• Nenhum resultado encontrado

J. Braz. Comp. Soc. vol.9 número1

N/A
N/A
Protected

Academic year: 2018

Share "J. Braz. Comp. Soc. vol.9 número1"

Copied!
12
0
0

Texto

(1)

4 1

Ad Hoc 802.11 Networks

Marcelo G. Rubinstein

Depto. de Eng. Eletrônica e Telecomunicações

Universidade do Estado do Rio de Janeiro

FEN - Rua São Francisco Xavier, 524 - 20550-013

Rio de Janeiro - RJ - Brazil

rubi@uerj.br

José Ferreira de Rezende

Grupo de Teleinformática e Automação

Universidade Federal do Rio de Janeiro

PEE-COPPE - CP 68504 - 21945-970

Rio de Janeiro - RJ - Brazil

rezende@gta.ufrj.br

!! " ! #$ %&#

%' !(

! " ! ! )

! "

" * ! #$

" ! ! " "

" ! %&# +(

+,)!

!- " !"!(

! (! .' (

!( ! "

!( ' Æ

&! ''/

)

0 " " !

"! !

! $ ' !!'

' ' ! ' ' !

"! '

! ' ! "' ' ' ! -!

+( !! ! "

! !

" !"

1' 2℄ !!

! ,!

!" !

!' !

! 0 - !

4564 ' ! !

7 ! 8'

!!

!! - %! &

# 7%&#8 !

!( " !!26'℄ 9"!

'

- (!/)

7/)8 ! '!!

! " !!

'

! ! /) $

! - ' ! !(

! ' !

!/) ! 2''℄ : !

' "2;℄!! "

!!- " /) %&#

' " !!

!( ,

) '

!!' ! '

! !! ! 1! ' !

/) " !

! /) "

!/)!'

! !! '!(

!"

" ! " )

%&# ) 6!

/) ! %&# !

!(

) ; !! "

! #$ %&# !

!(

, ' ! " !

) <

Abstract

Keywords:

Ad hoc networks, IEEE 802.11. Quality of

(2)

%&#-+!#!

, 7+#,8 !$ #! ,

7$#,8'! 2℄ $#,

!!! ! !

!

+#,#) %&#

&! 7#)%&5#&8 ! !"

+#, !

! 9) !79)8

!#) !7#)8

'

! !!

! +! , )

7+,)8' '

! ! ( !

( ' ! !

! ! #

0 !7#08 !(

!! !! !

! +,)(!

!! 0 1

' !

" # 9! !

#7#9#8 !

' ! !"

7&#=8 " !!

! ! ) , ) 7),)8

:!- '),) +,)

" ! &#='!

! (

! ' !

" #0

&

' !

1 ' "

1 !- !! #0

#0

! #0

! ! !

"! #0

6 !#0

6

+)))7+) )!)8 %'

1 !

½ '

!! !!'

" ! "

(

2℄ !!

9) !#)!!

!! 2>℄ !'

" ! !

? "! 1

" " 9) ! #) "

! 9) ! #)

! ! ! !

! !&#=

9) ! #) ! 9) &

"!!+,)' !

9) !

!#)!'

!! ),)&

9)'#)''!

! !

" @!! #)

!! ! &

"#) ! "! !

),)' ! " '

+#, ! #)'

( ! 9)

0 "9)5#) !'

! !( !

" & "-

! !

! 0 !!!

"' !

!! " " ! 2>℄ A

!

! ! !

! !

" "

0B&.2℄! 1

! /) ! !

/) " C

!! " ! #$

! %' !(

!!

%&# "! !

+#, !

!! "' ! '

' ! 2D' E'

'<' ℄

4 2D'℄ !

#$ !%&# (

! !

' ' " !

0 !

! ! F! G '

½

1 ( %&# !

#$ "

2D℄'' 1 (

(3)

4 3

26' E℄'?!2℄' !&"2<℄

! ! &"

2<℄ !

! !#$! !&#=

!! "

#$ ! " !

4( 2D℄ !

! ! " #$

! ' ! "#$

(1

H ! )! 2' ℄ #$

! " " !

! !

" ! ! '

! ! ! !

: !'

'

#$ ! 9 " ! %&#

" "

" !9)' ) ;

C "#$

' ' " "

" !

! ! 2℄ : "

'H !)!2'℄ !

! ! " !

! A

!" ''!

"1 ! 2℄

& !(

" "Æ'

!! !( !

" "!( !

!

""!- +#,!

-!! "

!!( I +,)'

(' ' !9)5#)!

+,)! -" "

!(

! " "

!

"

! 9)5#) !

! "

9)5#) ! ) !

" *

9)5#)"

!

2;' ℄ ! !

'!@#,7@!#! , 8'

! ! !

! ! '!

!+#,7+#,8' ! "*!

"+,)'

' !

