• Nenhum resultado encontrado

Rev. bras. ortop. vol.52 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. ortop. vol.52 número6"

Copied!
7
0
0

Texto

(1)

SOCIEDADE BRASILEIRA DE ORTOPEDIA E TRAUMATOLOGIA

w w w . r b o . o r g . b r

Original

Article

Radiographic

anatomy

of

the

proximal

femur:

femoral

neck

fracture

vs.

transtrochanteric

fracture

Ana

Lecia

Carneiro

Leão

de

Araújo

Lima,

Saul

Caldas

Miranda,

Hudson

Felipe

Oliveira

de

Vasconcelos

HospitalOtáviodeFreitas,Recife,PE,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13June2016 Accepted4October2016 Availableonline18October2017

Keywords:

Hipfractures Femurneck Radiography

a

b

s

t

r

a

c

t

Objective:To evaluate thecorrelationbetween radiographicparameters oftheproximal femurwithfemoralneckfracturesortranstrochantericfractures.

Methods:Cervicodiaphysealangle(CDA),femoralneckwidth(FNW),hipaxislength(HAL), andacetabularteardropdistance(ATD)wereanalyzedin30pelvisanteroposteriorview X-raysofpatientswithfemoralneckfractures(n=15)andtranstrochantericfractures(n=15). The analysiswasperformedbycomparingtheresultsofthe X-rayswithfemoralneck fracturesandwithtranstrochantericfractures.

Results:Nostatisticallysignificantdifferencesbetweensampleswereobserved.

Conclusion: Therewasnocorrelationbetweenradiographicparametersevaluatedand spe-cificoccurrenceoffemoralneckfracturesortranstrochantericfractures.

©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeOrtopedia eTraumatologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Anatomia

radiográfica

do

fêmur

proximal:

fratura

de

colo

vs

.

fratura

transtrocantérica

Palavras-chave:

Fraturasdoquadril Colodofêmur Radiografia

r

e

s

u

m

o

Objetivo:Correlacionarparâmetrosradiográficosdofêmurproximalcomaocorrênciade fraturasdocolodofêmuroufraturastranstrocantéricasdofêmur.

Métodos:Foramavaliadosoângulocevicodiafisário(ACD),alarguradocolofemoral(LCF),o comprimentodoeixodoquadril(CEQ)eadistânciaentreaslágrimasacetabulares(DL)de radiografiasdebaciaemincidênciaanteroposteriorde30pacientescomfraturadecolo de fêmur(n=15)efraturatranstrocantéricadefêmur(n=15).Aavaliac¸ãofoi feitacom acomparac¸ãodospacientescomfraturadecolodefêmurcomospacientescomfratura transtrocantérica.

StudyconductedatHospitalOtáviodeFreitas,Recife,PE,Brazil.

Correspondingauthor.

E-mail:hudsonfelipe3@hotmail.com(H.F.Vasconcelos). http://dx.doi.org/10.1016/j.rboe.2017.10.007

(2)

Resultados: Não foram observadas diferenc¸as estatisticamente significantes entre as amostrasobtidasentreosdoisgruposcomparados.

Conclusão: Nãohouvecorrelac¸ãoentreosparâmetrosradiográficosavaliadoseocorrência específicadefraturasdecolodefêmuroufraturastranstrocantéricasdefêmur.

©2017PublicadoporElsevierEditoraLtda.emnomedeSociedadeBrasileirade OrtopediaeTraumatologia.Este ´eumartigoOpenAccesssobumalicenc¸aCCBY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Advancesinmedicineandpharmacologyhaveledtoa sig-nificantincreaseingloballifeexpectancy,reflectedpositively inthegrowingnumberofelderlypeople.However,thereisa realconcernabout thequalityoflifeoftheseagingadults, andespecially,regardinghowtoadequatelypreventandtreat thecomplicationsinherenttothis agegroup.Amongthese complicationsare low-energyfractures,or thosethat are a consequenceofassociatedpathologicalcomplications.1–3

