• Nenhum resultado encontrado

Effect of chronic stress during adolescence in prefrontal cortex structure and function

N/A
N/A
Protected

Academic year: 2021

Share "Effect of chronic stress during adolescence in prefrontal cortex structure and function"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Behavioural

Brain

Research

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b b r

Research

report

Effect

of

chronic

stress

during

adolescence

in

prefrontal

cortex

structure

and

function

Otávio

Augusto

de

Araújo

Costa

Folha

a

,

Carlomagno

Pacheco

Bahia

a

,

Gisele

Priscila

Soares

de

Aguiar

a

,

Anderson

Manoel

Herculano

b

,

Nicole

Leite

Galvão

Coelho

c

,

Maria

Bernardete

Cordeiro

de

Sousa

c

,

Victor

Kenji

Medeiros

Shiramizu

c

,

Ana

Cecília

de

Menezes

Galvão

c

,

Walther

Augusto

de

Carvalho

a

,

Antonio

Pereira

a,c,∗

aLaboratoryofNeuroplasticity,InstituteofHealthSciences,FederalUniversityofPará,Av.GeneralíssimoDeodoro,1,66035-160Belém,PA,Brazil bLaboratoryofExperimentalPharmacology,InstituteofBiologicalSciences,FederalUniversityofPará,Av.AugustoCorrea,1,66075-110Belém,PA,Brazil cPostgraduatePrograminPsychobiology,FederalUniversityofRioGrandedoNorte,CampusUniversitárioLagoaNova,59078-970Natal,RN,Brazil

h

i

g

h

l

i

g

h

t

s

•Chronicstressimpairsthedevelopmentoftheadolescentbrain.

•Chronicstressdelaysthematurationofextracellularstructurescalledperineuronalnets,whichstabilizesynapticcontactsoninhibitoryneurons,and prefrontalcortex-associatedbehavior.

•Thesenegativeeffectsofchronicstressontheprefrontalcortexcantheoreticallyoccurinhumans.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1August2016

Receivedinrevisedform16February2017 Accepted21February2017

Availableonline24February2017 Keywords: Pre-frontalcortex Chronicstress Perineuronalnets Criticalperiod Plasticity

a

b

s

t

r

a

c

t

Criticalperiodsofplasticity(CPPs)aredefinedbydevelopmentalintervalswhereinneuronalcircuitsare mostsusceptibletoenvironmentalinfluences.TheCPPoftheprefrontalcortex(PFC),whichcontrols executivefunctions,extendsuptoearlyadulthoodand,likeothercorticalareas,reflectsthematuration ofperineuronalnets(PNNs)surroundingthecellbodiesofspecializedinhibitoryinterneurons.Theaim ofthepresentworkwastoevaluatetheeffectofchronicstressonbothstructureandfunctionofthe adolescent’sratPFC.WesubjectedP28ratstostressfulsituationsfor7,15and35daysandevaluatedthe spatialdistributionofhistochemically-labeledPNNsinboththeMedialPrefrontalCortex(MPFC)andthe OrbitofrontalCortex(OFC)andPFC-associatedbehavioraswell.ChronicstressaffectsPFCdevelopment, slowingPNNmaturationinboththe(MPFC)and(OFC)whilenegativelyaffectingfunctionsassociated withtheseareas.Wespeculateupontherisksofprolongedexposuretostressfulenvironmentsinhuman adolescentsandthepossibilityofstunteddevelopmentofexecutivefunctions.

©2017PublishedbyElsevierB.V.

1. Introduction

Manyneuropsychiatricconditions arediagnosedduring ado-lescence[1,2],whenthebraingoesthroughanintenseperiodof

Abbreviations: MPFC,medialprefrontalcortex;PFC,prefrontalcortex;OFC, orbitalprefrontalcortex;PNN,perineuronalnet;SAAT,spontaneousarmalternation test;Vv,Viciavillosalectin.

∗ Correspondingauthorat:LaboratoryofNeuroplasticity,InstituteofHealth Sci-ences,FederalUniversityofPará,Av.GeneralíssimoDeodoro,1,66035-160Belém, PA,Brazil.

E-mailaddresses:apereira@ufpa.br,pereira@ufpa.br(A.Pereira).

synapticremodeling,whichisreflectedinalossofgreymatter(GM) volumeandconcurrentincreasesinwhitematter(WM)volume[3]. Chronicstressinduceslong-lastingchangesinthebrainandcould contributetoanincreasedvulnerabilitytomental illness, espe-ciallyduringtheso-calledcriticalperiodsofcorticaldevelopment

[4,5].Unfortunately,manyadolescentsareexposedtostressful sit-uationsaroundtheworld,includingwar[6]andextremepoverty (UNICEF,2005).Notsurprisingly,epidemiologicalstudiesestimate thatupto20%ofchildrenandadolescentsworldwidesufferfrom adisabilitatingmentalillness[7].

Stress is the response of an organism to a threat, either explicit or not, which includes physiological or behavioral

http://dx.doi.org/10.1016/j.bbr.2017.02.033

(2)

compensatoryadaptationstomaintainbodilyhomeostasis[8,9]. Thebodyresponsetothestressoreventproceedsthroughtwo dis-tinct butinterrelatedphases, 1)arapid fightorflight response duetosympatheticactivationoftheadrenalmedulaandthe sub-sequentreleaseofcatecholamines inthebloodstream,and 2)a slowresponsethatdependsontheactivationofthe hypothalamic-pituitary-adrenalaxis,resultingonthereleaseofglucocorticoids (cortisolinhumansand corticosteroneinotheranimals)bythe adrenalcortexinthebloodcirculation[10–15].

Under normal conditions, the stressresponse is deactivated whenthethreatisnolongerpresent.Thisisimplementedbyan inhibitoryfeedbackmechanismthatiscontrolledbythelevelsof stresshormonesin thecirculation. However,whenthelevel of hormonesremains elevatedfor a long periodof time, the cen-tralnervoussystemcanbecumulativelydamagedbytheexposure

[10,16]. For instance, chronicallyelevatedlevels of cortisolcan impairthedevelopmentoftheprefrontalcortex(PFC)[14],which hasalargedensityofglucocorticoidreceptors[17],causing den-driteretractionandadeclineinthenumberofdendriticspines; both effects leadingtoan overall decreasein synapticcontacts

[18–20].

