• Nenhum resultado encontrado

Effects of high fat diet on salivary alpha-amylase serum parameters and food consumption in rats

N/A
N/A
Protected

Academic year: 2021

Share "Effects of high fat diet on salivary alpha-amylase serum parameters and food consumption in rats"

Copied!
9
0
0

Texto

(1)

Effects

of

high

fat

diet

on

salivary

a-amylase,

serum

parameters

and

food

consumption

in

rats

Le´nia

Rodrigues

a

,

Raquel

Mouta

b

,

Ana

Rodrigues

Costa

c

,

Alfredo

Pereira

d

,

Fernando

Capela

e

Silva

e

,

Francisco

Amado

f

,

Ce´lia

M.

Antunes

g

,

Elsa

Lamy

h,

*

aInstitutode CieˆnciasAgra´riase AmbientaisMediterraˆnicas (ICAAM),Universidade de E´vora,7002-554 E´vora,

Portugal

bICAAM,UniversidadedeE´vora,7002-554E´vora,Portugal

c

ICAAMe Departamento deQuı´mica, Escolade Cieˆnciase Tecnologia, Universidadede E´vora, 7002-554E´vora,

Portugal

dICAAMe DepartamentodeZootecnia, EscoladeCieˆnciase Tecnologia,UniversidadedeE´vora,7002-554E´vora,

Portugal

eICAAMe Departamento de Biologia,Escola de Cieˆnciase Tecnologia, Universidade de E´vora,7002-554 E´vora,

Portugal

f

Quı´micaOrgaˆnica,ProdutosNaturaiseAgro-Alimentares(QOPNA)eDepartamentodeQuı´mica,Universidadede

Aveiro,Aveiro,Portugal

gCentrodeNeurocieˆnciaseBiologiaCelular,UniversidadedeCoimbra,Coimbra,Portugal

hICAAM,UniversidadedeE´vora,702-554,E´vora,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Accepted20February2015 Keywords: Weightgain High-fatdiet Leptin Rats Salivaryamylase

a

b

s

t

r

a

c

t

Salivarya-amylase,amajorproteininsaliva,hasbeendescribedasamarkerfor

sympa-theticnervoussystem activity,henceformetabolicenergy balance.Inthiscontext,its

expressioninoverweight andobesityis ofinterest.Ratsfedwith adietenriched with

sunfloweroildifferentiallygainedweightyieldingtwosubgroupsaccordingtotheir

sus-ceptibility(OP)orresistance(OR)toobesity.ElevatedplasmaticlevelsofleptinintheOP

subgroupandalteredplasmaticlipidprofiles(lowertriglyceridesandhighertotal

choles-terol/HDLratiocomparedtocontrols) inORsubgroupwereobserved.AnimalsfromOP

subgroup presentedhighera-amylase expressionandactivityevenpriortothedietary

treatment, suggestingthatthis salivary proteinmay constitutea putative indicator of

susceptibilityforfattissueaccumulation.After18weeks ofhigh-fatdietconsumption,

salivarya-amylaselevelsdidnotsignificantlychangedinOPsubgroup,butincreased3-fold

inORsubgroup.Theraiseofa-amylaseforthelattermightrepresentanadaptationtolower

starchintake.Theseresultssuggestthatsalivarya-amylasesecretionmightbeusefulto

predictsusceptibilityforweightgaininducedbyhigh-fatdietconsumption.

#2015ElsevierLtd.Allrightsreserved.

*Correspondingauthorat:ICAAM,UniversidadedeE´vora,702-554,E´vora,Portugal.Fax:+351266760841.

E-mail addresses: lrodrigues-88@hotmail.com (L. Rodrigues), rakymouta@hotmail.com (R. Mouta), acrc@uevora.pt (A.R. Costa),

apereira@uevora.pt(A.Pereira),fcs@uevora.pt(F.CapelaeSilva),famado@ua.pt(F.Amado),cmma@uevora.pt(C.M.Antunes),

ecsl@uevora.pt(E.Lamy).

Available

online

at

www.sciencedirect.com

ScienceDirect

journalhomepage:http://www.elsevier.com/locate/aob

http://dx.doi.org/10.1016/j.archoralbio.2015.02.015

(2)

1.

Introduction

Duringthepastdecades,obesityprevalencehasenormously

increased worldwide, reaching epidemic proportions in

Europe.1 Animbalance between energyintake and output,

manytimesinvolvingtheconsumptionofhighamountsoffat,

isthemainreason.

Sunflower oil is one of the most consumed liquid fats

worldwide,mainlyusedforfryingfoodsandinsalads,being

preferredbymanypeopleforitsneutraltaste.2Sunfloweroilis

richinunsaturatedfattyacids,suchaslinoleicacid(n-6PUFA)

andoleicacid(n-3-PUFA).3Despitesomecontroversy,oilswith

highcontentsofunsaturatedfattyacidsmayinduceweight

gainwithoutmostofthedeleteriouseffectsassociatedwith

saturatedfat. Some studies reported that diets rich inn-6

PUFA decrease plasmatic levels of triacylglyceroland total

cholesterol,aswellasliverfat,improvingmetabolicstatus,4

insulinsensitivity5,6andcardiovascularfunction,7

compara-tivelytosaturatedfattyacids.

Salivahasavarietyofproteinswithimportantrolesinoral

health and food perception, some of which have been

suggestedtoinfluenceingestivebehaviour.8,9Theinterestin

the studyofthis fluid increasedinthe last decade due to

methodologicaldevelopments,whichrevealeditspotentialas

a source of biomarkers of pathological and physiological

conditions,helpingintheunderstandingofbiological

mecha-nisms.10Nonetheless,relativelyfewstudieswerefoundabout

salivaryproteincompositioninobesity.11

The levels of salivary a-amylase, a protein present in

considerableamountsinmixedsalivaandresponsibleforthe

hydrolysisof starch, aregenerally referred as amarker of

stress and an indicator of sympathetic nervous system

activity,12whichinturnplaysanessentialroleinmetabolic

homeostasis.Severalstudieshavefoundelevatedlevelsofthis

salivary proteinconcomitant to overall changes in

norepi-nephrineinresponsetostress.13Automomicnervoussystem

influencestheregulationofsalivarysecretion,with

sympa-theticnervoussystemactivationdecreasingsalivaryflowand

increasingsalivaryproteinoutput.Thestimulationof

beta-adrenergicreceptorsfromsalivaryparotid glandsincreases

alpha-amylasesecretion.14

The relation between obesity and sympathetic nervous

systemactivityhasbeensomehowcontroversial.Lowactivity

ofthis branch ofthe autonomic nervous system hasbeen

suggested to be a risk factor for weight gain and obesity

development.15 However, some evidences point that the

sympathetic neural transmitter neuropeptide Y (NPY) is

involved in stress-induced augmentation of diet-induced

obesity.16 From our knowledge it has not been addressed

whether the expression and enzymatic activity of salivary

alpha-amylasediffersinobesity.