Hipfractureshaveseriousimpactonelderlypatients, espe-ciallytheveryelderly(over80years).3Thisissueisrelevant due to the high morbidity and mortality, high postopera-tivedisabilityindex,andincreasingcoststosocietywithless beneficialresultsrelatedtotreatment.4 These fracturesare consideredoneofthelargestpublichealthproblemsinthe world.4AccordingtoAmericanstatistics,over250,000hip frac-turesoccureachyear;itisexpectedthatoverthenext30years, therewillbeanincreaseof100%inthenumberofcases/year. InBrazil,in2010,theincidencewas100,000fracturesperyear, andthemeanmortalityoneyearafterthefracturewas30%. Femoralfractures,especiallyproximalfractures,are among themostrelevant.4

Adequatesurgicaltreatmentisparamountforgood prog-nosis; the method chosen is directly related to the type of hip fracture, specifically the types of femoral fractures (distal orproximal). Proximalfractures can bedivided into two types: intracapsular and extracapsular. The first type includesfracturesofthefemoralneck,andthesecondtype, transtrochantericfractures.Bothhavelow-energytraumaas themainetiology,andbothhavegreatinfluenceinassociated pathologies,suchasosteoporosis.5–7

Osteoporosis, undoubtedly the most common of bone diseases,hasbecomeaburdenofconsiderableeconomic sig-nificance.Factorssuchasethnicity,gender,physicalactivity, andnutritioninfluencethemaximumbonequalityachieved byeachindividual,butarenottheonlydeterminingfactors forfractures.Thespecializedliteratureemphasizesthatbone mineraldensity(BMD),anage-relatedpredictoroffracture,is notalwaysconsistent:individualswithverylowfemoralneck BMDmaynotpresentfracture,whilethosewithnormalBMD might.8Theremaybeotherrelevantvariablesthatdetermine fracturesandespeciallytheirtypes,suchasboneanatomy.8,9 Bonegeometryoftheproximalfemurhasbeenstudied10 asapotentialriskfactor,andhasbeenpositivelyassociated inthepredictionoffracturerisk.However,mosthipfracture studiesdonotdistinguishthepredispositionbetweenthetwo maintypesoffracture(femoralneckandtranstrochanteric), whichinclinical practicewouldbefundamental,sincethe

surgicalapproachofchoicecanbedifferentduetothehigh rateofhiparthroplastyindicationinfemoralneckfractures, whichinturnhasfinancialrepercussionsandaffectspatient recoveryinthepostoperativeperiod.

Thus, this study isaimed atanalyzing the influenceof proximalfemoralbonegeometryinthetypeoffemurfracture presented,bymeasuringstandardpelvicradiographs.

Material

and

methods

Thiswas aprospective,cross-sectional study performedin anorthopedicandtraumaserviceinBrazilbetweenAugust 10,2015andSeptember8,2015.Thestudyincluded30 radio-graphsofpatientswithhip fractures,randomlyselectedas caseswereadmitted.ThestudyfollowedtheDeclarationof HelsinkiandwasapprovedbytheinternalEthicsCommittee (No.1.221.094).

Radiographsweretakenintheanteroposteriorview,with the X-ray generator located one meter from the chassis. Patientswereplacedinahorizontaldorsalrecumbent posi-tion,withthelowerlimbsrotatedinternallyat15◦.

Theinclusioncriteriawerepanoramicradiographsofthe hip of patients aged over 60 years, of both genders, with femoralneckandtranstrochantericfractures.

Exclusioncriteriaincludedradiographsofskeletally imma-turepatients; bilateralhipfracture;and presenceoftumor, infectiouslesions,ormetabolicdiseasesthatcouldalterthe hipandproximalfemuranatomy.

After classification and selection, the radiographs were anatomicallyevaluated,accordingtothefollowingmeasures:

• Cervicodiaphysealangle(CDA):anglebetweentheaxisof thefemoralneckandthediaphysis.

• Femoralneckwidth(FNW):distancebetweencorticallines, atthemidpointofthefemoralneck,perpendiculartoits axis.