Inhumans,thePFCissituated intheanteriorportionofthe frontallobeand includesBrodmann areas(BA)8,9, 10,11, 13, 14,44,45,46and47/12[21].Inrodents,thePFCiscomprisedby theMPFC,whichincludesthemedialprecentral,anteriorcingulate, prelimbicandinfralimbicareas,andtheOFC,whichissubdivided intomedial,ventrolateral,andlateralorbitalareas[22,23].Injuries totheMPFCandtheOFCcortexarecloselyassociatedwith work-ingmemorydisorders[24,25]andpoorjudgmentandmaladaptive decisionsduetoaninabilitytoanticipateactions’consequences

[26],respectively.

Thoseeffects aremore evident during the critical period of plasticityofthePFC[14].Criticalperiodsofplasticityaredefined, amongotherthings,bythematurationofGABAergicneurons[27], which make up about 25% of all cortical neurons in primates

[28,29].AlthoughthisfractionofGABAergicinterneuronsinthe cortexisrelativelyconstantfromneurogenesistoadulthood[30], duringpostnataldevelopmentasubgroupofthesecells express-ingtheCa++-bindingproteinparvalbumin graduallyaccumulate

extracellular matrix components aroundthe cell body, suchas chondroitinsulfateproteoglycans,formingalattice-likestructure calledperineuronalnet(PNN).PNNsmatureslowlyandhelp sta-bilizesynapticcontactsunderenvironmentalconstraints[31–35]. Theirmaturationsignalstheclosingofthecriticalperiodof plas-ticityinseveralcorticalregions[31,32,36,37].PNNscanbeeasily revealed histologically with plant lectins with high affinity to N-acetylgalactosamineaminosugars,suchasWisteriafloribunda agglutininandViciavillosa[35,38–40].

Inthepresentwork,westudytheeffectsofchronicstresson thestructureandfunctionoftherat’sPFCduringthecriticalperiod ofplasticity.Morespecifically,weaddresstheeffectsofchronic stressbothonthespatial-temporaldistributionofPNN+neurons

inthePFCandontestsofexecutivefunctionduringadolescence. Totestmaladaptiveexecutivefunctionassociatedwithdeficitsin workingmemoryandbadjudgmentindecisionmakingweused thespontaneousalternation[41–46]andtheopenfieldtest[47], respectively.

2. Materialsandmethods 2.1. Experimentaldesign

All experimental procedures were approved by the Animal EthicsCommitteeoftheFederalUniversityofPará(BIO069-12). Weused48maleWistarrats(Rattusnorvegicus)aged28postnatal

days(P28).TheanimalswerebredandraisedintheUniversity’s animalfacilityandwerehousedinstandard cageswitha12/12 light/darkcyclewithfreeaccesstofoodandwater.Theanimals wererandomlyassignedtoeitherthecontrol(n=24)or experi-mentalgroup(n=24).Eachgroupwassubsequentlydividedinto threesub-groups,dependingonthelengthofexposuretoeither thestressfulorthecontrolenvironment:7(n=8),15(n=8)or35 (n=8)days.Behavioraltestswerecarriedoutonthelastdayof exposuretoeachenvironmentandtheanimalswereimmediately sacrificed,afterbloodwascollectedtomeasurecorticosterone lev-els.Researcherstaskedwithratingbehaviorwereblindedtothe groupsanimalsbelonged.

2.2. Chronicstressparadigm

Animalsofthestressedgroupwerehousedinstandardcages (0.40×0.30×0.20m)with2or3ratspercageandweresubjected tochronicstressonceadayaccordingtoaprotocolsimilartothe oneproposedbyDuccotetandcoworkers[48].Thestressingevents were chosen randomly from the following procedures: forced restraintinaplastictubefor2hwithoutaccesstofoodorwater; forcedbathinacylindricaltank(0.60mheightx0.30mdiameter) for30mininwaterat32◦C;pairingwithanotherstressedanimal inwetsawdust(18h);inversionofthelight/darkcycle;crowded housing(8ratslivinginacagefor24h);tailpinchfor10min;hot air(approx.38.00◦C)blownfromahairdryerfor10min[48–53]. 2.3. Behavioraltests

Behaviorwasevaluatedwithtwotests:spontaneousalternation intheelevatedplusmazeandthigmotaxis.Animalsweretestedin asinglesessiononthelastdayofexposuretoeitherthe exper-imentalorcontrolenvironment.Threedaysbeforethetests,the experimenterhandledtheratsfor5min/day.Thirtyminutesbefore thetesttheanimalswerebroughttotheexperimentalroom.The testapparatuseswerecleanedaftereachsessionwithalcohol70%. Theexperimentalprocedureswerevideotapedforlateranalysis.

Thigmotaxis refers to a specific behavior of animals when exploringanopenspace:theytendtostayclosetowalls. Thigmo-taxisisassociatedwithfearofopenspacesandisavalidmeasure ofanxietyandriskevaluation[47].Thigmotaxiswasevaluatedina woodenapparatus(0.60×0.60×0.35m)andthedependent vari-ablewastheamountoftimetheanimalspentawayfroma0.05m widestripclosetothewall.Theanimalswereplacedinthe cen-teroftheapparatusandtheirmovementwasrecordedfor5min

[54,55].