Similarly to humans, in some rodent strains there are

subjectsproneandsubjectsresistant toobesityinduced by

high-fatdietconsumption.17Althoughthefactorsunderlying

this different propensity are yet poorly understood, these

animalsconstituteagoodmodeltostudyobesity.Thisstudy

hadthreemainobjectives:toinvestigatehowsalivary

alpha-amylaselevelsrelatetoratssusceptibilityforweightgain;to

evaluatetheeffectsoftheconsumptionofahigh-fatdietin

salivary alpha-amylase secretion; and to assess the

indivi-dual’sresponsestohigh-fatdiet,byevaluatingbiochemical

markersofmetabolicstatus.

2.

Materials

and

methods

2.1. Treatmentofanimals

Twenty outbredfemale Wistarrats4weeksold (160–223g)

weremaintainedona12h/12hlight/darkcycleataconstant

temperature(228C)andhumidity(65%)withadlibitumaccess

tofoodandwater.Theanimalsweresinglecagedinstandard

ratcagesandmaintainedonastandarddiet(SAFEA04)for4

weeksacclimation. Afterthattimeanimalswererandomly

dividedintwodietarygroups(controlN=6andsunfloweroil

treated N=14), with the control group receiving the same

standarddietofthepre-trialperiodandthetreatmentgroup

receivingahighfatdietrichinsunfloweroilduring18weeks,

bothadlibitum.

Theexperimentalhigh-fatdiet waspreparedbysoaking

thestandardfeedinsunfloweroilduring4days,followedby

dryinginanoven(temperaturebelow408C)andthenstored,

protectedfromlightandoxygen.Sunfloweroilusedtoprepare

thehigh-fatdietwasobtainedfromacommercialtrademark

availableforhumanconsumption.Fattyacidcompositionwas

measuredbygaschromatography(SupplementaryTableS1).

Analyses of the macronutrient content ofthe usedrodent

dietswereperformedintheLaboratoryofAnimalNutritionof

the ICAAM,UniversityofE´vora:sunfloweroilenricheddiet

containing 14.5% total protein, 48.2% carbohydrates, 14.7%

totalfat,withanenergeticcontentof3.8kcal/gandstandard

dietcontaining17.4%totalprotein,53.7%carbohydrates,2.7%

totalfat,withanenergeticcontentof3.1kcal/g.

Supplementary material related to this article can be

found, in the online version, at http://dx.doi.org/10.1016/j.

archoralbio.2015.02.015.

Duringboththeacclimationandexperimentalperiodsthe

animalswereweighedweeklyandfoodconsumption

moni-tored,byweighingtheamountdistributedandtherefusals.At

theendoftheexperimenttheanimalswereeuthanizedby

exsanguination under anaesthesia and blood collected for

furtheranalysis.Allanimalprocedureswereapprovedbythe

scientific committee, and were supervised by a scientist

trained by the Federation of European Laboratory Animal

ScienceAssociations(FELASA),andconformedtoPortuguese

law,18 which followed European Union Laboratory Animal

ExperimentationRegulations.

2.2. Oralglucosetolerancetest

Oral glucose tolerance test (OGTT) was performed at the

beginning, in the middle and at the end of dietary

treatment.Afterovernight(16-h)fasting,bloodsampleswere

collected from the tail vein followed by oral

adminis-trationofglucose(75g/kgofbodyweight).Bloodglycaemia

wasmeasuredinfastandafter30,60,90and120minafter

glucosebolusadministration,usingahand-heldglucometer

(Accu-Check, Roche). Whole blood glucose levels were

(3)

2.3. Serumbiochemicalparameters

Bloodobtainedbyheartpuncture,after18weeksexperiment,

was collected in EDTA coated tubes and centrifuged at

3000rpmandroomtemperaturefor15min.

Plasmaconcentrationsofinsulinandleptinweremeasured

byenzyme-linkedimmunosorbentassay(ELISA).Forinsulina

competitive ELISA was used [Mouse anti-ratinsulinserum

(ref. BT53-3033-39 Linco Research, USA) and rat-insulin

standards (ref.813K,Linco, Research, USA)] whereasleptin

determinationwasperformedusingacommercialkit

accord-ingtothemanufacturer’s instructions(EZRL-83KMillipore).

PlasmaconcentrationsoftotalandHDLcholesterol,aswellas

triglyceridesweremeasuredusingenzymatictests(Sentinel

Diagnostics, Milano, Italy). Precision and reproducibility of

measurementsweremonitored byusingamulti-parameter

control for quantitative clinical chemistry determinations

(Clin Chem Control 1, and Clin Chem Control 2, Sentinel

Diagnostics,Milan,Italy).

2.4. Salivasamplecollectionandproteinquantification

Whole mouth saliva was collected from each individual

animalunderparasympatheticstimulation,toincreaseflow,

facilitating saliva collection. Animals were injected with

pilocarpine (7mg/kgbody weight s.c.)and saliva aspirated

fromthemouthusingamicropipetteandcollectedtoatube

maintainedonice.Althoughpilocarpineadministrationcan

leadtosmallincreasesinamylaseactivity,thedoseusedwas

thesame forall theanimals, toassurethatanychange in

protein levels would only reflect experimental treatment.