• Hipaxislength(HAL):thedistanceinastraightlinebetween thebaseofthegreattrochantertotheendofthefemoral head,followingthelineoftheaxisofthefemoralneck. • Acetabular tear drop distance (ATD): the distance in a

straightlinebetweentheacetabularteardrops.

Thechoiceofthesemeasurementindexeswasbasedon previous studies that conductedmorphometricanalysesof theproximalfemur.11Allmeasurementsweremadebytwo blindedexaminersusingagoniometer(MSD,Europe BVBA-Belgium).

(3)

Fig.1–Representationofanglesmeasuredinan anteroposteriorpelvicradiograph.

usecomputerprogramsformeasuring,astheprocessof scan-ningtheradiographscouldleadtounevenmagnificationofthe imagesandthusgeneratecalibrationbias,sincethesystem availableatthismedicalcenterisnotdigital(Fig.1).

The Kolmogorov–Smirnov test was used to assess the intrinsicparametersofthesampleregardingitsnormalityand distribution.Datawereexpressedasmean,standard devia-tion,andpercentage(SPSSStatisticalSoftware).

The variables were analyzed descriptively through the mean,standarddeviation,minimumandmaximumvalues, and 95% confidenceintervals. Student’st-testwas used to comparethedifferencebetweenthemeansoftwovariables, andPearson’scorrelationcoefficientwasusedtoassessthe correlationindex.Thelevelofsignificancewassetat5% (ROS-NER,B.FundamentalsofBiostatistics.Boston,PWSPublishers, 2nded.)

Results

Thestudy included 30 patients, male (n=6;mean age=76, SD=3.48)andfemale(n=24;meanage=77.37,SD=8.53),that were divided into two large groups offractures with their respectiveanatomicevaluations,asshowninTable1.

Parametricevaluationofthecollecteddata

Inordertoestablishreliableindexesinthecomparisons,the normalityofthesampleswasfirstdeterminedaccordingtothe

Table1–Characterizationofthegroupsaccordingtothe evaluatedangles.

Angles Fractures

Transtrochanteric Neck

CDA FNW HAL ATD CDA FNW HAL ATD

Max 139 42 126 135 139 39 132 134

Min 125 30 99 110 120 29 90 114

M 131.7 34.7 110.2 125.1 131.8 33.2 112.6 122.1 SD 1.2 0.98 2.22 1.96 1.33 0.65 3.08 1.36

n 15 15 15 15 15 15 15 15

Max,maximum;Min,minimum;M,mean;SD,standarddeviation; n,numberofcases.

Table2–Pearson’scorrelationtesttode-characterizethe correlationbetweenage,gender,andmeasurements.

Measurements CDA FNW HAL ATD

Age Pearson’scorrelation 0.124 0.049 0.159 0.094 p-value 0.392 0.735 0.116 0.318 Gender Pearson’scorrelation −0.094−0.064−0.225−0.144 p-value 0.387 0.516 0.657 0.318

Total n 50 50 50 50

Table3–Numericalrepresentationofthecomparison data(unpairedt-test)betweentypesoffracturesforeach pairofanglesstudied.

Pairs n MD 95%CI R p

CDATrans×Neck 30 0.13±1.7 −3.5to3.8 0.0001 0.69 FNWTrans×Neck 30 −1.46±1.18 −3.89to0.95 0.05 0.14 HALTrans×Neck 30 2.4±3.8 −5.39to10.19 0.01 0.53 ATDTrans×Neck 30−3±2.3 −7.9to1.9 0.05 0.22

MD,meandeviation;n,numberofpatients;p,statisticalvaluefor significanceofcorrelation;r,Pearsoncorrelationindex.

150

140

130

120

110

CDA trans

Degree

CDA neck

Fig.2–Representationofthestatisticalrelationshipofthe pairedt-testbetweenCDAintranstrochantericfractures

andCDAinfemoralneckfractures.

Kolmogorov–Smirnovtest,i.e.,itwasdeterminedwhethertwo underlyingprobabilitydistributionswoulddifferinrelationto thenormalityhypothesis,inanyoneofthecases.The normal-ityhypothesiswasnotrejectedforthevariablesinvestigated withp>5%.

