• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número1"

Copied!
8
0
0

Texto

(1)

Collisionless Dissipation of Radio-Frequeny Waves

in Axisymmetri Tokamak Plasmas

N.I. Grishanov 1

,C.A. de Azevedo 2

, and J.P.Neto 1;2

1

LaboratorioNaional deComputa~aoCienta, 25651-070Petropolis,Brazil

2

UniversidadedoEstadodoRiodeJaneiro,20550-013 Rio deJaneiro,Brazil

Reeivedon26June,2001

Contributionsoftrappedanduntrappedpartilestothetransverseandlongitudinaldieletri

per-mittivityelementsarepresentforradio-frequenywavesinatokamakwithirularross-setionsof

themagnetisurfaesand arbitraryaspetratio. Imaginarypartsofthelongitudinalpermittivity

elementsare important to estimatethe wave powerabsorbed by eletronLandaudamping (e.g.,

during the plasma heating and urrent drive generation) in the frequeny range of Alfven, fast

magnetosoni, and lowerhybridwaves. Whereas, imaginary parts of the transverse permittivity

elementsareneessarytoestimatetheylotron-resonantwavedissipationatthefundamental

y-lotronfrequenyofionsand/oreletrons. Thedissipatedwavepowerisexpressedbysummation

oftermsinludingtheseparateontributionsoftrappedanduntrappedpartilestotheimaginary

partsofboththe diagonal andnon-diagonalelementsofthedieletri permittivity. Theonrete

omputationsarearriedoutforatokamakplasmawiththemainTCABRparameters.

I Introdution

Tokamaks(boththelargeandsmall sizes)representa

promisingalternativeroutetomagnetithermonulear

fusion. To ahieve the fusion onditions in these

de-vies anadditionalplasma heatingmust beemployed.

One of the eetive heating shemes an be realized

viatheradio-frequenywaves. Topreditandanalyze

the powerabsorbed we should know the kineti wave

ondutivity (or dieletri) tensor. For large aspet

ratio tokamaks, solution of the Vlasov equation and

dieletri tensor evaluation are developed quite

om-pletely(see,e.g.,Refs. [1-4℄) byusing thesmallnessof

theinverseaspetratio: a=R<<1,whereaandRare

theminorand majorradiioftheplasmatorus. Inthis

paper,thetransverseandlongitudinaldieletritensor

elements are present for waves in a two-dimensional

axisymmetri tokamak withirularmagnetisurfaes

in theaseof arbitrary a=R<1. This model is

espe-iallysuitedtheTCABR tokamak(havingtheirular

plasma ross-setions)at the University ofS~aoPaulo,

as well as other tokamaks with small elongation and

triangularity.

II Plasma Model

To desribe an axisymmetri tokamak with irular

(r;;), seeFig. 1,onnetedwith theartesian

oor-dinatesas

x=(R+ros)os;

y=(R+ros)sin;

z= rsin; (1)

where r and R are the minor and major radii of the

magnetisurfae,andarethepoloidalandtoroidal

angles, respetively. The poloidal, H

0

, and toroidal,

H

0

,projetionsofanequilibriummagnetieldH,in

thisplasmamodel,are,respetively,

H

0 (r;)=

H

0 (r)

1+os ;

H

0 (r;)=

H

0 (r)

1+os

= r

R

; (2)

satisfying the onditions: div H = 0 and (rotH)

r =

nH=0. Inthe(r;;) oordinates, themodulus of

anequilibrium magnetieldHisgivenas

H(r;)= q

H 2

0 +H

2

0

1+os

; (3)

where H

0

(r) and H

0

(r) orrespond to the toroidal

(2)

Figure1. Thequasi-toroidaloordinates(r;;)for anaxisymmetritokamakplasmawithirularmagnetisurfaes. nis

theunitvetornormaltothetoroidalmagnetisurfaesr=onst.