Collections were performed on each individual in two

differentdaysbeforethebeginningofthedietarytreatment

andattheendofthe18weeksexperimentalperiod.Thetwo

individual different collections from the beginning were

pooled.Aftersalivacollection,sampleswerecentrifugedat

13,000g,for5mintoremovefoodandcelldebris,

superna-tantaliquotedand storedat 808Cuntilanalysis. Bradford

method (BioRad Protein Assay) was used for total protein

quantification.

2.5. Westernblot

ForWesternblot,SDSPAGEseparationof3mgproteinfrom

eachsamplewasperformedusing12%gelsrunataconstant

voltageof100V.Theseparatedproteinsweretransferredtoa

PDVFmembranebyelectroblottingusingaTris-glycinebuffer

system,andtheproteinpatternswerevisualizedbystaining

withPonceauSdye(0.3%w/vin10%aceticacid)for10min.

Theproteinprofilesweredevelopedbywashingawayexcess

dyewithdistilledwater.ForWesternblotthemembranewas

incubated withanti-a-amylase primaryantibody(Sc-46657,

SantaCruzBiotechnology;1:200dilution).Asolution

consist-ing in5% non-fatdry milk inTBS-Tween20 was used for

blocking,for2h,withagitationatroomtemperaturefollowed

by incubation with primary antibody overnight at 48C.

Salivary amylase bands were detected with an alkaline

phosphatase-linkedsecondaryantibodyagainstmouseIgG

(anti-mouse,GEHealthcare,1:10,000dilution)usinga

chemi-fluorescent substrate(ECL Plus Western Blotting Detection

Reagents,GE,Healthcare).Membraneswererevealedusinga

transiluminator(Bio-RadGel-docsystem)anda

semi-quanti-tativeanalysisofsalivaryamylaseexpressionwascarriedout

byusingQuantityOnesoftware(BioRad).

2.6. Salivarya-amylaseenzymaticactivity

Dinitrosalicylic acid assay19 was used for measuring the

starch-hydrolyzing activityofsalivarya-amylase.The

reac-tionmixtureconsisted100mLof1%starchsolution,100mLof

20mMphosphatebuffer(pH7.0)and50mLsaliva(dilutedtoa

proteinconcentrationinenzymaticassayof1.5–2.5mg/mlin

the same phosphate buffer). After incubation at 378C for

20min,inathermostablewaterbath constant stirring,the

reactionwasstoppedbytheadditionof100mLDNSreagent

(1%dinitrosalicylicacid,0.2%phenol,0.05%sodiumsulfite,1%

sodium hydroxide). Samples werethen placed in aboiling

waterbathfor5min,andsubsequentlycooleddowntoroom

temperature. Further, 200mL of sodium and potassium

tartrate (40%)and 900mLofbidistilledwaterwereaddedto

samples.Absorbancewasmeasuredusinga

spectrophotome-ter(HitachiU200)at540nmagainstablankpreparedusingthe

identical method, except the enzyme solution, which was

addedtothemixtureaftertheadditionoftheDNSsolution.

The absorbance values were then converted to glucose

equivalentusingastandardcurve(0.2–2.0mg/mL).Theresults

were expressedasmmol glucose/min/mgproteinand asa

percentageofcontrol(groupreceivingstandarddiet)

consid-eredas100%.

2.7. Statisticalanalysis

Considering theobjectives ofthestudy,differentstatistical

approacheswerecarriedout.Aftertheendofexperiment,the

measured and calculated variables were analyzed with

descriptive statistics. Subsequent analysis was carried out

usingamediananalysisandestablishingarankingaccording

tothepercentiledistributionofthevariables:weightatthe

endofthetrial,weightgainthroughoutthetestandweight

gainrelativetotheinitialweight.Theanimalsfromsunflower

oiltreatmentweredividedintotwosubgroupsbasedonthe

resultsofthepreviousanalysis.Thenormalityand

homosce-dasticity were tested respectively by Kolmogorov–Smirnov

and Levene methodologies.Variables such asbody weight,

totalfoodconsumptionandtotalenergyconsumptionwere

testedaccordingANCOVA,withtheinitialbodyweightasa

covariant.Serumbiochemicalparametersweretested

accord-ing ANOVA-GLM. When significantdifferences werefound,

posthocpoolingwasperformedbyTukey’smethod.Pearson

correlations between different variables were carried out,

takingintoaccountthelevelofsignificanceandthevalueofR.

AllstatisticalanalyseswereperformedbySPSS20software.

3.

Results

3.1. Bodyweightandfoodintake

At the end of acclimation time (week 0), animals were

(4)

(N=6)andhigh-fattreated(N=14)],whichreceiveddietary

treatmentfor18weeks.Atthistimemeanbodyweightsfrom

controlandfromthegrouptreatedwiththehighfatdietdid

notpresentsignificantdifferences(Fig.1A).

Afterthe 18 weeks all animals, including controls, had

gainedweight.However,atthistime,fortheanimalsfromthe

high-fat dietarygroup, there was a largedispersion inthe

values, suggesting the existence of animals with different

propensitytoweightgain.Theratiobetweentheweightgain

and initial body weightwas usedtoallocateanimals from

high-fatdietarygroupintwosubgroups.Sincequitedifferent

ratios were observed, medians were used to create more

homogeneousgroupsaccordingtotherespectivepercentiles.

AnalysisofvariancewasoneANCOVAtocorrectthepossible

effectofthedifferentinitialbodyweights.Thetwodistinct

subgroups,fromthehigh-fattreatmentgroupwere

constitut-edby:(i)individualswhosebodyweightgainsandfinalbody

weightsremainsimilartocontrolgroup(obeseresistant,OR;

N=7);(ii)individualsforwhichbodyweightgainsandfinal

bodyweightswereatleast10%higherthanincontrolgroup

(obeseprone,OP;N=6)(Fig.1andTable1),accordingtothe

criteriareportedbyothers.20Oneratfromthehigh-fatdiet

treatmentgroupwasexcludedfromtheanalysisbecauseit

wasidentifiedasoutlier.Thiswasduetoitsabnormalweight

gainrelativelytoitsfinalbody weight,asevidencedbythe

statisticalanalysis(abnormalvalueinthebox-plotafterusing

the Z-score procedure afterwards confirmed by the Dixon

test).