Then,tocharacterizepossibleinterferencebiasesbetween theanglesmeasuredbytheobserversofthestudyregarding genderandage,Pearson’scorrelationtestwasused.No posi-tiveassociationwasobservedbetweenthevariables,asshown inTable2.

Afterdeterminingthenormalityofthesampledistribution and ruling out interferencebias, the measurements made by the observers were compared to assess the difference betweenthetypesoffractures,representedbythemeasured angles,andwhetherthesevalueswerecorrelated.Although there were differences between the mean angles (around 3◦–7),Student’st-testindicatedthattheywerenotsignificant

(4)

45

40

35

30

25

FNW trans

Degree

FNW neck

Fig.3–Representationofthestatisticalrelationshipof pairedt-testbetweenFNWintranstrochantericfractures andFNWinfemoralneckfractures.

140

100 120

80

HAL trans

Degree

HAL neck

Fig.4–Representationofthestatisticalrelationshipofthe pairedt-testbetweenHALintranstrochantericfractures andHALinfemoralneckfractures.

150

140

130

120

110

100

ATD trans

Degree

ATD neck

Fig.5–Representationofthestatisticalrelationshipofthe pairedt-testbetweenDLintranstrochantericfracturesand DLinfemoralneckfractures.

Inordertoestablishacorrelation betweenthevariables measured according to the type of fracture, Pearson’s cor-relationtestwasapplied,whichshowednegativityandlow correlationindexes,allofwhichwerenon-significant(Table4, Figs.6–9).

Table4–Numericaldescriptionofthevaluesassigned tothePearsoncorrelationpairsbetweenfemoralneck andtranstrochantericfractures.

Pairs n r 95%CI R p

CDATrans×Neck 30 0.38 −0.17to0.6 0.15 0.15 FNWTrans×Neck 30 0.394 −0.16to0.74 0.145 0.14 HALTrans×Neck 30 0.04 −0.47to0.54 0.002 0.43 ATDTrans×Neck 30 −0.06 −0.55to0.46 0.003 0.82

n,numberofpatients;p,statisticalvalueforsignificanceof corre-lation;r,Pearsoncorrelationindex.

150

150 140

140 130

130

CDA trans

CDA trans

CDA neck

CDA neck

120

120 110

110

Fig.6–Representationofthenegativecorrelationbetween CDAintranstrochantericfracturesandCDAinfemoralneck fractures.

45

45 40

40 35

35

FNW trans

FNW trans FNW neck

FNW neck

30

30 25

25

Fig.7–Graphicrepresentationofthenegativecorrelation

betweenFNWintranstrochantericandFNWfracturesin

femoralneckfractures.

Studylimitations

Ahigherandmorerepresentativesamplingofthepopulation affectedbyhipfractures,astudyindifferentgroupswith asso-ciatedpathologies,andtheadditionofahealthycontrolgroup wouldbenecessary.

Discussion

Inthepresentstudy,itwasdemonstratedthat,although

radio-graphy is a good method to evaluate bone structures and

(5)

140

140 120

130 120

HAL trans

HAL trans HAL neck

HAL neck

100

110 100 80

90

Fig.8–Graphicrepresentationofthenegativecorrelation betweenHALintranstrochantericfracturesandHALin femoralneckfractures.

150

150 140

140 130

130

ATD trans

ATD trans

ATD neck

ATD neck 120

120 110

110 100

100

Fig.9–Graphicalrepresentationofthenegativecorrelation betweenATDintranstrochantericandATDfracturesin femoralneckfractures.

fractureswhencomparedwithahealthy controlgroup.No significant geometricdifference was observed betweenthe groupsstudied.

Theincreasedriskofbonefracturesduetolossofbone massduringadiseaseoragingprocessisamajorclinical prob-lem,whichleadstoanestimateofhealthcostsofaroundUS$ 17billionintheUnitedStatesalone.12,13Inadditiontothe eco-nomicburden,non-vertebralfractures,especiallythoseofthe hip,areanimportantcauseofmorbidityandmortalityinthe agingpopulation.14,15Over4%ofpatientswithpelvicfracture dieduringhospitalization,and24%diewithinayear.16Thus, concentratedeffortsareneededtoidentifytreatment strate-giesthatmaintainskeletalhealthaspatientsage.However,it isofparamountimportancetoimproveaccuracyinidentifying thoseatriskforbonefractures.