Ratsspontaneouslyalternateamongarmswhenexposedtoan elevatedmazewithclosedarms.Thespontaneousarmalternation test (SAAT)isusedtomeasure spatialworkingmemoryin lab-oratoryanimals[41–46].TheSAATwasperformedinawooden mazewithfourclosedarms(0.47×0.16×0.34m)andanopen cen-tralspace(0.16×0.16m)located0.5mawayfromthefloor.The ratswereplacedindividuallyatthecenteroftheapparatusand observedfor10min.Thealternationbehaviorwasdefinedasthe numberofconsecutiveentriesintoallfourarmswithoutrepeated entriesandwasexpressedaspercentageoftotalarmentries[45]. 2.4. Corticosteronebloodlevels

Immediatelyafterthebehavioralteststheanimalsreceiveda mixtureofxylazine(Kenzol,Konig,9mg/kg)andketamine chlo-ride(Vetanarcol,Konig,72mg/kg)(i.p.)forperfusionand1mLof bloodwascollectedbycardiacpunctureinordertomeasure corti-costeronelevels[56,57].Thebiologicalmaterialwasmaintainedat 37◦Candthebloodwascentrifugedat2300RPMduring7min.The resultantbloodplasmawasseparatedandstoredat−30◦Cuntil

(3)

analysisof theplasmaconcentrationofcorticosterone hormone withanenzymatictest(OxfordBiomedicalResearch).Allsamples wereruninduplicate.Theplatewasreadat450nmwithSoftMax® ProV.4.0(LifeSciencesEdition).Theintra-andinter-assay coef-ficientvariationsforthecorticosteronemeasurementswere8.0% and4.5%,respectively.

2.5. Histologicalanalysis

Afterbloodcollection,theanimalswereperfusedtranscardially withPBSfollowedby4%paraformaldehydeinphosphatebuffer (PB,pH7.4,0.1M).Thebrainswereremovedfromtheskull, post-fixatedovernight,cryoprotectedforoneday,andfrozen-blockedin Tissue-Tek®(Sakura,Japan)tobecutintoserial,20or50␮m-thick coronalsectionswithacryostat(Leica,Germany).Thebrainslices weremountedonglassslidesandprocessedhistochemicallywith biotinilatedViciavillosalectin(Vv).

Thebrainsliceswerewashedthreetimesfor20mininPBand onceinasolutionof3%TritonX-100inPBbeforebeingincubated for16–24hat20◦CinPBcontaining0.5%biotinylatedVv(Vector, USA)and6%TritonX-100(Sigma,USA).Controlsectionswere incu-batedonlyinPBwithoutthelectin.AfterthreewashesinPBS,all sectionswereincubatedwiththeavidin-biotin-peroxidase com-plex(ABC,1:200,Vector,USA)andperoxidasewasrevealedusing thediaminobenzidinereactionintensifiedwithnickelammonium sulfate[58].Finally,sectionsweredehydratedandcoverslipped withEntellan(Merck,Germany).Microphotographsofserial sec-tionsweretakenwithanAxiocamdigitalcamera(HRseries,Zeiss, Germany)usingtheAxiovisionsoftware(Zeiss,Germany)andhad theirbrightnessandcontrastadjustedwiththeCanvas XII soft-ware(ACDSystemsofAmerica,Inc.).AlternateVv+sectionswere alsodrawn and all positive (Vv+) neurons wereplotted under directmicroscopicexaminationat20Xmagnification.Allcellswith clearprofileswere countedineach cerebralhemisphere atthe areacorrespondingtotheprefrontalmedialcortex(cingulate ante-riorcortexand pre-limbiccortex)and prefrontalventralcortex (orbito-ventralcortex).ThenumberofVv+cellsineachregionof interestwascountedusinga40Xobjectivelensandanoculargridof 0,0625mm2coupledtoanuprightbrightfieldmicroscope(Nikon Optiphot-2,Japan).

2.6. Statisticalanalysis

Resultsareexpressedasmean±standarderror(SE).Datafrom experimentalgroups werecomparedusingtwo-way analysisof variance (two-way ANOVA, environment x time) followed by Tukey’s post hoc test to determine specific differences among experimentalgroups.Statisticalsignificancewassetat0.05.

3. Results

Table1summarizesthemaineffectsofenvironmentandthe lengthofexposuretochronicstressonbehavior, corticosterone bloodlevelsandPPNmaturation.

Analysisofcorticosteronebloodlevelsrevealedamaineffect of environment (F1,19=15.56, p=0.0008). In the control group,

theaveragecorticosteroneblood levelsafter 7,15, and35days ofexposurewere,respectively,216.00±191.91,545.25±338.82 and257.50±219.97.Inthestressedgroup,theaveragevaluesfor thesameexposureperiodswas85.00±57.47,43.25±11.87and 62.00±64.29,respectively.Statisticalanalysisrevealedsignificant differences(p<0.05)inthecontrolgroupbetween7and15daysof exposure.Differencesbetweengroupsweresignificantfor15days ofexposure(p<0.01).Thus,chronicstressreducescorticosterone

Fig.1.Averagebloodcorticosteronelevelsofadolescentratssubmittedtodifferent periodsofstressandmatchedcontrols.Symbolsindicatestatisticallysignificant differenceintheaveragevalues:*between7and15daysofexposure,**between7 and35daysofexposure,***between15and35daysofexposure,#betweencontrol andstressedrats.

bloodlevelsanddecreaseshormonalvariabilityduringmaturation (Fig.1).

3.1. Effectsofchronicstressinthespatialtemporaldistributionof perineuronalnetsintheprefrontalcortex

ViciavillosalabeledPNNsaroundPFCneuronsduring develop-ment(Fig.2).AnalysisofPNN+neurondensityintheMPFCrevealed

thattherewasasignificantinteractionbetweenenvironmentand exposure(F2,12=118.5p<0.0001)andamaineffectofenvironment

(F1,12=23.58;p=0.0004)andexposure(F2,12=84.08;p<0.0001).

Inthecontrolgroup,weseeanincreaseinthenumberofPNNs duringmaturation.ThenumberofPNN+neuronsafter35daysin

thecontrolenvironment(74.00±2.65)ishigherthanafter15days (33.33±1.45)(p<0.001),whichishigherthanafter7days(P35: 22.00±1.53)(p<0.01). In stressedanimals,however, we found a differentmaturationdynamics.Thenumber of PNN+ neurons

decreasesastheanimalspendsmoretimeunderchronicstress(7: 45.33±2.67;15:25.33±2.19;35:34.33±1.33)(p<0.01). Interest-ingly,sevendaysofchronicstressincreasesthenumberofPNN+

neuronscomparedtocontrols(45.33±2.67versus22.00±1.53) (p<0.001).However,extendingthedurationofchronicstress expo-sureby35dayscausesadecreaseinthenumberofPNN+neurons

comparedtocontrols(34.33±1.33versus74.00±2.65)(p<0.001) (Fig.3A).