Food intake differed among the groups. The animals

maintainedonthehigh-fatdietingestedaloweramountof

food compared to controls (2.600.06kg control vs

2.380.08kg for OP and 2.120.039kg for OR groups

treatment;valuesforthetotalamountconsumedinthe18

weeksofexperiment).Consideringtotalenergyconsumption,

Fig.1–Initialbodyweights(A)andgrowthrate(B)ofcontrol(Cont;N=6)andtreatment(HFD;N=13)groups.OR=obese

resistant(N=7);OP=obeseprone(N=6).WeekS3representsthetimeatwhichtheanimalswereallocatedtoindividual

cagesforacclimation,whereasweek0representsthestartofhigh-fatdietadministrationtorandomlyselectedanimals.

DataarepresentedasmeansWSEM.(*significantforP<0.05)(ANCOVAanalysisusingtheinitialbodyweightasa

covariant).

Table1–Bodyweightandfoodconsumption.

Control OP OR

Bodyweight(week 3)(g) 127.511.0 156.86.0 133.48.6

Bodyweight(week0)(g) 182.19.5a 211.54.4a 187.19.2a

Finalbodyweight(g) 268.74.0a 314.25.0b 267.38.4a

Totalfoodconsumption(kg) 2.600.06a 2.38

0.08b 2.12

0.04b

Totalenergyconsumption(Kcal)# 8.07

0.19a 9.06

0.30b 8.06

0.15a

OR=obeseresistant;OP=obeseprone.ValuesaremeansSEM.

a,bForeachparameter,differentlettersrepresentsignificantdifferencesamongmeans.MeancomparisonswereperformedusingtheANCOVA

analysiswiththeinitialbodyweightascovariantandP<0.05.

# Calculatedvaluesaccordingtotheenergycontentafternutritionalanalysis(3.8kcal/gforthehighfatdietand3.1kcal/gforthestandard

(5)

however, the caloric intake was 12.3% higher in the OP

subgroupcompared toboth the controland OR subgroups

(Table1).

3.2. Bloodbiochemicalparameters

Allanimalspresentednormaloralglucosetolerancetestsboth

atthebeginning andattheendoftheexperiment.Inboth

timesthemeanglycaemiclevels,fromallthegroups,ranged

from 68 to 90mg/dL glucose following overnight fast,

increasedto100–115mg/dL30minaftertheadministration

oftheoralbolusofglucoseandreturnedtofastingvaluesat

60min (results not shown), indicating that no significant

differencesinglucosetolerancewereinducedbythe

sunflow-er oil enriched diet. Accordingly, fasting plasmatic insulin

levels,attheendofthedietarytreatment,weresimilaramong

the groups (Table 2). Concerning fasting plasmatic leptin

levels,differenceswereobserved,withOPsubgroup

present-ingvaluesalmosttwicehigherthantheORsubgroup(Table2).

Beingleptinahormonethatpromotessatiety,therelation

betweenleptinplasmaticlevelsandenergyconsumptionwas

investigated.Astrongpositivecorrelationwasobservedfor

theanimalsfedthehighfatdiet(r=0.71;P=0.003),i.e.,higher

plasmatic leptin levels wereassociated withhigher energy

consumption(Fig.2B),indicatinghigheringestion.

The consumption of the sunflower oil enriched diet

induceddifferentialchangesinlipidprofilesamongORand

OP subgroups. A 40% decrease in the plasmatic levels of

triglycerideswasobservedinORsubgroupwhileOPpresented

values similar to the onesfrom controls. Concerning total

cholesterolnodifferenceswereobservedbetweenthegroups.

However, high-density lipoprotein (HDL) cholesterol was

approximately30%lowerintheORsubgroupand,accordingly,

totalcholesteroltoHDLratiowassignificantlyincreasedin

thissubgroup(Table2).

3.3. Salivarya-amylaseexpressionlevelsandenzymatic

activity

Themainaimofthepresentexperimentwastostudysalivary

a-amylasesecretioninindividualswithdifferent

susceptibili-tiestoobesity.Differencesinthissalivaryproteinexpression

levels and enzymatic activity were observed among the

experimental groups. Beforethe beginningofdietary

treat-ment, whereallanimalswerefedstandardrodentdiet,OP

subgroup presented higher expression levels of a-amylase

whencomparedtoboththecontrolandORgroups,beingthese

lasttwogroupssimilar(Fig.3A).

Afterthechronicconsumptionofsunfloweroilenriched

diet, OR subgroup presented an increased expression of

salivarya-amylasecomparativelytotheotherexperimental

groups(Fig.3B).Itisnoteworthythatwhencomparedtothe

expressionlevelspriortothetreatment,a-amylaseexpression

wassignificantlyincreasedintheORsubgroup,whereasitwas

maintainedinthecontrolandOPsubgroup(Fig.3B).

In concordance withprotein expression,the salivary

a-amylase enzymatic activity from whole saliva collected at

thebeginningofthetrial(whenanimalswereallmaintained

on astandard rodentchowdiet) was1.6 foldhigherinOP

individuals(Fig.4).

At this time point, a-amylase enzymatic activity was

stronglycorrelatedwithfutureindividualbodyweightgains

(r=0.70;P=0.032),i.e.,individualswhichgainedmoreweight

duringthe18weekshighfatdiettreatmentpresentedhigher

salivary a-amylase activities (Fig. 5A). Interestingly, this

relation (Pearson correlation coefficient) is even higher

considering only the animals that fed the high fat diet

(r=0.76;P=0.042)(Fig.5B).

Inthecontrary,attheendofthedietarytreatmentthe

a-amylaseactivityinOPsubgroupwassimilartothecontrols

while in the OR subgroup a-amylase activity was 3-fold

higher.Noticethat,comparedtothebeginningofthetrial,

salivarya-amylaseenzymatic activityinORsubgroupwas

increased3times(Fig.4).

Table2–Serumbiochemicalparametersmeasuredafter18weeksofahighfatorcontroldiet.