Detailedevaluationofthetransverseand

longitudi-nalpermittivityelementshasbeenreportedreentlyin

Refs. [5, 6℄. Inontrastto Ref. [7℄ related to it, the

Vlasovequationwassolvedseparatelyfortrappedand

untrappedpartilesusingi)thesetofoordinateswith

the"straight" magnetield lines, by introduingthe

newvariable 0

insteadofas

( 0

)=2artg "

r

1+

1

tg

0

2

#

; (4)

and ii) new time-like variables

u (

0

) and

t (

0

) [the

third kindellipti integrals,Eqs. (15, 16)℄ forthe

un-trappedandtrappedpartiles,respetively,todesribe

thebouneperiodimotionofeahpartilegroupalong

the magnetield line. As aresult ofthis proedure,

theexpressionsofthedieletritensorelementsbeome

simplerthanthosederivedinRefs. [7,8℄.

III Dieletri Tensor Elements

To evaluate the dieletri harateristis we use the

Fourierexpansionsoftheperturbedurrentdensityand

eletrieldin 0

:

j(r; 0

)

1 os 0

= 1

X

m j

m

(r)exp (im 0

);

E(r; 0

)

1 os 0

= 1

X

m 0

E m

0

(r)exp (im 0

0

): (5)

Note, the normal and binormal (to H) urrent

den-sityomponents, j

n and j

b

in our notation, are equal

to j

n = j

1 +j

1 and j

b = i(j

1 j

1

). The

ex-pressionsfor j

l j

l=1

areonvenientto analyzethe

y-lotronresonaneeets atthefundamental ylotron

frequeny of both the ions (if l = 1) and eletrons

(if l = 1) in the expliit form. Aordingly, to

esti-matethej

l

-omponentsweusetheleft(right)-hand

po-larizatedE

l

-projetionsonnetedwith E

n and E

b as

E

l = E

n ilE

b

. As a result, the whole spetrum of

E-eld(by P

m 0

)ispresentinagiven(bym)harmoni

oftheurrentdensity:

4i

! j

m

l (r)=

4i

!

j m

l;u (r)+j

m

l;t (r)

= 1

X

m 0

h

m;m

0

l;u

(r)+ m;m

0

l;t (r)

i

E m

0

l

(r); (6)

4i

! j

m

k (r)=

4i

! h

j m

k;u (r)+j

m

k;t (r)

i

= 1

X

m 0

h

m;m

0

k;u

(r)+ m;m

0

k;t (r)

i

E m

0

k

(r): (7)

Here m;m

0

l;u ;

m;m 0

l;t

and m;m

0

k;u ;

m;m 0

k;t

aretheontributionsofuntrapped(u)andtrapped(t)partilestothetransverse

andlongitudinaldieletripermittivityelements,respetively:

m;m

0

l;u =

0:5! 2

L r

p

1+

2:5

!h

v

T p

1

1

X Z

1

0

d

(

o +)

2 Z

+1

1 u

4

exp u 2

A m

p;l A

m 0

p;l du

(p+nq

t

lÆ lq)u U

l ()

(3)

m;m 0 l;t = 0:5! 2 L r p 1+ 2:5 !h v T p 1 1 X p Z 1 0 d (1+ o ) 2 Z +1 1 u 4 exp u 2 pu V l () B m p;l ^ B m 0 p;l du; (9) m;m 0 k;u = 2! 2 L r 2 p o (1+)

3 h 2 v 2 T (1 ) 1 X p Z 1 0 ( o ; 2 ;)C

m p C m 0 p

(p+nq

t ) 2 ( o +) 1:5

1+2u 2 p +2i p u 3 p W(u p ) d (10) m;m 0 k;t = 4! 2 L r 2 p o (1+)

3 h 2 v 2 T (1 ) 1 X p=1 Z 1 0 ( o ; 2 ;)D m p D m 0 p p 2 (1+ o ) 1:5

1+2v 2 p +2i p v 3 p W(v p ) d: (11)