In theOFC,there wasalsoa significantinteraction between environment and exposure (F2,12=19.43; p=0.002) and a main

effect of environment (F1,12=106.10; p<0.0001) and exposure

(F2,12=10.83;p=0.0021)onthenumberofPNN+ neurons.

Basi-cally,theresultisqualitativelyliketheoneabovefortheMPFC. ThenumberofPNN+neuronsincreaseswithincreasingtimespent

inthecontrolenvironment(p<0.001),withtheaveragenumberof PNN+neuronsafter35days(41.33±0.887)greaterthanafterboth7

(22.00±4.00)and15days(23.00±2.52)(p<0.001).Chronicstress, ontheotherhand,seemstostuntmaturationofPNN+neurons,with

thenumberofneuronsbeingsignificantlysmallerthanincontrols afterboth15(Control:23.00±2.52;Stress:11.00±0.58;p<0.01) and35(Control:41.33±0.88;Stress:10.00±0.58;p<0.001)days ofchronicstress.DifferentfromtheMPFC,however,wedidnot seeanincreaseinthenumberofPNN+neuronsintheOFCafter

7daysofchronicstressatthebeginningofadolescence(Control: 22.00±4.00;Stress:14.33±0.88;p>0.05)(Fig.3B).

3.2. Effectsofchronicstressonbehavior

AnalysisoftheSAATrevealedasignificantinteractionbetween environmentandexposure(F2,42=34.76;p<0.0001) andamain

(4)

Table1

Effectsofchronicstressoncorticosteronebloodlevelsandbehavior(two-wayANOVA).

Environment Time Interaction

df F p df F p df F p corticosterone 1 15.56 0.0008 2 1.76 0.1975 2 2.67 0.937 PNN+neurons MPFC 1 23.58 0.0004 2 84.08 <0.0001 2 118.50 <0.0001 OFC 1 106.10 <0.0001 2 10.83 0.0021 2 19.43 0.0002 Behavior SAAT 1 19.73 <0.0001 2 1.82 0.1743 2 34.76 <0.0001 Thigmotaxis 1 4.78 0.0342 2 14.32 <0.0001 2 19.82 <0.0001

Fig.2.PhotomicrographsofcoronalsectionsofthePFCofadolescentratsexposedtoachronicallystressfulenvironmentlabeledfortheViciavillosalectin.Exposureperiods: 7(A),15(C),and35(E)days(magnifiedinB,D,andF,respectively.ThearrowsindicateVv+cells.Scalebar:100␮m.

exposure(F2,42=1.822;p=0.1743).Animalsinthecontrolgroup

showedanimprovementinalternationrateswithdevelopmental

maturation(Fig.4).Animalsinthestressedgroup,ontheother

hand,hadadifferentdevelopmentalpattern(Fig.4A).Afterbeing submittedtostressfor7days,averagealternationrateswere sig-nificantlybetterthancontrols(Fig.4A).After15daysofchronic

stress,however,theaveragealternationratewassmallerthan con-trols (Control:62.83±3.05; Stress: 39.97±1.70; p<0.001). The sameoccurredafter35daysofchronicstress(Control:55.06±1.56; Stress:39.72±1.94;p<0.001).Thesebehavioralresultsparallelthe findingsforthenumberofPNN+neuronsintheMPFC(seeFig.3A).

(5)

Fig.3.(A)AveragenumberofVv+cellsintheMPFCofcontrolandstressedanimals.

SymbolsarelikeFig.1.(B)AveragenumberofPNNcellsintheOFC.Symbolsarelike

Fig.1.

In the open-field test, there was a significant interaction betweenenvironmentandexposure(F2,42=19.82;p<0.0001)anda

maineffectofenvironment(F1,42=4.795;p=0.0342)andexposure

(F2,42=14.32;p<0.0001)onthigmotaxis.Theapparentlystunting

effectofchronicstressondevelopmentrevealedbytheSAATalso appearonthethigmotaxisscores,thoughlessevidently(Fig.4B). Thereisanincreasingtendencyforincreasedthigmotaxisincontrol animalsastheydevelopduringadolescence,probablysuggesting thematurationoftheneuralpathwaybetweentheamygdalaand theprefrontalcortex[59].Performanceafter35daysofexposure tothecontrolenvironment (97.55±0.49) wasbetterthanafter 15days(88.99±1.02)(p<0.001).However,thigmotaxisdecreased from 7 (92.55±1.61) to 15 (88.99±1.02) days in the control environment(p<0.05).Instressedanimals,ontheotherhand, thig-motaxisdecreasedfrom7(94.78±0.07)to15days(90.00±0.20) (p<0.001)inthestressfulenvironmentandstabilizedafterwards (Fig.4B).

4. Discussion

Ourresultsshowthatsubjectingratsduringthecriticalperiod ofplasticityofthePFCtostressfulsituationsforanextendedperiod interfereswithmaturationofperineuronalnetsandthisfindingis

correlatedwithchangesinassociatedbehavior,comparedto con-trolanimals.Thoughwedidnottesttheeffectofchronicstress exposureinotherdevelopmentalperiods,ourfindingscorroborate otherstudiesindicatingthattheprefrontalcortexisparticularly sensitivetostressexposureduringinfancyandadolescence[60,61]. Chronicstresscanbeinducedinthelaboratorybycontinuously submittinganimalstostressfulsituations,suchasphysical immo-bilization,andobservingtheeffectsonbrainand/orbehavior.For instance,severalstudieshaveusedthisapproachtoevaluate mor-phologicalchangescausedbychronicstressonpyramidalneurons ofthehippocampus,amygdalaandprefrontalcortex[10,17,62–64]. Otherstudieshaveshowneffectsonneurogenesis, synaptogene-sisandmyelination,aswellastheavailabilityofneurotransmitters andneurotrophicfactors[65,66].Chronicstressalsointerfereswith thefunctionofthesympatheticnervoussystemandtheHPAaxis

[10,14,52].However,sinceseveralstudieshavedemonstratedthat animalsadapttothepredictabilityofasinglestressoragent[12,57], inourstudyweuseddifferentstressorsinanon-predicableway

[49,50,63].