" !( '

1 !

!!! +,)

" +,)

·½

78

" "

!

"2℄

(! " "!

7 ! 18

! ! "

! " 5*

' ' !

2℄'!(

!

"*

" ' ""7"

8 (

! "!

!! ' '

!!'"! "! "

2℄' !

!! "!

&!2℄

" !( !( !

' ' * !( 2E'℄'

1

!! 9) !#)

'!' ! ! "&#=)

"

'

! !

! ! !

! " 7 8'

' :

2E'6℄!( !(

! !

! " !! !

!

! "!

-" !

1! " '

!

" !1 ! !

1 ' !

"!( "

!!

!!

!( !

' " "

(4)

+,) !#0

"

' ! " 1

! !

! %' !

"!( (!! "%&#

' +,) ! !'

!( . ) 2>℄

! ! 0!

!!!

!( '! "' !#:9 !

#$Æ

- !

," ! 1

& !Æ

!!!

" Æ

0 ! !

" ! !

!

.! '

!!

" ! %

" < !

"<

& !H !)!2℄'#$

- %&#

!

! " * ' #:9 ! :

#:9* " !

!

# ! !7*8

! * ' ! ! 6'

flow 1

flow 0

flow 1

flow 0

0

1

2

3

Scenario 0

0

1

2

3

Scenario 1

,"I ) !

< ," 78 ! 78 "

! * <

+)+? 7+ ) !+

?8 2<℄ ! +)9 7+ ) 9 "82;℄

"'

, +)+? ! #:9 < 7,"

788'!!" "

!(

%&# !"

! ! & "'

+)+? " ' !

9)5#) !' ! 6 ! 9)

! ! !!

' ' !

!6

! ! ! !! '

&#= ! !! "

+)+? " ! !!

"! ("*

2;℄ !

! ! !!

¾ 6'

!1 ,"78

"+)9,'

"! !%&#

! %&#" 1

! 1

'9) ! !!!

&

" ' """

#:9* " 1

"' !6>%1

' ! !!

,#:96'!

!! ' """

¾

!""#

$%&'( )*℄

" 1"

0 +)+? ! 7," 6788'

" , 1'

6< ' +)+? " " ! 6

!! ! !

" !! ) !

! ! 6 ! 1

(! ! !

-2;℄' !!

! "

;<< ,"678 !! " +)9

;<

+)+? ! 7," ;788

" " !! !

! 7!

9)8 C "

""" " , +)9 7," ;788

(5)

4 5

! !6 !

! ! ! !6!

!

01 !

"

,+)+?7,"<788' "

! !! ! 6 !

, 1' ! 6 7 ! 8 )

9B ' '

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

50 100 150 200 250 300 350 400 450 500

throughput (kbps)

time (s)

DSDV: topology = 0, interval = 5.0, rate = 1500

Flow 0

Flow 1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

50 100 150 200 250 300 350 400 450 500

throughput (kbps)

time (s)

DSR: topology = 0, interval = 5.0, rate = 1500

Flow 0

Flow 1

,-,"I " !#:9

<

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

50 100 150 200 250 300 350 400 450 500

throughput (kbps)

time (s)

DSDV: topology = 0, interval = 5.0, rate = 3000

Flow 0

Flow 1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

50 100 150 200 250 300 350 400 450 500

throughput (kbps)

time (s)

DSR: topology = 0, interval = 5.0, rate = 3000

Flow 0

Flow 1

,-,"6I " !#:9

6

!!! '

!1 "

<<

0 *

!" * "!

* &#=

* ' !

" !

* ! '

9)

! 7 ! 8' !! ,

+)9' 1

!' " , 1'

,"<786' !6 !

& ' !61

!! 9

! 6 *' 1

E

0 """ " 1

" +)+? 7,">78

! D788' !!'

,

,

+)97,">78 ! D788' #:9

' "! "

1!

Figure 2: Throughput for cenario 0

and CBR rate of 1500 kbps

(6)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

50 100 150 200 250 300 350 400 450 500

throughput (kbps)

time (s)

DSDV: topology = 0, interval = 5.0, rate = 4500

Flow 0

Flow 1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

50 100 150 200 250 300 350 400 450 500

throughput (kbps)

time (s)

DSR: topology = 0, interval = 5.0, rate = 4500

Flow 0

Flow 1

,-,";I " !#:9

;<

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

50 100 150 200 250 300 350 400 450 500

throughput (kbps)

time (s)

DSDV: topology = 1, interval = 5.0, rate = 1500

Flow 0

Flow 1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

50 100 150 200 250 300 350 400 450 500

throughput (kbps)

time (s)

DSR: topology = 1, interval = 5.0, rate = 1500

Flow 0

Flow 1

,-,"<I " !#:9

<

) !#$

! ! "

! 1 &#$

! ! 6 #$

! ,$ '

! !' !