Herewehaveusedthefollowingdenitions

A m

p;l

(u;)= Z

0 os

(m+nq

t

lÆ) lg() (p+nq

t lÆ lg) u (;) u (;) l r p 2( o +) h uv T p

(1+) F 2 ; K() u (;) u (;) ) s 1+ o sin 2 2

1 sin 2 2 d; (12) ^ B m p;l

(u;)= Z t 0 os (

(m+nq

t

lÆ) lg() p t (;) 2 t (; t ) l r p 2(1+ o ) h uv T p

(1+) " F arsin r 1 sin 2 ! ; ! K() t (;) t (; t ) #) s 1+ o sin 2 2 sin 2 2 d; (13) B m p;l

(u;)= ^

B m

p;l

(u;)+( 1) p

^

B m

p;l

( u;); W(z)=e z 2 1+ 2i p Z z 0 e t 2 dt ; (14) u (;)= Z 2 0 d (1+ o sin 2 ) p

1 sin 2 = o ; 2 ; ; o = 2 1 ; (15) t (;)= o ;arsin 1 p sin 2 ; ; t

()=2arsin p ; (16) C m p ()= Z 0 os

(m+nq

t

) (p+nq

t ) u (;) u (;) d; = e q H 2 0 +H 2 0 M ; (17) D m p ()= Z t 0 os

(m+nq

t ) p

t (;) 2 t (; t ) d+ +( 1) p 1 Z t 0 os

(m+nq

t )+p

t (;) 2 t (; t ) d; (18) U l ()= r p 2( o +) h v T p

(1+)

[!(1+)

u

(;)+l

K()℄; h

= H 0 q H 2 0 +H 2 0 ; (19) V l ()= 2r p 2(1+ o ) h v T p

(1+)

[!(1+)

t (;

t )+l

K()℄; h

= H 0 q H 2 0 +H 2 0 ; (20) u p ()= !r p

2(1+)(

o +)

jp+nq

t jh v T p u

(;); F(;)=

Z

0

d

p

1 sin 2 ; (21) v p ()= 2!r p

2(1+)(1+

o )

p h

v T p t (; t

); K()=F 2 ; ; v T = r 2T M ; (22) ! 2 L = 4Ne 2 M ; q t = h h 1 p 1 2

; Æ=

1:5h

p

1

2

; g=

(4)

Note, m;m

0

l;u ;

m;m 0

l;t ;

m;m 0

k;u ;

m;m 0

k;t

desribethe

ontri-bution ofanykindofuntrappedandtrappedpartiles

to the dieletri tensor elements. The orresponding

expressions for plasma eletrons and ions an be

ob-tained by replaing T (temperature), N (density), M

(mass) , e (harge)bythe eletron T

e ;N

e ;m

e ;e

e and

ion T

i ;N

i ;M

i ;e

i

parameters, respetively. To obtain

the total expressions of the permittivity elements, as

usual, itis neessaryto arryoutthesummation over

allspeiesofplasmapartiles.

Sinethephase oeÆientsC m

p

()and D m

p

(), for

thelongitudinalpermittivityelements,areindependent

ofthewavefrequeny, !,andthepartileenergy,v,it

ispossibletheanalytialLandauintegrationofthe

per-turbeddistributionfuntions of boththetrapped and

untrappedpartilesinveloityspae. Asaresultofthis

proedure,inontrasttoRef. [7℄wherethe

orrespond-ingphaseoeÆientsdependonv, m;m

0

k;u

and m;m

0

k;t are

written by the summation of boune-resonant terms

inluding the well known plasma dispersion funtion

W(z), i.e, by the probability integral of the omplex

argument, Eq. (14). After this,the numerial

estima-tionsofboththerealandimaginarypartsofthe

longi-tudinalpermittivityelementsbeomesimpler,andtheir

dependeneonthewavefrequeny!isdenedonlyby

theargumentsu

p

(;!;:::)andv

p

(^;!;:::)oftheplasma

dispersionfuntions, W(u

p

) and W(v

p

). Introdution

oftheW(z)funtion,inthestandardintegralformEq.