Plasmacorticosteronelevelswerereducedinanimals submit-tedtochronicstress(Fig.1).Thiscouldbeduetotheactionofa negativefeedbackloopfromtheHPAaxistriggeredbychangesin glucocorticoidlevelscausedbystress.Thissituationiscommonly observedinstudiesofpost-traumaticstressdisorder[9].

Asexpected,thenumberofPNN+neuronsincreasedinthe

pre-frontalcortexofcontrolanimalsduringadolescence,signalingthe maturationofinhibitorycircuits[67].Thispattern ofPNN mat-urationhadalsobeendemonstratedinotherdevelopingcortical regions,suchastheprimarysomatosensorycortex[38],the pri-maryvisualcortex[31,68]andsubcorticalregionsincludingthe amygdala[69]andthestriatum[70].ThisincreaseinPNN+neuron

densityissupposedtobeassociatedwithmaturationofinhibitory circuitsandtosignaltheclosureofthecriticalperiodofplasticity ofparticularareas[71,72].

Wedemonstratedthatchronicstressduringadolescencehas negativeeffectsonthematurationofPNN+neurons.Chronic

stres-soragentscauseadecreaseintheamountoflabeledPNN+neurons

bothinthemedialandorbitalregionsoftheprefrontalcortex.Other studieshadalreadydemonstratedtheeffectsofchronicstresson themorphologyof pyramidalneurons,suchas structural mod-ificationsondendriticarborization anddecrease inthenumber of dendritic spines [18,20],probably due toan increase in the numberofexcitatoryaminoacids(glutamate)inducedbygreater amountsofglucocorticoidsinthebloodstream[50,56,63].Chronic stressalsoincreasedtheexpressionofgenesthatregulateneuronal metabolismandsynapticchangesinglutamatereceptors[10,73].In additiontoexcitatoryneurons,inhibitoryneuronsarealso vulner-abletotheeffectsofchronicstress.Thesechangesmayberelated withcompensatoryresponsestoexcessiveexcitatoryaminoacid release[74]and helpstopreventfurtherdamagetothecentral nervoussystemduetooverstimulationoftheHPAaxiscausedby environmentstressors[14,75].

Anotherimportantfindingisthenegativeeffectofchronicstress onperformanceintestsassociatedwithexecutivefunctionsand thedependenceoftheseeffectsondurationofexposure.TheSAAT hasbeenusedbeforeasatestofspatialworkingmemoryinrats andlesionsoftheprefrontalcorteximpairperformanceonthistask

[41–46].Ourresultsshowedanimprovementintestperformance inanimalsexposedtostressforsevendays.Thiscouldbeexplained byshort-termactivationofstressadaptationmechanisms, increas-ingalertnessandothercopingmechanisms[14,62,76].Thenegative effects observed in animals exposed to stressful situations for longerperiods,suchas15and35days,mayreflectadesensitization oftheHPAaxis[77,78]asobservedelsewhere[79].

(6)

Fig.4. (A)Spontaneousalternationbehaviorintheplusmazeofstressedandcontrolanimals.Averageresultsareshownasthepercentageoftotalalternation.Symbolsare likeFig.1.(B)Thigmotaxisofstressedandcontrolanimalsintheopenfield.SymbolsarelikeFig.1.

(7)

5. Conclusions

Ourresultssuggest thatlife inchronicallystressful environ-mentscanimpair thesynaptic maturationof prefrontalcortex, withnegativeeffectsonbehaviorcontrolledbythesecircuits.In practice,sustainedstresscaneffectivelyarrestprefrontalcortex development,leavingitinanimmaturestate.Itistemptingto con-cludethisispartofamechanismthatworkstoprotectdeveloping prefrontalcircuitsfromnegativeinfluencesofabadenvironment. Sincethiscouldalsohappentothehumanbraininidentical situ-ations,thesedramaticresultsunderscoretheneedtoprotectthe adolescentbrainfromprolongedstressfulsituations,asissadlythe norminmanypartsoftheworld.

Conflictofinterest

Theauthorsdeclarenoconflictofinterest. Acknowledgments

ThisstudywasfinanciallysupportedbyCNPq(476627/2011-7, 483404/2013-6,and447835/2014-9)andbyCAPES.

References

[1]K.A.Christie,J.D.BurkeJr.,D.A.Regier,D.S.Rae,J.H.Boyd,B.Z.Locke, Epidemiologicevidenceforearlyonsetofmentaldisordersandhigherriskof drugabuseinyoungadults,Am.J.Psychiatry145(8)(1988)971–975.

[2]E.J.Costello,S.Mustillo,A.Erkanli,G.Keeler,A.Angold,Prevalenceand developmentofpsychiatricdisordersinchildhoodandadolescence,Arch. Gen.Psychiatry60(8)(2003)837–844.

[3]A.Giorgio,K.E.Watkins,M.Chadwick,S.James,L.Winmill,G.Douaud,N.De Stefano,P.M.Matthews,S.M.Smith,H.Johansen-Berg,A.C.James, Longitudinalchangesingreyandwhitematterduringadolescence, Neuroimage49(1)(2010)94–103.

[4]M.Niwa,H.Jaaro-Peled,S.Tankou,S.Seshadri,T.Hikida,Y.Matsumoto,A. Sawa,Adolescentstress–inducedepigeneticcontrolofdopaminergicneurons viaglucocorticoids,Science339(6117)(2013)335–339.

[5]D.Sinclair,T.D.Purves-Tyson,K.M.Allen,C.S.Weickert,Impactsofstressand sexhormonesondopamineneurotransmissionintheadolescentbrain, Psychopharmacology(Berl.)231(8)(2014)1581–1599.