Control OP OR Refvalues#

Insulin(ng/mL) 0.750.02a 0.750.07a 0.850.05a 0.60–0.9021,22 Leptin(ng/mL) 1.690.17a,b 2.390.41b 1.340.17a 1.37–2.2923 TG(mg/dL) 79.16.8a 61.07.3a 45.32.8b 40.0–230.024,25 Totalcholesterol(mg/dL) 127.09.4a 129.6 7.4a 119.3 8.8a 70.0–125.025 HDL(mg/dL) 60.33.6a 52.7 2.5a 43.5 5.2b 38.0–63.04 Totalcholesterol/HDL 2.120.14a 2.480.14a 2.860.27b

OR=obeseresistant;OP=obeseprone.DataarepresentedasmeanSEM.

# NormalmeanvaluesforfemaleWistaradultrats.

a,bForeachparameter,differentlettersrepresentsignificantdifferencesamongmeans.MeancomparisonswereperformedusingANOVA

analysisforP<0.05.

Fig.2–Correlationbetweenplasmaticleptinlevelsand

(6)

4.

Discussion

Theexistenceofindividualswithpropensityandindividuals

with resistance to weight gain has been referred for both

animalsandhumans.InWistarratsthisdifferentialresponse

in body weight changes has been already referred for

individuals submitted to high saturated fat diets26,27 and

hasbeenattributedtodifferentcausessuchas

overconsump-tion,duetothesedietshighpalatability,ortothemodulation

ofgene expression linked to lipogenesis.28 Studies are not

consensual in terms of the potential of diets rich in

polyunsaturatedfatforobesitydevelopment.Someauthors

refersimilar29andotherslower30bodyweightgains,induced

byPUFAcomparativelytotheonesinducedbysaturatedfat.

In the present study, a differential individual response in

the rateofweightgain wasobservedforratsconsuminga

high-fat-enriched with sunflower oildiet.Despite beingan

unsaturatedfat,thesunfloweroilusedinthisstudycontainsa

considerableamountofn-6PUFAovern-3PUFA,theopposite

ofotheroilssuchasoliveorrapeseedoils,3andakeyfactorin

high-fatinducedobesity.31Ourresultssupportthefactthata

high-fat diet rich in n-6 PUFA induce weight gain and

eventually obesity in animals with genetic susceptibility,

suchastheOPsubgroup.

Despiteobesity developmentinsusceptibleanimals, the

effectsofthetesteddietappearednottobeasdeleteriousas

theonesproducedbysaturatedfat.Highamountsofsaturated

dietary fats lead to insulin resistance in rats32 what can

Fig.3–RepresentativeWesternblotanalysisofa-amylase

inmixedsalivasamplesfromcontrol(C),obese-prone(OP)

andobeseresistant(OR)animals.A:beforedietary

treatment;B:after18weeksdietarytreatment;Lower

panelsshowa-amylaseexpressionquantifiedby

densitometricanalysisofthisproteinimmunoreactive

band.DataarepresentedasmeanWSEM.(*differences

betweenhighfatdietsubgroupsandcontrolare

significantforP<0.05).

Fig.4–Salivaryamylaseactivityofmixedsalivasamples

beforeandafterdietarytreatment.OP=obeseprone;

OR=obeseresistant.DataarepresentedasmeanWSEM.

P<0.05.

Fig.5–Correlationbetweenbodyweightgainsanda-amylaseenzymaticactivityfromsalivacollectedbeforehigh-fat

(7)

ultimatelyresultinalteredglucosetoleranceanddiabetes.In

thepresentstudy,nochangesinoralglucosetolerancetestsor

fastinginsulinemiawereobservedasaconsequence ofthe

consumptionofthishighfatdietconsumptionfor18weeks.

Thefattyacidcompositionmaybeapossibleexplanationfor

theseresults,sincesunfloweroilisrichinpolyunsaturatedfat,

therefore not inducing insulin resistance, as suggested by

others.33

Accordingly with fasting leptin levels, it is possible to

hypothesize that the weightgain observedin someofthe

animals(OPanimals)canbetheresultofadegreeofleptin

resistanceby these. Leptinis mainly produced by adipose

tissueandishighlyinvolved inthecontrolofingestion by

inducing satiety. Despite the increased levels ofplasmatic

leptininOPanimals,higherenergyintakewasobservedinthis

subgroupsuggestingareducedresponsetothishormoneand

aconsequentlackofthefallinsatiety,afactoralreadypointed

outasresponsiblefordietinducedobesity.34

Lipid profiles were accessed with the aim of adding

informationonthemetaboliceffectsofthefatused.These

effectswereobservedtobedependentonthepropensityfor

obesity. In OR subgroup the dietary treatment induced a

decreaseintriacylglycerolandHDLlevels.Themaintenanceof

totalcholesterolresultedinanincreaseoftotalcholesterol/

HDLratiointhissubgroup.Similarresultswerereportedby

other authors for sunflower oil enriched diets, for both

triacylglycerol levels35 and total cholesterol/HDL ratio.36

Cholesterol is precursor of corticosteroids and androgens,

which increased levels are ultimately related to insulin

resistance.37,38Althoughinsulinemiasandglucosetolerance

curvesweresimilartotheonesfromcontrolindividuals,as

discussedabove,thehypothesisofORindividualsbecameless

sensitive to insulin and/or present metabolic changes, if

maintainedforalonger period inahigh fatdiet, isnotto

discard.Bythecontrary,lipidprofilesfromOPindividualsdid

notdifferfromcontrolanimals.Besidesconcludingthatthe

polyunsaturatedhighfatdietdidnotinducesevere

dyslipi-daemias in either OP or OR subgroups, for the period

considered inthis study, it is worthwhileto note thatthe

effectsofpolyunsaturatedfatarecomplexandshouldnotbe

generalized,butinsteadshouldhaveintoconsiderationthe

metaboliccharacteristicsofeachindividual,wherethegenetic

backgroundiscertainlyplayingacentralrole.