(14),beamepossiblesinethenalequationsforf s

0;u

andf s

0;t

(seeRef. [6℄)havebeenreduedtotherst

or-derdierentialequationswithrespettoonevariable

u

or

t

,respetively,withtheonstantoeÆientsinthe

left-handside. Anotherform oftheoeÆientsC m

p ()

and D m

p

() hasbeendone in Appendix by theJaobi

ellipti funtions, whih also anbeonvenientin the

omputeralulations.

The boune resonane onditions of the eetive

wave-partileinterationsinatokamak plamsa,as

fol-lowsfromEqs. (4)and(5),arethesamethosederived

inRef. [8℄,andan berewrittenas

(p+nq

t

lÆ lg)u U

l

()=0;

l;p=0;1;2;:::

foruntrappedpartiles,where u=v=v

T ,and

pu V

l

(^)=0; l;p=0;1;2;:::

forthetrappedpartiles.

Sinethewholespetrumof theE-eld(by P

1

m 0

)

ispresentinagiven(bym)urrentdensityharmoni,

seeEqs. (6)and(7),itisneessarytotakeintoaount

thatthepoloidaleigenmodenumbersexitedina

toka-makplasmamaydierfromthebasimodenumber(s)

generated by the antenna system. Moreover, the

ex-itation/dissipation of E (m

0

)

k

-harmonis with m 0

6= m

anleadto theadditionalheating ofboththetrapped

and untrapped partiles and destabilize a wide lass

of the low-frequenydrift-Alfveneigenmodes near the

so-alled rational magneti surfaes, where the

longi-tudinal wave vetor omponent hanges its sign, i.e.,

where m+nq

t

(r)=0. This meansthat one-mode

ap-proximation(over)isnotvalidtosolvetheMaxwell's

equationsin thetokamaks,inthegeneralase.

Never-theless,thereissomeinteresttoomparethedieletri

harateristis of a toroidal plasma (obtained by a

two-dimensionalonsiderationoftheproblem)andthe

orresponding harateristis of a ylindrial plasma

model (one-dimensional onsideration), whih is well

developed and often used for the study of the

radio-frequeny plasma heating and urrent drive problems

in tokamaks in the frequeny range of Alfven, lower

hybridand ion-ylotronwaves.

IV Wave Dissipation

One of the main mehanisms of the radio-frequeny

plasma heating is the eletron Landau damping of

wavesduetotheCherenkovresonaneinterationofE

k

withuntrappedandtrappedeletrons. TheCherenkov

resonaneonditionsaredierentfortrappedand

un-trappedpartilesintokamakgeometryandhave

noth-inggeneralwiththewave-partileresonaneondition,

! =(h

=r)(m+nq

t )v

k

, in the ylindrialmagnetized

plasmas. As a result, after averagingin t and 0

and

aountingfor Eq. (7), thewavepower dissipated by

the eletronLandaudamping, P

k

=Re(E

k j

k

), anbe

estimatedas

P

k =P

k;u +P

k;t =

!

8 1

X

m 1

X

m 0

Im m;m

0

k;u

+Im m;m

0

k;t h

ReE m

k ReE

m 0

k

+ImE m

k ImE

m 0

k i

(24)

where,asfollowsfromEqs. (10)and (11),

Im m;m

0

k;u =

4! 2

L r

2 p

o (1+)

2:5

h 2

v

2

T (1 )

1

X

1

(p+nq

t )

2 Z

1

0 (

o ;

2 ;)

(

o +)

1:5 u

3

p

exp( u 2

p )C

m

p C

m 0

p

(5)

Im m;m

0

k;t =

8! 2

L r

2 p

o (1+)