[6]C.Mels,I.Derluyn,E.Broekaert,Y.Rosseel,Thepsychologicalimpactofforced displacementandrelatedriskfactorsonEasternCongoleseadolescents affectedbywar,J.ChildPsychol.Psychiatry51(10)(2010)1096–1104.

[7]C.Kieling,H.Baker-Henningham,M.Belfer,G.Conti,I.Ertem,O.Omigbodun, A.Rahman,Childandadolescentmentalhealthworldwide:evidencefor action,Lancet378(9801)(2011)1515–1525.

[8]B.S.McEwen,Protectiveanddamagingeffectsofstressmediators:centralrole ofthebrain,DialoguesClin.Neurosci.8(4)(2006)367–381.

[9]J.J.Radley,J.H.Morrison,Repeatedstressandstructuralplasticityinthebrain, AgeingRes.Rev.4(2)(2005)271–287.

[10]E.R.deKloet,M.Joels,F.Holsboer,Stressandthebrain:fromadaptationto disease,Nat.Rev.Neurosci.6(6)(2005)463–475.

[11]E.R.DeKloet,Hormonesandthestressedbrain,Ann.N.Y.Acad.Sci.1018 (2004)1–15.

[12]M.Joels,H.Karst,H.J.Krugers,P.J.Lucassen,Chronicstress:implicationsfor neuronalmorphology,functionandneurogenesis,Front.Neuroendocrinol.28 (2–3)(2007)72–96.

[13]M.Joëls,T.Z.Baram,Theneuro-symphonyofstress,Nat.Rev.Neurosci.10(6) (2009)459–466.

[14]S.J.Lupien,B.S.McEwen,M.R.Gunnar,C.Heim,Effectsofstressthroughout thelifespanonthebrain,behaviourandcognition,Nat.Rev.Neurosci.10(6) (2009)434–445.

[15]E.T.Uchoa,G.Aguilera,J.P.Herman,J.L.Fiedler,T.Deak,M.B.DeSousa,Novel aspectsofglucocorticoidactions,J.Neuroendocrinol.26(9)(2014)557–572.

[16]B.S.McEwen,Protectionanddamagefromacuteandchronicstress:allostasis andallostaticoverloadandrelevancetothepathophysiologyofpsychiatric disorders,Ann.N.Y.Acad.Sci.1032(2004)1–7.

[17]B.Leuner,T.J.Shors,Stress,anxiety,anddendriticspines:whatarethe connections?Neuroscience(2012).

[18]C.Liston,M.M.Miller,D.S.Goldwater,J.J.Radley,A.B.Rocher,P.R.Hof,J.H. Morrison,B.S.McEwen,Stress-inducedalterationsinprefrontalcortical dendriticmorphologypredictselectiveimpairmentsinperceptualattentional set-shifting,J.Neurosci.26(30)(2006)7870–7874.

[19]J.J.Radley,A.B.Rocher,M.Miller,W.G.Janssen,C.Liston,P.R.Hof,B.S. McEwen,J.H.Morrison,Repeatedstressinducesdendriticspinelossintherat medialprefrontalcortex,Cereb.Cortex16(3)(2006)313–320.

[20]S.L.Gourley,A.M.Swanson,A.J.Koleske,Corticosteroid-inducedneural remodelingpredictsbehavioralvulnerabilityandresilience,J.Neurosci.33(7) (2013)3107–3112.

[21]D.Ongur,A.T.Ferry,J.L.Price,Architectonicsubdivisionofthehumanorbital andmedialprefrontalcortex,J.Comp.Neurol.460(3)(2003)425–449.

[22]J.W.Dalley,R.N.Cardinal,T.W.Robbins,Prefrontalexecutiveandcognitive functionsinrodents:neuralandneurochemicalsubstrates,Neurosci. Biobehav.Rev.28(7)(2004)771–784.

[23]J.L.Price,Definitionoftheorbitalcortexinrelationtospecificconnections withlimbicandvisceralstructuresandothercorticalregions,Ann.N.Y.Acad. Sci.1121(2007)54–71.

[24]J.L.Hanson,M.K.Chung,B.B.Avants,K.D.Rudolph,E.A.Shirtcliff,J.C.Gee,R.J. Davidson,S.D.Pollak,Structuralvariationsinprefrontalcortexmediatethe relationshipbetweenearlychildhoodstressandspatialworkingmemory,J. Neurosci.32(23)(2012)7917–7925.

[25]K.Mizoguchi,M.Yuzurihara,A.Ishige,H.Sasaki,D.-H.Chui,T.Tabira,Chronic stressinducesimpairmentofspatialworkingmemorybecauseofprefrontal dopaminergicdysfunction,J.Neurosci.20(4)(2000)1568–1574.

[26]E.T.Rolls,Thefunctionsoftheorbitofrontalcortex,BrainCogn.55(1)(2004) 11–29.

[27]C.LeMagueresse,H.Monyer,GABAergicinterneuronsshapethefunctional maturationofthecortex,Neuron77(3)(2013)388–405.

[28]S.H.Hendry,H.D.Schwark,E.G.Jones,J.Yan,Numbersandproportionsof GABA-immunoreactiveneuronsindifferentareasofmonkeycerebralcortex, J.Neurosci.7(1987)1503–1519.

[29]J.DeFelipe,L.Alonso-Nanclares,J.I.Arellano,Microstructureoftheneocortex: comparativeaspects,J.Neurocytol.31(2002)299–316.

[30]S.Sahara,Y.Yanagawa,D.D.O’Leary,C.F.Stevens,Thefractionofcortical GABAergicneuronsisconstantfromnearthestartofcorticalneurogenesisto adulthood,J.Neurosci.32(14)(2012)4755–4761.

[31]N.Berardi,T.Pizzorusso,L.Maffei,Extracellularmatrixandvisualcortical plasticity:freeingthesynapse,Neuron44(6)(2004)905–8908.