% !+)9! #$1

! !

"!

& ! ! ' #$

" ! !

,"78 ! >;'

! !

&#=, ! ;7,"788' !

&#= &! " '

9) !!(

! " %

! !6 ! 9) !

7 ! 6 ! #$ &#=8 ! !

! "#$! 9) ! )

1 "

< ! "

<' !6 !

! ! 7!!

8 0 ! 6 ! )

9B ' %&#

" !

-! : !' !

!

#$ !' !"! " #$ #$

,"78 !

1

78

! ! ""!

@ ' "!

Figure 4: Throughput for scenario 0 and

CBR rate of 4500 kbps

(7)

4 7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

50 100 150 200 250 300 350 400 450 500

throughput (kbps)

time (s)

DSDV: topology = 1, interval = 5.0, rate = 3000

Flow 0

Flow 1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

50 100 150 200 250 300 350 400 450 500

throughput (kbps)

time (s)

DSR: topology = 1, interval = 5.0, rate = 3000

Flow 0

Flow 1

,-,">I " !#:9

6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

50 100 150 200 250 300 350 400 450 500

throughput (kbps)

time (s)

DSDV: topology = 1, interval = 5.0, rate = 4500

Flow 0

Flow 1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

50 100 150 200 250 300 350 400 450 500

throughput (kbps)

time (s)

DSR: topology = 1, interval = 5.0, rate = 4500

Flow 0

Flow 1

,-,"DI " !#:9

;<

0

100

200

300

400

500

600

0

20

40

60

80

100

120

throughput (kbps)

time (s)

window = 64, interval = 1.0

w = 64

0

100

200

300

400

500

600

0

20

40

60

80

100

120

throughput (kbps)

time (s)

window = 4, interval = 1.0

w = 4

,-,"I "#$ ! >;78

!;78

Figure 6: Throughput for cenario 1

and CBR rate of 3000 kbps

Figure 7: Throughput for cenario 1

and CBR rate of 4500 kbps

(8)

- ' !(

!' ' !

-" !( ,"78

" !

! "

, "'!( !!

+,)! ! !

+,) ),)) '' !6

+,) -"!';' !>

),)',"78"

!( : ! '

"""

1 "

0 ! "'

Æ !!

) !!

!6+,)

0 " "

" ! "

!

72#0

'#0

℄8 -"!26I6℄'2>6I;D℄'

! 2DI;E<℄ +,)

,"78'

!7#0

8 !!

0 !" "

! " !(

&#:9* ! "#$

; ! :

<D> !( 1

! A ! !(

! ! +,) !

! ' +,) !

!

!( ! , +,)'

! " !

#0

1

<

,"78 !78"

0 ! "!

! ! +,)

! 0 ! !

"#0

!

! !(

!'E !E<

*

9 !!(

( ! "

!(

I B !(

7 5$7 89 5!7 89

: /% &6%"6 &5&%! /" &6%33 &445" /& &4#4& #$!$!

; /% "5!"3 &$6%!

/" &4%#& &53!3

/& #53%5 !%!6#

< /% 65% 536

/" &&5$# &#3$% /& 64&!" 4$363

! "

" '

!( !

! & "

!( !

+,)!' '

! 6 +,) ' ;' ! >

7," E8 & "

%#:9Æ

! " !

" <''

"< ! "+)+?

! % 1

" " !

! ! '

9)5#) !'

! " !' ! !(

+,) ! !

, ' #:9

!! ! !

!!( '1

"6>% ) '

" ! !( 1

"

' !6 '' !

" !

!

1

2

4

3

(9)

4 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0

10

20

30

40

50

throughput (Mbps)

time (s)

CBR 1

CBR 2

CBR 3

,-. /

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0

10

20

30

40

50

throughput (Mbps)

time (s)

CBR 1

CBR 2

CBR 3

,-"0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0

10

20

30

40

50

throughput (Mbps)

time (s)

CBR 1

CBR 2

CBR 3

,-(1

,"I "!(

##!

0 *

!( !!(

' ! "

! '! ! 2>℄'

"

" " &"!

5 !

" !

!! ) ;6

,"678 !678""

! '

!! 9 "

),)' !'

" ' ! 6

! -"!

26I6℄'2>6I;D℄' !2DI;E<℄'

,"78 !78""

"

!6

," E<J -!

" !( !

"

!( (

' ' " -!

! "! ! !

!( !(

!

0 ! ! "

/) C

'#$"

' !!( !

&! !

!!

!( ! #$

9 ! "

" * ! #$"

!! " ""

!%&#

+,) !(! !(

!

!! !!(

!*!( 0!

* !

" ! !( 9

+,)! ! -

" !"!( !

(10)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

10

20

30

40

50

throughput (Mbps)

time (s)

no differentiation

DIFS

CWMin

,-(2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

10

20

30

40

50

goodput (Mbps)

time (s)

no differentiation

DIFS

CWMin

,-03

,"I " "+,) !