2:5

h 2

v

2

T (1 )

1

X

p=1 1

p 2

Z

1

0 (

o ;

2 ;)

(1+

o )

1:5 v

3

p

exp( v 2

p )D

m

p ()D

m 0

p

()d; (26)

d

are the ontribution of untrapped, Im m;m

0

k;u

, and

trapped, Im m;m

0

k;t

, partiles to the imaginary partof

the longitudinal permittivity elements: Im m;m

0

k =

Im m;m

0

k;u

+Im m;m

0

k;t

. Thus, for the given !, m, n, r

and E-eld amplitudes, the parts P

k;u and P

k;t dier

bythedierentontributionsofuntrappedandtrapped

eletronstoIm m;m

0

k

elements.

Thereis anotherimportantplasmaheating

meha-nismdue to the ylotron wavedampingin therange

ofion/eletronylotronfrequenies,whentheplasma

partilesinterateetivelywiththetransverseeletri

eld omponents, E

l

. Under the ylotron resonane

heating(onthefundamentalharmonis)thepower

ab-sorbed,P

l

=Re(E

l j

l

),anbeexpressedas

P

l =P

l;u +P

l;t =

!

8 1

X

m 1

X

m 0

Im m;m

0

l;u

+Im m;m

0

l;t h

ReE m

l ReE

m 0

k

+ImE m

l Im E

m 0

l i

: (27)

d

As was noted above, l = 1 orresponds to the

wave power absorbed under the ion-ylotron

reso-nane heating when !

;i

; whereas l = 1 should

be used under the eletron-ylotron plasma heating

when ! j

;e

j. Theontributions ofuntrappedand

trappedpartiles to theimaginaryparts of the

trans-versepermittivityanbereadilyderivedfromEqs. (8)

and (9) by using the well known residue (or Landau

rule)method.

V Numerial Results

Now, we alulate numerially the ontribution of

trappedanduntrappedeletronstoIm m;m

0

k

. Tohave

someanalogywith theone-mode(ylindrial)

approx-imation of the wave dissipation by eletron Landau

damping, let us estimate the diagonal (m = m 0

)

ele-ments Im m;m

k;u

and Im m;m

k;t

. The orresponding loal

ylindrialapproximation,Im m;m

k;

, hasthenextform

Im m;m

k; =

2 p

r 3

! 2

po !

h 3

jm+nq

t j

3

v 3

T exp

! 2

r 2

h 2

(m+nq

t )

2

v 2

T

: (28)

d

TheestimationsofIm m;m

k;u ,Im

m;m

k;t

andIm m;m

k; are

arried out for waves with mode numbersn = 4and

m=1inaplasmawiththemainTCABR-parameters:

R = 0:61 m, a = 0:18 m, H

0

= 1 T, q

t (r) =

1:1=(1 0:7r 2

=a 2

),N(r)=310 19

(1 0:95r 2

=a 2

)m 3

,

T(r) = 1000(1 0:99r 2

=a 2

) eV. As shown in Fig. 2,

the ontributions of untrapped and trapped eletrons

to Im m;m

k

depend substantiallyon and !. By

om-paring Im m;m

k;u

and Im m;m

k;t

, we see that the Landau

damping of waves with a high phase veloity, v

ph =

!r=[h

(m+nq

t )℄ > v

T

(e.g., lower hybrid waves), is

duetothebouneresonantinterationwithuntrapped

eletrons. Itmeansthat,undertheLower-Hybrid

Res-onaneHeating,thefavorableonditionsanbereated

totransformthewavemomentumintothemomentum

(6)

Figure2. Theontributionof untrapped(solid lines), Im m;m

k;u

, and trapped(long-dashed lines),Im m;m

k;t

, eletronsto the

imaginarypartofthelongitudinalpermittivityinatokamakplasmaasafuntionofwavefrequeny,!,fordierentmagneti

surfaes: a)r=a=0:5; b)r=a=0:8.