BMD measurements are widely used to assess bone mineralstatus, especially in women; theycan account for upto70%ofbonestrength.Althoughstudies have demon-stratedthecorrelationbetweenBMD(commonlydetermined through dual-emission X-ray absorptiometry [DXA]) and fracture risk, predictive models based on DXA alone often presentlowsensitivityinidentifyingindividualssusceptible

tofractures,particularlyinwomenofmenopauseageandin olderpopulations.2,17

Thestructuralintegrityofthis tissueinany mechanical loadingenvironmentisdependentonthespatialdistribution ofBMD, size, and shape,as wellas the propertiesofbone material.18,19

Inliterature,severalstudieshavedemonstratedtheclinical potentialofbonetextureanalysisthroughpelvicradiographs in predicting the risk of femoral neck fractures. In a ret-rospective study, Thevenot et al.10 observed a high intra-and interobserver reproducibility and reliability, and con-cluded that the structural analysis of pelvic radiographs allowstheidentificationofpatientswithriskoffemoralneck fractures. This finding corroborates with studies described in theliterature,which suggest that thetrabecular texture parameters,especiallytheentropicparameter,allowthe sep-aration of individuals at risk from the control individuals; however, no parameter suggests theability todifferentiate among the types of injury, as was studied in the present study.20–22

Oneofthegreatfoesinboneinjuryisosteoporosis, the mostcommonbonedisease.Ithasbecomeaburdenof con-siderable economic significance. Factors such as ethnicity, gender, physicalactivity,and nutritioninfluencethe maxi-mumbonemassqualityachievedbyeachindividual.However, bonemassalone isnotadeterminingfactor.3,4 A studyby Cummengs et al.22 foundthat Japanese womenhad lower BMDthantheirCaucasianpeers;however,theformersuffered fewerfractures.Likewise,age and BMImaynot bedirectly relatedtolossinbonemass.23

Wheeleretal.,8intheirstudyofthecross-sectional geom-etry oflong bonediaphysesthat correlatedBMD, BMI, and age,demonstratedthatbonestrengthissignificantlyhigher inobeseindividualswhencomparedwiththosewithnormal BMI. However,thejoint dimensionsdonotdiffer apprecia-bly; older individuals with a higher BMIare less likely to develop a fracture than younger individuals with normal BMI.

In attempting to establish a risk assessment based on DXA,amultifactortoolwasdevelopedtodeterminehip frac-turepropensity,amethodrecommendedbytheWorldHealth Organization. Thistooltakes into accountdifferent factors (anthropometricvariables,medicalhistory,anddruguse)to evaluatetheten-yearriskoffracture,usingclinicalrisk fac-torswithorwithoutBMDvalues.24Nonetheless,thismethod still has low sensitivity for fracture prediction, since it is improvedinagenericway,andcannotreflectthecomplexity ofthepersonalizedevaluationofindividualsand/orspecific populations.25,26

Differentimagingmethodssuch,asperipheral quantita-tivecomputedtomographyandmagneticresonanceimaging (MRI), can be used to obtain three-dimensional geometry and bonearchitecture in vivo. These methodsmay provide some relevant information in assessing bone quality.27 However, the limited availability and high cost of these methodshasledtothedevelopmentofothertypesof low-cost analyses that may be clinically applicable, such as radiographs.

(6)

evaluation ofthe geometry, the structure, and, eventually, the risk of bone fracture. Nonetheless, new prospective studies with geometric measurements are still needed to confirmthe clinical capability ofthebone texture analysis throughthistool,aswellasthepossibilityofpredictingand defining risk groups for specific types of hip fractures, especially transtrochanteric and those of the femoral head.