In the present study differences in the expression and

enzymaticactivityofsalivarya-amylase,bothbeforeandafter

thehighfatdiettrialwereobservedamongthegroups.The

a-amylaselevelsmeasuredbeforeanimalsenteredthetrialwas

higher in individuals which were further allocated to OP

subgroupandwerestronglycorrelatedwiththerateofbody

weightgainachievedduringtheexperiment.Consequently,

thelevelsofthisproteinseemtobehaveasapredictorofthe

susceptibilityindividualshave tobecomeobese.Themajor

roleofthissalivaryproteinintheoralcavityistohydrolyse

starchto maltose and maltotriose.It has been stated that

considerablestarchhydrolysisoccursintheoralcavity39and

cancontinueafterswallowing,duetothepresenceofpartially

digestedstarch,whichappearstoprotectsalivarya-amylase

from acid inactivation.40 Therefore, higher levels of this

salivaryenzyme could leadtoahigherefficiency instarch

digestion,whatcanbehypothesizedtoincreasecarbohydrate

absorption,contributingtothegreaterincreaseinbodyweight

observedinOPanimals.

Salivary a-amylase has been proposed as a marker of

sympatheticnervoussystemactivity.12Stimulationof

beta-adrenergic receptors results in increases in salivary total

proteinanda-amylaseoutput.14Basedonthat,wecanassume

thatOPanimalspresentedahigheractivityofthisbranchof

autonomic nervous system, at an early age. Sympathetic

nervous system activity is related to energy homeostasis,

increasing energy expenditure by stimulating adrenergic

thermogenesis, which in turn results in expending energy

as heat.41 However,a chronic sympatheticstimulationhas

been suggested to result in desensitization of the

beta-adrenergicsignallingpathway,whichhasbeenconsidereda

possible explanation for weight gain increases with age.42

Moreover,fromourobservations,attheendofthe18weeks

experiment OP animals did not present a-amylase levels

augmented,evenpresentinghigherbodyweightsandhigher

plasmaticleptinlevels.Thisalsogoesinaccordancewiththe

beta-adrenergicdesensitizationhypothesis.

Also,itwasobservedthatwhiletheORanimalsadjusted

foodintaketofulfiltheircaloricneedstheOPanimalsdidnot.

Indeed the OP subgroup presented a significantly higher

caloricintakecomparedtobothORandcontrolsubgroups,

hence contributing to their augmented weight gain. The

reasonsforfood consumptionabove theirneedsin theOP

subgroupareunknownbutanincreasedpalatability,widely

reportedasadrivetoconsumption43duetothehighersalivary

a-amylaselevelsmightbeonecontributingfactor.

Anotherimportantfindingwasthata-amylasesecretionis

3-foldincreasedafter18weeksconsumingthehighfatdietin

the subgroup resistant to weight gain. Since OR animals

consumedloweramountsofstarchthantheotherindividuals,

the increase in a-amylasesecretion might be an adaptive

responsemechanismtoincreasedigestiveefficiency.

More-over,sympatheticnervoussystemactivityincreaseswiththe

consumptionofhighfatdiet17and,inthesamelineofthought

describedabove,sinceORanimalscontinuestobesensibleto

adrenergicstimulation,itisnotsurprisingariseina-amylase

secretion.

Nonetheless,theuse ofsalivarya-amylaseasmarkerof

sympathetic activity has some limitations44 and further

studiesareimportanttoelucidatethemeaningofincreases

inthissalivaryproteinexpressioninducedbyhighfatdiets

onlyinanimalsresistanttoweightgain.

Finally, from our knowledge, although saliva has been

extensively exploredas a sourceofbiomarkers for diverse

pathologicalconditions,thereisalackofstudiescomparing

salivaryproteincompositionaccordingtoindividual

propen-sity forobesity.Ourresultssuggestthatsalivarya-amylase

secretion differ between individuals with and without

propensitytoweightgainandthatitmaybemeaningfulin

increasingunderstandingaboutobesitydevelopment.

More-over,arecentstudydemonstratedthatsalivaryamylasegene

(AMY1) copy number variations predisposes to obesity.45

Although,nosalivaryproteinexpressionwasaccessedinthis

study,itemphasisestheimportanceofthissalivaryprotein

relatedtoweightgainandBMI.Furtherstudieselucidatingthe

mechanismswhichresultinthisobservedhighersecretionof

(8)

othersalivaryproteinsinapre-obesitystate,canultimately

allowearly dietaryand behaviouralinterventions,avoiding

thepathologicalstate.

5.

Conclusion

In summary, chronic consumption of high amount of

sunfloweroildifferentiallyinducedobesityinrats,according

to individual propensity, without producing the negative

effects usually attributed to saturated fat, namely insulin

resistanceand/ordyslipidaemia.Itisconcluded that saliva

maybeusefultoevaluatesusceptibilityforobesity.Salivary

a-amylaselevels in young animalsarerelated tothe rate of

futureweightgain.Althoughthemechanismsresponsiblefor

thedifferentialexpressionofsalivarya-amylaseaccordingto

obesitysusceptibilityneedtobeexplored,theobtainedresults

showthatsalivacompositionrelatestotheamountofweight

gain.Moreover,theconsumptionforseveralweeksofahigh

fatdiet evokedanincrease in salivarya-amylase levels in

individualsresistanttoobesity,possiblyasanadaptationto

optimizethe usageofapoorer starchdiet.Takingtogether

these results reinforce the notion that salivary a-amylase

levelsaredependenton dietcharacteristicsandemphasize

thepotentialofsalivainstudiesaboutsusceptibilityforweight

gainandobesitydevelopment.

Funding

ThispaperisfundedbyFEDERFundsthroughtheOperational

ProgrammeforCompetitivenessFactors-COMPETEandNational

Funds through FCT-Foundation for Science and Technology

under the Strategic Projects PEst-C/AGR/UI01, PEst-OE/AGR/

UI0115/2014,15/2011,PEst-C/SAU/LA0001/2011andPEst-C/QUI/

UI0062/2011.Authors acknowledgealso thefinancial support

fromthePortugueseScienceFoundation(FCT)intheformof

Post-Doctoralgrant(SFRH/BPD/63240/2009)ofElsaLamy.The

Portu-gueseScienceFoundation(FCT)playednoroleinthe

develop-mentofthepresentworkoruponitssubmissionforpublication.