Note, for both the toroidal and ylindrialplasma

models,Im m;m

k;u

andIm m;m

k;

areexponentiallysmallfor

thefastwaveswithv

ph >>v

T

. However,thewave

dis-sipationbyuntrappedeletronsanbelargerthanthe

orrespondingylindrialapproximationsatthe

exter-nalmagnetisurfaes,wherev

ph =v

T

23.

Another feature of wave-partile interation in a

toroidalplasmaistheroleoftrappedpartilesbeomes

substantialfor the slow waves with v

ph << v

T under

the ondition when ! is omparable with the boune

frequenyofthethermaleletrons.Moreover,thewaves

(usually,low-frequenywaves)interateetivelywith

the trapped eletrons at the external magneti

sur-faes, wherethefration oftrapped partilesinreases

as p

2=(1+). Theeetiveheating of trapped

ele-trons(Fig. 3) ispossibleintokamaksusingtheAlfven

waves,whentheloalAlfvenresonaneonditionis

re-alized near the plasma boundary (or in the region of

moderateradii).

Figure3. Theradial strutureofIm m;m

k;u

(solidlines),Im m;m

k;t

(long-dashed lines),andIm m;m

k;

(short-dashed lines)inthe

TCABRtokamakplasmafordierentlevelsofwave(generator)frequeny: a)!=2=4MHz;b)!=2=5:5MHz.

VI Conlusion

The kineti transverse (8, 9) and longitudinal (10,

11)permittivity elementshavebeenderived for

radio-frequenywavesbysolvingVlasovequationfortrapped

and untrapped partiles in an axisymmetri toroidal

plasma with irular magneti surfaes and arbitrary

aspetratio. Thesedieletritensoromponentsare

ex-pressedbysummationofboune-resonantterms,whih

inlude the double integration in veloity spae, the

resonantdenominators,thephaseoeÆients,the

stan-dardelementaryandelliptifuntions. Itisshownthat

plasmadispersionfuntion, ortheprobabilityintegral

of theomplexargument)ispossibleonly forthe

lon-gitudinalpermittivity.

Imaginarypartsofthelongitudinalpermittivity

ele-mentsareimportanttoestimatethepowerabsorbedby

eletronLandaudamping(e.g.,duringtheplasma

heat-ingandurrentdrivegeneration)inthefrequenyrange

of Alfven, fastmagnetosoni,and lowerhybridwaves.

Whereas,imaginarypartsofthetransversepermittivity

elementsare neessarytoestimate the ylotron

reso-nantwavedissipationatthefundamentalylotron

(7)

oftermsinludingtheseparateontributionsoftrapped

anduntrappedpartilestotheimaginarypartsofboth

thediagonalandnon-diagonalelementsofthedieletri

permittivity.

Thedieletritensor omponents, Eqs. (8-11), an

beused forboththe Large(<<1) and Low (<1)

Aspet Ratio Tokamaks to analyze the nite- eets

in the frequeny range of Alfven, Fast Magnetosoni,

LowerHybrid,and Ion/EletronCylotronWaves.

Appendix:

Phase CoeÆients by the Jaobi Ellipti F

un-tions

ThephaseoeÆientsin Eqs. (8-11) anbe

alu-latedbyintroduingtheJaobielliptifuntions,whih

areasthestandardfuntions for advaned versions of

suh mathematial programs as Mathad,

Mathemat-ia, Maple. In partiular, forthe longitudinal

(paral-lel) dieletri permittivity the oeÆients C m

p

() and

D m

p

()anberepresentedas

C m

p ()=

Z

K()

K() os

"

2(m+nq

t

)am(;w) (p+nq

t )

^

(

o ;w)

^

(k

o ;K())

#

dn(;w)dw (29)

D m

p ()=

p

Z

2K()

2K() os

2(m+nq

t )arsin

p

sn(;w)

p 0:5

^

(

o ;w)