!

0

0.2

0.4

0.6

0.8

1

1.2

3

4

5

6

7

8

9

10

average throughput per class (Mbps)

nr of stations per class

STAs class 1 (DIFS=2)

STAs class 2 (DIFS=4)

STAs class 3 (DIFS=6)

,-"0

0

0.2

0.4

0.6

0.8

1

1.2

3

4

5

6

7

8

9

10

average throughput per class (Mbps)

nr of stations per class

STAs class 1 (CW=[31:1023])

STAs class 2 (CW=[63:2047])

STAs class 3 (CW=[127:4095])

,-(1

,"I &" " "

0

0.2

0.4

0.6

0.8

1

1.2

3

4

5

6

7

8

9

10

average throughput per class (Mbps)

nr of stations per class

STAs class 1 (DIFS=2)

STAs class 2 (DIFS=4)

STAs class 3 (DIFS=6)

,-"0

0

0.2

0.4

0.6

0.8

1

1.2

3

4

5

6

7

8

9

10

average throughput per class (Mbps)

nr of stations per class

STAs class 1 (CW=[31:1023])

STAs class 2 (CW=[63:2047])

STAs class 3 (CW=[127:4095])

,-(1

,"6I &""

Figure 11: Throughput control by varying DIFS and

contention window intervals

(11)

5 1

#$ ')#(' %'

C)&'A

2>℄ = , != ?! .)%

' ?. $' K

2D℄ 4(' . &4 ' +

$' ! 9! =" $

" ! * &

+! ' >678I6M;'

,6

2℄ + " 4 ! K N " /)

,';7>8IM;'

K 6

(! :(! ''

( ! " !( '

Æ

!

!C,9K',&$9K'

#.$'#&$)' !#A,#C:

"

2℄ &! !##+(

' &

"'&'&

2℄ &! !## 9 *

!(

', '' ,

26℄ :: ' L 0 "' ! # # "=

, ! ! !

!"#$ %&

'!"(': 'C)&'&"

2;℄ K:'+!&% '+!: K '

L# @' ! K K &

!

"

!

#$ '!(' +' C)&' A

EE

2<℄ # ! % #!' ) 9 +' !

+ $ &" #A$&)I +

"

#$

2E℄ ? = !' # B' & )' : )!"'

! = " +!!

" ! ! ! !"

-.

! #$ &

'!('9''K

2℄ ?= !'# " B'&)

':)!"' !!!= "+

! ! " ! !

! #$ '7<8I;<<M

;>>')

2℄ ! "

0B&.! 7%&#8 !

7$@L8 - )

!!'EEE

2℄ ! "

0B&.! 7%&#8 !

7$@L8 - I @"!

<4@ !) !!

'EEE

26℄ ! "

0B&.! 7%&#8 !

7$@L8- I@"!

1 ; 4@ !

) !!'EEE

2;℄ ! "

%! 7%&#8

7/)8+) !!

5+6'%

2<℄ # $ ! $ :" @"

! ! ! !

"7+)+?8

-/012

3 ' "

6;M;;'EE;

2>℄ K ) ! &!!

0'

! ' ):.6E6>

2D℄ = " !%4, "%&#

!#$ !

3!4Æ

'11(' ? ''A

EEE

2℄ . @ ?!' $ :' ! )

4 +! ! "

B&. -5

! #$ '!('

: 'C&'&"

!

(12)

2E℄ L 0 " ! : : & "

+,0%&#

" /! &

'/!(' 1' C)&'

.

2℄ =1 H') ":') "B' !%

4 #$

!!

6

! ' ";M;' 4"' C)&'

)

2℄ )" "H !)! +

%&#

! O

,'6E7>8I6M6D'K

2℄ )" " H ! )! 9 "

!

! &

Imagem

Figure 1: Scenarios used in simulations
Figure 3: Throughput for cenario 0 and CBR rate of 3000 kbps
Figure 6: Throughput for cenario 1 and CBR rate of 3000 kbps
Figure 10: Throughput differentiation
+2

Referências

Documentos relacionados

Theorem 4.2 Regular translations realized by state- deterministic finite transducers are inferable in linear time from positive samples only.. Almost state-deterministic

Therefore, it allows a better delay control for real-time traffic in high load situations and a geater channel use for best effort traffic when low real-time traffic is present in

[r]

Proof obligations containing set theory constructs are translated to first-order logic with equality aug- mented with (an extension of) the theory of arrays with extensionality.

For example, in figure 2 we show an example of similarity with respect to logical connectives between the formulas and (for legibility reasons, each represents a ground

In the previous section we introduce Phi–calculus as a model for the design of DLEs under a particular perspective: the one of the exchanges taking place between a

[r]

[r]