[32]S.S.Deepa,D.Carulli,C.Galtrey,K.Rhodes,J.Fukuda,T.Mikami,K.Sugahara, J.W.Fawcett,Compositionofperineuronalnetextracellularmatrixinrat brain:adifferentdisaccharidecompositionforthenet-associated proteoglycans,J.Biol.Chem.281(26)(2006)17789–17800.

[33]A.Dityatev,M.Schachner,Extracellularmatrixmoleculesandsynaptic plasticity,Nat.Rev.Neurosci.4(6)(2003)456–468.

[34]A.Dityatev,M.Schachner,Theextracellularmatrixandsynapses,CellTissue Res.326(2)(2006)647–654.

[35]D.Wang,J.Fawcett,TheperineuronalnetandthecontrolofCNSplasticity, CellTissueRes.349(1)(2012)147–160.

[36]T.Laabs,D.Carulli,H.M.Geller,J.W.Fawcett,Chondroitinsulfate proteoglycansinneuraldevelopmentandregeneration,Curr.Opin. Neurobiol.15(1)(2005)116–120.

[37]J.C.Kwok,P.Warren,J.W.Fawcett,Chondroitinsulfate:akeymoleculeinthe brainmatrix,Int.J.Biochem.CellBiol.44(4)(2012)582–586.

[38]C.P.Bahia,J.C.Houzel,C.W.Picanco-Diniz,A.PereiraJr.,Spatiotemporal distributionofproteoglycansinthedevelopingrat’sbarrelfieldandthe effectsofearlydeafferentation,J.Comp.Neurol.510(2)(2008)145–157.

[39]M.Karetko,J.Skangiel-Kramska,Diversefunctionsofperineuronalnets,Acta Neurobiol.Exp.(Wars)69(4)(2009)564–577.

[40]K.E.Rhodes,J.W.Fawcett,Chondroitinsulphateproteoglycans:preventing plasticityorprotectingtheCNS?J.Anat.204(1)(2004)33–48.

[41]R.J.Beninger,K.Jhamandas,R.J.Boegman,S.R.el-Defrawy,Effectsof scopolamineandunilaterallesionsofthebasalforebrainonT-mazespatial discriminationandalternationinrats,Pharmacol.Biochem.Behav.24(5) (1986)1353–1360.

[42]I.Divac,R.Wikmark,A.Gade,Spontaneousalternationinratswithlesionsin thefrontallobes:anextensionofthefrontallobesyndrome,Physiol.Psychol. 3(1)(1975)39–42.

[43]B.Kolb,Functionsofthefrontalcortexoftherat:acomparativereview,Brain Res.20(1)(1984)65–98.

[44]R.Lalonde,Theneurologicalbasisofspontaneousalternation,Neurosci. Biobehav.Rev.226(2002)91–104.

[45]M.Sarter,G.Bodewitz,D.N.Stephens,Attenuationofscopolamine-induced impairmentofspontaneousalterationbehaviourbyantagonistbutnot inverseagonistandagonistbeta-carbolines,Psychopharmacology(Berl.)94 (4)(1988)491–495.

[46]M.R.Stefani,G.M.Nicholson,P.E.Gold,ATP-sensitivepotassiumchannel blockadeenhancesspontaneousalternationperformanceintherat:a potentialmechanismforglucose-mediatedmemoryenhancement, Neuroscience93(2)(1999)557–563.

[47]C.Belzung,G.Griebel,Measuringnormalandpathologicalanxiety-like behaviourinmice:areview,Behav.BrainRes.125(1–2)(2001)141–149.

[48]C.Duccotet,G.Griebel,C.Belzung,Effectsoftheselective

nonpeptidecorticotropin-releasingfactorreceptor1antagonistantalarminin thechronicmildstressmodelofdepressioninmice,Prog.

Neuro-Psychopharmacol.Biol.Psychiatry27(2003)625–631.

[49]C.O.Bondi,Chronicunpredictablestressinducesacognitivedeficitand anxiety-likebehaviorinratsthatispreventedbychronicantidepressantdrug treatment,Neuropsychopharmacology33(2008)320–331.

[50]E.Dias-Ferreira,J.C.Sousa,I.Melo,P.Morgado,A.R.Mesquita,J.J.Cerqueira, R.M.Costa,N.Sousa,Chronicstresscausesfrontostriatalreorganizationand affectsdecision-making,Science325(5940)(2009)621–625.

(8)

[51]Y.S.Mineur,C.Belzung,W.E.Crusio,Effectsofunpredictablechronicmild stressonanxietyanddepression-likebehaviorinmice,Behav.BrainRes.175 (1)(2006)43–50.

[52]R.M.Shansky,J.H.Morrison,Stress-induceddendriticremodelinginthe medialprefrontalcortex:effectsofcircuit,hormonesandrest,BrainRes.1293 (2009)108–113.

[53]Y.M.Ulrich-Lai,J.P.Herman,Neuralregulationofendocrineandautonomic stressresponses,Nat.Rev.Neurosci.10(6)(2009)397–409.

[54]P.Simon,R.Dupuis,J.Constantin,Thigomotaxisasanindexofanxietyinmice. Influenceofdopaminergictransmissions,Behav.BrainRes.61(1994)59–64.

[55]D.Treit,M.Fundytus,Thigmotaxisasatestforanxiolyticactivityinrats, Pharmacol.Biochem.Behav.31(1998)959–962.

[56]E.B.Bloss,W.G.Janssen,B.S.McEwen,J.H.Morrison,Interactiveeffectsof stressandagingonstructuralplasticityintheprefrontalcortex,J.Neurosci. 30(19)(2010)6726–6731.

[57]D.S.Goldwater,C.Pavlides,R.G.Hunter,E.B.Bloss,P.R.Hof,B.S.McEwen,J.H. Morrison,Structuralandfunctionalalterationstoratmedialprefrontalcortex followingchronicrestraintstressandrecovery,Neuroscience164(2)(2009) 798–808.

[58]S.Y.Shu,G.Ju,L.Z.Fan,Theglucoseoxidase-DAB-nickelmethodinperoxidase histochemistryofthenervoussystem,Neurosci.Lett.85(2)(1988)169–171.