^

(

o

;K()) #

n(;w)dw (30)

Here theorrespondingJaobielliptifuntions are

sn(;w)= 2

p

K() 1

X

l=0 ^ q

l+1=2

()

1 q^ 2l+1

() sin

(2l+1)w

2K() ;

n(;w)= 2

p

K() 1

X

l=0 ^ q

l+1=2

()

1+q^ 2l+1

() os

(2l+1)w

2K() ;

dn (;w)=

2K() +

2

K() 1

X

l=1 ^ q

l

()

1+q^ 2l

() os

lw

K() ;

am(;w)= u

2K() +

1

X

l=1 2^q

l

()

l(1+q^ 2l

()) sin

lw

K() ;

d

where theparameterq^isequalto

^

q()=exp

K(1 )

K()

;

and theelliptiintegralof thethird kindinthe (;w)

variableshasbeendoneas

^

(

o ;w)=

Z

w

0

du

1+

o sn

2

(;u) :

ThephaseoeÆientsA m

p;l

(u;) and B m

p;l

(u;), for

thetransversepermittivityelements,mayberewritten

newwvariable, insteadoftheanglevariable 0

:

w( 0

)= Z

0

=2

0

d

p

1 sin 2

foruntrappedpartiles,and

w( 0

)= Z

arsin 1

p

sin

0

2

0

d

p

1 sin 2

(8)

Referenes

[1℄ V.N. Belikov, Ya.I. Kolesnihenko, A.B. Mikhailovskii

andV.A.Yavorskii,Sov.J.PlasmaPhys.3,146(1977).

[2℄ F.M.Nekrasov, Sov.J.PlasmaPhys.18,520(1992).

[3℄ F. Porelli, R. Stanieviz, W. Kernerand H.L. Berk,

Phys.Plasmas1,470(1994).

[4℄ S.V.Kasilov, A.I. Pyatak and K.N. Stepanov, Plasma

Phys.Reports24,465(1998).

[5℄ N.I.Grishanov, C.A.deAzevedoandJ.P.Neto,X Int.

Congress onPlasma Phys. & 42nd Annual APS-DPP

Meeting, Quebe,Canada,2000, Vol.I,p.13(2001).

[6℄ N.I.Grishanov,C.A.deAzevedoandJ.P.Neto, Plasma

Phys.ControlledFusion43,1003(2001).

[7℄ F.M.Nekrasov,A.G.Elmov,C.A.deAzevedo,A.S.de

Assis and J.P.Neto, Plasma Phys.Controlled Fusion

43,727(2001).

[8℄ N.I. Grishanov and F.M. Nekrasov, Sov. J. Plasma

Imagem

Figure 1. The quasi-toroidal oordinates (r; ; ) for an axisymmetri tokamak plasma with irular magneti surfaes
Figure 2. The ontribution of untrapped (solid lines), Im m;m

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

The results of experiments on Alfv en wave urrent drive and plasma heating in the TCABR tokamak.. are analyzed with the help of a numerial ode for simulation of the diusion of

Our di- electric characteristics are suitable to estimate the wave dissipation by electron Landau damping during the plasma heating and current drive generation in the frequency

The observed heating profile is also consistent with the reflectometer measurements of the density fluctuations induced by radio frequency fields in the local Alfv´en wave resonance

The class values are similar for species in association and for the two varieties of arabica coffee, indicating the possibility of using a single table to estimate P absorbed by

O fenômeno da relação entre diferentes campos do conhecimento (envolvendo não só ciências, mas também a filosofia e outros tipos de saber) tem recebido diversas nomenclaturas,

While static studies suggested that nails/claws could not disrupt bone, specific tiger enrichment activities documented that bones were susceptible to damage from the kinetic

Este relatório relata as vivências experimentadas durante o estágio curricular, realizado na Farmácia S.Miguel, bem como todas as atividades/formações realizadas