativamente, como componente multiprofissional no processo decisório relativo às

Tumour-associated macrophages and Tregs dominantly infiltrate tumours but their role on CRC fate is controversial. The impact of these immune populations on the regulation of each

Cylindrical closed-cell aluminium foam specimens were fabricated with the powder metallurgy method and subjected to experimental testing under quasi-static and dynamic

Outra diretriz que merece destaque é o disposto no inciso VI do artigo 88 do Estatuto da Criança e do Adolescente, o qual dispõe: “integração operacional de órgãos do Judiciário,