Conflict

of

interest

statement

Theauthorshavenopotentialconflictsofinterest.

Ethical

approval

All animal procedures were conformed to Portuguese law

(PORTARIA1005/92),whichfollowedEuropeanUnion

Labora-tory Animal Experimentation Regulations and were

super-visedby a scientist trained by the Federationof European

LaboratoryAnimalScienceAssociations(FELASA).

Acknowledgments

Theauthors thanks toDoutoraRaquelGarcia and Doutora

MariaIsabelFerrazdeOliveira,fromICAAM,forsunfloweroil

fattyacidcompositiondeterminationanddietmacronutrient

analysis,respectively.

r

e

f

e

r

e

n

c

e

s

1. Bergho¨ferA,PischonT,ReinholdT,ApovianCM,Sharma AM,WillichSN.ObesityprevalencefromaEuropean perspective:asystematicreview.BMCPublicHealth 2008;8(January(1)):200.

2. FosterR,WilliamsonCS,LunnJ.BRIEFINGPAPER:culinary oilsandtheirhealtheffects.NutrBull2009;34(March (1)):4–47.

3. RaßM,ScheinC,Mattha¨usB.Virginsunfloweroil.EurJLipid SciTechnol2008;110(July(7)):618–24.

4. BjermoH,IggmanD,KullbergJ,DahlmanI,JohanssonL, PerssonL,etal.Effectsofn-6PUFAscomparedwithSFAson liverfat,lipoproteins,andinflammationinabdominal obesity:arandomizedcontrolledtrial.AmJClinNutr 2012;95(May(5)):1003–12.

5. PolettoAC,AnheˆGF,EichlerP,TakahashiHK,FuruyaDT, OkamotoMM,etal.Soybeanandsunfloweroil-induced insulinresistancecorrelateswithimpairedGLUT4protein expressionandtranslocationspecificallyinwhiteadipose tissue.CellBiochemFunct2010;28(March(2)):114–21.

6. SekiyaM,YahagiN,MatsuzakaT,NajimaY,NakakukiM, NagaiR,etal.Polyunsaturatedfattyacidsameliorate hepaticsteatosisinobesemicebySREBP-1suppression. Hepatology2003;38(December(6)):1529–39.

7. AdkinsY,KelleyDS.Mechanismsunderlyingthe cardioprotectiveeffectsofomega-3polyunsaturatedfatty acids.JNutrBiochem2010;21(September(9)):781–92.

8. DsamouM,PalickiO,SeptierC,ChabanetC,LucchiG, DucoroyP,etal.Salivaryproteinprofilesandsensitivityto thebittertasteofcaffeine.ChemSenses2012;37(January (1)):87–95.

9. NeyraudE,PalickiO,SchwartzC,NicklausS,FeronG. Variabilityofhumansalivacomposition:possible relationshipswithfatperceptionandliking.ArchOralBiol 2012;57(May(5)):556–66.

10.AmadoFML,FerreiraRP,VitorinoR.Onedecadeofsalivary proteomics:currentapproachesandoutstanding

challenges.ClinBiochem2013;46(April(6)):506–17.

11.LamyE.Avaliac¸a˜o dasalterac¸o˜esdoperfilproteicosalivarem indivı´duoscomobesidademo´rbidanasfasespre´-epo´scirurgia baria´trica.2014.

12.NaterUM,RohlederN.Salivaryalpha-amylaseasa non-invasivebiomarkerforthesympatheticnervoussystem: currentstateofresearch.Psychoneuroendocrinology 2009;34(May(4)):486–96.

13.ChattertonRT,VogelsongKM,LuYC,EllmanAB,Hudgens GA.Salivaryalpha-amylaseasameasureofendogenous adrenergicactivity.ClinPhysiol1996;16(July(4)):433–48.

14.SkovOlsenP,KirkegaardP,RasmussenT,MagidE,Poulsen SS,NexøE.Adrenergiceffectsonsecretionofamylasefrom theratsalivaryglands.Digestion1988;41(January(1)):34–8.

15.RavussinE,TataranniPA.Theroleofalteredsympathetic nervoussystemactivityinthepathogenesisofobesity.Proc NutrSoc1996;55(November(3)):793–802.

16.KuoLE,KitlinskaJB,TilanJU,LiL,BakerSB,JohnsonMD, etal.NeuropeptideYactsdirectlyintheperipheryonfat tissueandmediatesstress-inducedobesityandmetabolic syndrome.NatMed2007;13(July(7)):803–11.

17.XieZ,LiH,WangK,LinJ,WangQ,ZhaoG,etal.Analysisof transcriptomeandmetabolomeprofilesalterationsinfatty liverinducedbyhigh-fatdietinrat.Metabolism2010;59(April (4)):554–60.

(9)

18.1005/92P.Portariade23deOutubrode1992,queaprovaas

normaste´cnicasdeprotecc¸a˜odosanimaisutilizadospara

finsexperimentaiseoutrosfinscientı´ficos.Portugal.

19.MillerGL.Useofdinitrosalicylicacidreagentfor determinationofreducingsugar.AnalChemAmChemSoc 1959;31(March(3)):426–8.

20.HaririN,ThibaultL.High-fatdiet-inducedobesityinanimal models.NutrResRev2010;23(December(2)):270–99.

21.Seic¸aRM,SuzukiKI,SantosRM,Rosa´rioLM.Deficieˆncia prima´riadasecrec¸a˜odeinsulinadeilhe´usisoladosderatos Goto-Kakizaki.Ummodeloanimaldediabetestipo2na˜o obesa.ActaMe´dPort2004;17:42–8.

22.VitalP,LarrietaE,HiriartM.Sexualdimorphismininsulin sensitivityandsusceptibilitytodevelopdiabetesinrats.J Endocrinol2006;190(August(2)):425–32.

23.AinslieDA,ProiettoJ,FamBC,ThorburnAW.Short-term, high-fatdietslowercirculatingleptinconcentrationsinrats. AmJClinNutr2000Feb;71(2):438–42.

24.RiverC.Charlesriverresearchmodelsandservices.2014.

Availablefrom:http://www.criver.com/files/pdfs/rms/

canadian-model-pricing/2014_en.aspx.