Conclusion

Inthepresentstudy,itwasdemonstratedthatalthough radio-graphy is a good method to evaluatebone structures and predicthipfractures,itwasnotsensitiveenoughtocapture differencesbetweenfemoralneckandtranstrochanteric frac-tureswhencomparedwithahealthycontrolgroup.Further prospectivestudiesareneededtoestablishparameters capa-bleofmeasuringsuchdifferences.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

1.JohnellO,KanisJA,OdénA,SernboI,Redlund-Johnell

I,PettersonC,etal.Mortalityafterosteoporotic fractures.OsteoporosInt.2004;15(1):38–42.

2.KanisJA.Diagnosisofosteoporosisandassessment

offracturerisk.Lancet.2002;359(9321):1929–36. 3.SchuitSC,vanderKliftM,WeelAE,deLaetCE,Burger

H,SeemanE,etal.Fractureincidenceandassociation

withbonemineraldensityinelderlymenand

women:theRotterdamStudy.Bone.

2004;34(1):195–202.

4.LouresFB,ChaoubahA,OliveiraVM,AlmeidaAM,

CamposEM,PaivaEP.Economicanalysisofsurgical

treatmentofhipfractureinolderadults.RevSaúde

Pública.2015;49:12.

5.DaniachiD,SantosNettoA,OnoNK,GuimarãesRP,

PoleselloGC,HondaEK.Epidemiologyoffracturesof

theproximalthirdofthefemurinelderlypatients. RevBrasOrtop.2015;50(4):371–7.

6.FormosaMM,Xuereb-AnastasiA.Biochemical

predictorsoflowbonemineraldensityandfracture

susceptibilityinmaltesepostmenopausalwomen.

CalcifTissueInt.2016;98(1):28–41.

7.PalmH,TeixidorJ.Proximalfemoralfractures:canwe

improvefurthersurgicaltreatmentpathways?Injury.

2015;46Suppl.5:S47–51.

8.WheelerRL,HamptonAD,LangleyNR.Theeffectsof

bodymassindexandageoncross-sectional

propertiesofthefemoralneck.ClinAnat.

2015;28(8):1048–57.

9.FritzJ,CösterME,NilssonJÅ,RosengrenBE,Dencker

M,KarlssonMK.Theassociationsofphysicalactivity

withfracturerisk-a7-yearprospectivecontrolled

interventionstudyin3534children.OsteoporosInt.

2016;27(3):915–22.

10.ThevenotJ,HirvasniemiJ,PulkkinenP,MäättäM,

KorpelainenR,SaarakkalaS,etal.Assessmentofrisk

offemoralneckfracturewithradiographictexture

parameters:aretrospectivestudy.Radiology.

2014;272(1):184–91.

11.PiresRE,PrataEF,GibramAV,SantosLE,Lourenc¸oPR,

BellotiJC.Radiographicanatomyoftheproximal

femur:correlationwiththeoccurrenceoffractures.

ActaOrtopBras.2012;20(2):79–83.

12.BurgeR,Dawson-HughesB,SolomonDH,WongJB,

KingA,TostesonA.Incidenceandeconomicburden

ofosteoporosis-relatedfracturesintheUnitedStates,

2005–2025.JBoneMinerRes.2007;22(3):465–75.

13.KanisJA,JohnellO,OdenA,SemboI,Redlund-Johnell

I,DawsonA,etal.Long-termriskofosteoporotic

fractureinMalmö.OsteoporosInt.2000;11(8):669–74.

14.ZhouZ,RedaelliA,JohnellO,WillkeRJ,MassiminiG. Aretrospectiveanalysisofhealthcarecostsforbone

fracturesinwomenwithearly-stagebreast

carcinoma.Cancer.2004;100(3):507–17.

15.KayanK,KanisJ,McCloskeyE.Osteoporosis

managementbygeriatriciansintheUK.AgeAgeing.

2003;32(5):553.

16.KhoslaS,MeltonLJ3rd,DekutoskiMB,AchenbachSJ,

ObergAL,RiggsBL.Incidenceofchildhooddistal

forearmfracturesover30years:apopulation-based

study.JAMA.2003;290(11):1479–85.