[59]M.J.Kim,P.J.Whalen,Thestructuralintegrityofanamygdala-prefrontal pathwaypredictstraitanxiety,J.Neurosci.29(37)(2009)11614–11618.

[60]B.S.McEwen,J.H.Morrison,Thebrainonstress:vulnerabilityandplasticityof theprefrontalcortexoverthelifecourse,Neuron79(1)(2013)16–29.

[61]B.S.McEwen,C.Nasca,J.D.Gray,Stresseffectsonneuronalstructure: hippocampus,amygdala,andprefrontalcortex,Neuropsychopharmacology 41(1)(2016)3–23.

[62]A.F.T.Arnsten,Stresssignallingpathwaysthatimpairprefrontalcortex structureandfunction,Nat.Rev.Neurosci.10(2009)410–422.

[63]S.C.Cook,C.L.Wellman,Chronicstressaltersdendriticmorphologyinrat medialprefrontalcortex,J.Neurobiol.60(2)(2004)236–248.

[64]A.B.Hains,A.F.Arnsten,Molecularmechanismsofstress-inducedprefrontal corticalimpairment:implicationsformentalillness,Learn.Mem.15(8) (2008)551–564.

[65]C.Buss,S.Entringer,J.M.Swanson,P.D.Wadhwa,Theroleofstressinbrain development:thegestationalenvironment’slong-termeffectsonthebrain, Cerebrum2012(2012)4.

[66]M.J.Henckens,G.A.vanWingen,M.Joels,G.Fernandez,Time-dependent corticosteroidmodulationofprefrontalworkingmemoryprocessing,Proc. Natl.Acad.Sci.U.S.A.108(14)(2011)5801–5806.

[67]J.H.Cabungcal,P.Steullet,H.Morishita,R.Kraftsik,M.Cuenod,T.K.Hensch, K.Q.Do,Perineuronalnetsprotectfast-spikinginterneuronsagainstoxidative stress,Proc.Natl.Acad.Sci.U.S.A.110(22)(2013)9130–9135.

[68]T.K.Hensch,Criticalperiodregulation,Annu.Rev.Neurosci.27(2004) 549–579.

[69]N.Gogolla,P.Caroni,A.Luthi,C.Herry,Perineuronalnetsprotectfear memoriesfromerasure,Science325(5945)(2009)1258–1261.

[70]T.Simonetti,H.Lee,M.Bourke,C.A.Leamey,A.Sawatari,Enrichmentfrom birthacceleratesthefunctionalandcellulardevelopmentofamotorcontrol areainthemouse,PLoSOne4(8)(2009)e6780.

[71]T.K.Hensch,Criticalperiodplasticityinlocalcorticalcircuits,Nat.Rev. Neurosci.6(11)(2005)877–888.

[72]S.Sugiyama,A.Prochiantz,T.K.Hensch,Frombrainformationtoplasticity: insightsonOtx2homeoprotein,Dev.GrowthDiffer.51(3)(2009)369–377.

[73]C.Graybeal,C.Kiselycznyk,A.Holmes,Stress-inducedimpairmentsin prefrontal-mediatedbehaviorsandtheroleoftheN-methyl-D-aspartate receptor,Neuroscience211(2012)28–38.

[74]M.N.Hill,C.J.Hillard,B.S.McEwen,Alterationsincorticolimbicdendritic morphologyandemotionalbehaviorincannabinoidCB1receptor-deficient miceparalleltheeffectsofchronicstress,Cereb.Cortex21(9)(2011) 2056–2064.

[75]S.L.Andersen,M.H.Teicher,Stress,sensitiveperiodsandmaturationalevents inadolescentdepression,TrendsNeurosci.31(4)(2008)183–191.

[76]H.Selye,Stressandthegeneraladaptationsyndrome,Br.Med.J.1(4667) (1950)1383–1392.

[77]G.E.Miller,E.Chen,E.S.Zhou,Ifitgoesup,mustitcomedown?Chronicstress andthehypothalamic-pituitary-adrenocorticalaxisinhumans,Psychol.Bull. 133(1)(2007)25–45.

[78]M.M.Sanchez,F.Aguado,F.Sanchez-Toscano,D.Saphier,Neuroendocrineand immunocytochemicaldemonstrationsofdecreased

hypothalamo-pituitary-adrenalaxisresponsivenesstorestraintstressafter long-termsocialisolation,Endocrinology139(2)(1998)579–587.

[79]A.Mika,G.J.Mazur,A.N.Hoffman,J.S.Talboom,H.A.Bimonte-Nelson,F. Sanabria,C.D.Conrad,Chronicstressimpairsprefrontalcortex-dependent responseinhibitionandspatialworkingmemory,Behav.Neurosci.126(5) (2012)605–619.

Referências

Documentos relacionados

present study, we evaluated the effect of chronic exposure to cigarette smoke on CK activity in the cerebral cortex and hippocampus of mice, and the protective effect of

A study of regional brain metabolism using PET in humans showed the prefrontal cortex is activated in response to psychosocial stress; being prefrontal metabolic glucose

Prefrontal cortex sub-regions of the medial orbitofrontal cortex (MOFC), lateral orbitofrontal cortex (LOFC) and anterior cingulate cortex (ACC), striatal sub-regions of the

Effect of ␣ -lipoic acid (LA) and (or) omega-3 ( ␻ -3) on the concentration of nitrite/nitrate in the prefrontal cortex (PFC), hippocampus (HC), and striatum (S) of rats subjected

Figure 41 - Parameter estimates for positive, indifferent, and fictitious stimuli, and also for the non-emotional words (NEW) in four foci in the ventro medial prefrontal

The aim of this study was to evaluate MRI texture in regions of interest located in the hippocampi, limbic association cortex and prefrontal cortex of 20 patients with

Formation and regulation of happiness and positive emotions are associated with significant reductions in activity in the right prefrontal cortex and in the tempor- oparietal

Considerando que o livro didático representa uma das principais ferramentas pedagógicas utilizada em sala de aula, verificou-se como os aspectos da Educação