25.PetroianuA,VelosoDFM,CostaGR,AlbertiLR.Efeitosde operac¸o˜essobreobac¸onolipidogramaderatas.RevAssoc MedBras2006;52(February(1)):56–9.

26.LiH,XieZ,LinJ,SongH,WangQ,WangK,etal.

Transcriptomicandmetabonomicprofilingofobesity-prone andobesity-resistantratsunderhighfatdiet.JProteomeRes 2008;7(November(11)):4775–83.

27.PaulinodoNascimentoA,Monte-Alto-CostaA.Both obesity-proneandobesity-resistantratspresentdelayed cutaneouswoundhealing.BrJNutr2011;106(August (4)):603–11.

28.ClarkeSD,JumpD.Polyunsaturatedfattyacidsregulate lipogenicandperoxisomalgeneexpressionbyindependent mechanisms.ProstaglandinsLeukotEssentFattyAcids 1997;57(July(1)):65–9.

29.MasiLN,MartinsAR,RosaNetoJC,doAmaralCL,Crisma AR,VinoloMAR,etal.Sunfloweroilsupplementationhas proinflammatoryeffectsanddoesnotreverseinsulin resistanceinobesityinducedbyhigh-fatdietinC57BL/6 mice.JBiomedBiotechnol2012;2012:945131.

30.BuettnerR,ParhoferKG,WoenckhausM,WredeCE, Kunz-SchughartLA,Scho¨lmerichJ,etal.Defininghigh-fat-dietrat models:metabolicandmoleculareffectsofdifferentfat types.JMolEndocrinol2006;36(June(3)):485–501.

31.AlvheimAR,MaldeMK,Osei-HyiamanD,LinYH,Pawlosky RJ,MadsenL,etal.Dietarylinoleicacidelevatesendogenous 2-AGandanandamideandinducesobesity.Obesity(Silver Spring)2012;20(October(10)):1984–94.

32.HuFB,vanDamRM,LiuS.DietandriskofTypeIIdiabetes: theroleoftypesoffatandcarbohydrate.Diabetologia 2001;44(July(7)):805–17.

33.LeeJS,PinnamaneniSK,EoSJ,ChoIH,PyoJH,KimCK, etal.Saturated,butnotn-6polyunsaturated,fattyacids induceinsulinresistance:roleofintramuscular accumulationoflipidmetabolites.JApplPhysiol 2006;100(May(5)):1467–74.

34.ScarpacePJ,ZhangY.Leptinresistance:aprediposingfactor fordiet-inducedobesity.AmJPhysiolRegulIntegrComp Physiol2009;296(March(3)):R493–500.

35.LaugeretteF,VorsC,PerettiN,MichalskiM-C.Complex linksbetweendietarylipids,endogenousendotoxins andmetabolicinflammation.Biochimie2011;93(January (1)):39–45.

36.BensonMK,DeviK.Influenceofomega-6/omega-3rich dietaryoilsonlipidprofileandantioxidantenzymesin normalandstressedrats.IndianJExpBiol2009;47(February (2)):98–103.

37.FerrisHA,KahnCR.Newmechanismsof glucocorticoid-inducedinsulinresistance:makenobonesaboutit.JClin Invest2012;122(November(11)):3854–7.

38.CorbouldA.Effectsofandrogensoninsulinactionin women:isandrogenexcessacomponentoffemale metabolicsyndrome?DiabetesMetabResRev 2008;24(October(7)):520–32.

39.HoeblerC,KarinthiA,DevauxMF,GuillonF,GallantDJ, BouchetB,etal.Physicalandchemicaltransformationsof cerealfoodduringoraldigestioninhumansubjects.BrJ Nutr1998;80(November(5)):429–36.

40.RosenblumJL,IrwinCL,AlpersDH.Starchandglucose oligosaccharidesprotectsalivary-typeamylaseactivityat acidpH.AmJPhysiol1988;254(5,Pt1):G775–80.

41.DullooAG.Biomedicine.Asympatheticdefenseagainst obesity.Science2002;297(August(5582)):780–1.

42.SealsDR,BellC.Chronicsympatheticactivation:

consequenceandcauseofage-associatedobesity?Diabetes 2004;53(February(2)):276–84.

43.VenturaAK,MennellaJA.Innateandlearnedpreferences forsweettasteduringchildhood.CurrOpinClinNutrMetab Care2011;14(July(4)):379–84.

44.BoschJA,VeermanECI,deGeusEJ,ProctorGB.a-Amylaseas areliableandconvenientmeasureofsympatheticactivity: don’tstartsalivatingjustyet!.Psychoneuroendocrinology 2011;36(May(4)):449–53.

45.FalchiM,El-SayedMoustafaJS,TakousisP,PesceF, BonnefondA,Andersson-AssarssonJC,etal.Lowcopy numberofthesalivaryamylasegenepredisposestoobesity. NatGenet2014;46(May(5)):492–7.

Imagem

Table 1 – Body weight and food consumption.
Table 2 – Serum biochemical parameters measured after 18 weeks of a high fat or control diet.
Fig. 4 – Salivary amylase activity of mixed saliva samples before and after dietary treatment

Referências

Documentos relacionados

In conclusion, the long-term high-fat diet led to an increase of body weight, serum insulin level, visceral fat, FFA, visceral fat/body weight ratio, and skeletal muscle TG

Body weight, food, and water (tea) intake and adiposity of mice receiving high-fat diet (Obese group) or high-fat diet supplemented with white tea extract (0.5%, Obese + WTE

Na reunião com a mãe, esta percebeu que realmente devido à patologia da sua filha, a Ana Rita não poderia ser entregue a um menor que não saberia reagir na hora

In rats subjected to massive intestinal resection, oral insulin administration on post surgery period promoted enhancement of intestinal mass mainly in distal segments of

The right kidneys of the mice treated with the HFD presented an augment of 45% (p&lt;0.05) in cell membrane lipid peroxidation (Figure 7) when compared to the control

sicuri banco devido ao maior número da camadas, bem como uma consistência áspera, em virtude de um maior número de escamas que se apresentam mais unidas. - A epiderme, para as