17.KanisJA,BlackD,CooperC,DargentP,

Dawson-HughesB,DeLaetC,etal.Anewapproachto

thedevelopmentofassessmentguidelinesfor

osteoporosis.OsteoporosInt.2002;13(7):527–36.

18.JepsenKJ,HuB,TommasiniSM,CourtlandHW,Price

C,TerranovaCJ,etal.Geneticrandomizationreveals

functionalrelationshipsamongmorphologicand

tissue-qualitytraitsthatcontributetobonestrength

andfragility.MammGenome.2007;18(6–7):492–507.

19.TommasiniSM,NasserP,HuB,JepsenKJ.Biological

co-adaptationofmorphologicalandcomposition

traitscontributestomechanicalfunctionalityand

skeletalfragility.JBoneMinerRes.2008;23(2):236–46.

20.ChappardD,BasléMF,LegrandE,AudranM.

Trabecularbonemicroarchitecture:areview.

Morphologie.2008;92(299):162–70.

21.PulkkinenP,SaarakkalaS,NieminenMT,JämsäT.

Standardradiography:untappedpotentialinthe

assessmentofosteoporoticfracturerisk.EurRadiol. 2013;23(5):1375–82.

22.CummingsSR,CauleyJA,PalermoL,RossPD,

WasnichRD,BlackD,etal.Racialdifferencesinhip axislengthsmightexplainracialdifferencesinrates ofhipfracture.StudyofOsteoporoticFractures

ResearchGroup.OsteoporosInt.1994;4(4):226–9.

23.KanisJA,JohnellO,OdenA,JohanssonH,McCloskey

E.FRAXandtheassessmentoffractureprobabilityin

menandwomenfromtheUK.OsteoporosInt.

2008;19(4):385–97.

24.TrémollieresFA,PouillèsJM,DrewniakN,LaparraJ,

RibotCA,Dargent-MolinaP.Fractureriskprediction

usingBMDandclinicalriskfactorsinearly

postmenopausalwomen:sensitivityoftheWHO

FRAXtool.JBoneMinerRes.2010;25(5):1002–9.

25.KorthoewerD,ChandranM,EndocrineandMetabolic

SocietyofSingapore.Osteoporosismanagementand

(7)

careprofessionalsoftheAsia-Pacific.Arch

Osteoporos.2012;7:193–200.

26.ChappardD,GuggenbuhlP,LegrandE,BasléMF,

AudranM.TextureanalysisofX-rayradiographsis

correlatedwithbonehistomorphometry.JBoneMiner

Metab.2005;23(1):24–9.

27.HansD,GoertzenAL,KriegMA,LeslieWD.Bone

microarchitectureassessedbyTBSpredicts

osteoporoticfracturesindependentofbonedensity:

theManitobastudy.JBoneMinerRes.

Imagem

Fig. 1 – Representation of angles measured in an anteroposterior pelvic radiograph.
Fig. 7 – Graphic representation of the negative correlation between FNW in transtrochanteric and FNW fractures in femoral neck fractures.
Fig. 8 – Graphic representation of the negative correlation between HAL in transtrochanteric fractures and HAL in femoral neck fractures.

Referências

Documentos relacionados

Considerando a formação dos clusters após a criação do IQM é possível perceber que, para os municípios do estado de São Paulo, não é possível afirmar que cidades

Flexão dos MI sobre o tronco, no ponto máximo da trajetória de voo (ângulos coxas/tronco e coxas/perna inferiores a 90º); “Abraçar os MI” (MS laterais ao corpo e

From the 12 studies included (13 entries) in this meta-analysis, they all started from the same research assumption, in which the elderly with classifications according to the

Resultados: O presente estudo demonstrou que o antagonista do MIF (p425) diminuiu significativamente proteinúria, excreção urinária de GAGs , relação proteína/creatinina na

The data revealed that the informal caregivers presented higher levels of emotional distress, feelings of sadness and daily working hours (19.8 hours) compared to the

addressing the use of laser therapy and it is not yet a common practice for specialists in orofacial motricity, one should ask: What is the opinion of members of the

Although there is no consensus regarding the best method to be used to perform the cultural adaptation of instruments, in this study it was ob- served that most of the