• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número1"

Copied!
8
0
0

Texto

(1)

The Analysis of Alfven Wave Current

Drive and Plasma Heating in TCABR Tokamak

L.F. Ruhko,E.A. Lerhe, R.M.O. Galv~ao,A.G. Elmov,I.C.Nasimento,

W.P. de Sa,E. Sanada, J.I. Elizondo,A.A. Ferreira, E.A. Saettone,

J.H.F. Severo, V. Bellintani,and O.N. Usuriaga

Institutode Fsia,UniversidadedeS~aoPaulo,

CaixaPostal66318, CEP05315-970, S~aoPaulo,Brasil

Reeivedon26June,2001

TheresultsofexperimentsonAlfvenwaveurrentdriveandplasmaheatingintheTCABRtokamak

areanalyzedwiththehelpofanumerialodeforsimulationofthediusionofthetoroidaleletri

eld. Itpermitstondradialdistributionsofplasmaurrentdensityandondutivity,whihmath

theexperimentallymeasuredtotalplasmaurrentandloopvoltagehanges,andthustostudythe

performaneoftheRFsystemduring Alfvenwaveplasmaheatingandurrentdriveexperiments.

RegimeswitheÆientRFpowerinput inTCABRhavebeenanalyzedandrevealedthepossibility

ofnonindutiveurrent generationwithmagnitudesup to8kA.Theinreaseofplasma energy

ontentduetoRFpowerinputisonsistentwiththediamagnetimeasurements.

I Introdution

Theknowledgeofthemagnitudeandradialposition

ofnonindutivelydriventoroidalurrentinatokamak

plasma,whihisgeneratedbyAlfvenwaves,isofgreat

importane both for optimization of theurrentdrive

sheme itself and for tokamak operation. The most

ommonly usedmethod fordetermination ofthe

mag-nitude ofthe nonindutivelydrivenurrentonsistsof

the analysis of theloopvoltage response to the

appli-ationofanonindutivedrivingfore. Ifthetotal

ur-rent is maintained onstant and a stationary state is

obtained,thenthemagnitudeofthedrivenurrentan

be easily alulated through the loop voltage drop at

the plasma boundary. More ompliated alulations

are neessary in the ase when stationary onditions

arenotahieved.

The problem of toroidal urrent diusion in the

preseneofexternalnon-Ohmiurrentdrivewas

ana-lyzed in the review [1℄. It was pointed outthere that

harateristi time sale of plasma urrent build-up,

whihisonnetedwithtransformationoftheenergyof

externalnonindutiveurrentsoureintotheenergyof

thepoloidalmagnetieldoftheplasmaolumn,anbe

dividedintwoparts,

ext and

int ,

int <

ext

,in

aor-dane with the division ofthe totalpoloidal magneti

eld energyW

t

in twopartsW

t =W

int +W

ext ,where

W

int

is theenergyof themagneti eld inside plasma

andW istheenergyofthemagnetieldoutsidethe

plasma olumn. Usually W

int

amounts to 25-30% of

W

t

. Theharateristitimesaleanbedenedasthe

ratioofthemagnetieldenergy,W

t =

LI 2

2

,to ohmi

power, R I 2

, whih is dissipated in plasma due to the

ow of the eletri urrent that reates this magneti

eld. Thistimeorrespondstothe L

R

time ofan

ele-trialshemewithresistorRandindutorLonneted

inseries. Thesmallertimesale

int

orrespondstothe

time that is neessaryfor termination of all transient

proessesinsideplasmaolumn,thatisduringthistime

the rebuilding of the prole of the plasma urrent is

ompletedandthesubsequenthangesoftotalplasma

urrentIareaomplishedwithonservationofthe

ur-rentprolej(r). Thelargertimesale

ext

orresponds

tothe timewhih isneessaryforthe totalurrent to

reah a stationary value. In the framework of a 0-D

numerialmodel,inwhihtheplasmaisrepresentedas

resistaneandindutaneonnetedinseries,onlythe

proesseswith harateristi time sales

ext an

be analyzed. The proess of toroidal urrent

redistri-butionwithatimesale

int

hastobeanalyzedby

solvingan1-Dplasmatransportmodel.

Currentdiusionandtoroidaleletrieldresponse

tonon-Ohmiurrentdriveintheframeworkofa

sim-plied1-D model was studied in [2℄. In this paper, a

model onsistingof aylindrial plasmaolumn in an

uniformaxialmagnetieldwasonsidered,theplasma

quantities and eletri eld were assumed to be both

(2)

simplia-ity was taken as known, rather than self-onsistently

foundfromtheompletesetoftransportequations. In

order toinlude theeets that dependon

ondutiv-ityproles,analytialsolutionswereomplementedby

numeriallyfoundeigenfuntionsofdiusionboundary

problem. These resultswere usedforinterpretationof

experimentaldata onAlfvenwaveurrentdriveinthe

PHAEDRUS-T tokamak [3℄and have demonstrated a

orretdesriptionoftheevolutionoftheeletrield.

They haveshown also that the time behaviorof loop

voltage response to appliation of non-Ohmi urrent

driveanbeusedto ndouttheradialpositionofthe

nonindutively-drivenurrent.

Inthis paperwepresentanumerialodethat has

beendevelopedspeiallyforanalysisofthe

experimen-taldataonnonindutive-urrentdrivebyAlfvenwaves

in the TCABR tokamak [4℄. We use a 1-D plasma

model similar to [2℄. This ompletely numerial

pro-edure forsolutionthe diusionevolutionforthe

ele-tri eld has no omputational limitations on plasma

prolesand temporal behaviorof thedriving fore. It

permits to nd radial distributions of plasma urrent

densityandondutivity,whihmath the

experimen-tally measured total plasma urrent and loop voltage

hanges, andthustostudy theperformaneof theRF

system during Alfven wave plasma heating and

ur-rentdriveexperiments. DierentregimeswitheÆient

RF power input in TCABR have been analyzed and

revealedthepossibilityofnonindutiveurrent

genera-tionwithmagnitudesupto8kA.

II Numerial model

Weusetheusualpowerbalaneassumptionthatall

plasmaparametersdepend ontimeandononespatial

oordinate,whihdeterminestheirularmagneti

sur-faes. Thatis,inthefollowingallloalquantities suh

as plasma temperature, urrent density, input power

et., orrespond to averaged values on magneti

sur-faes. Further simpliations on the numerial

alu-lations are made assuming that the temperature and

ondutivity donotome self-onsistently from power

balane equations, but an be modied to t

experi-mentaldataoranbepredenedfuntionsoftimeand

radiusT(r;t)and(r;t).

The plasma urrent response to nonindutive

ur-rot !

H = 4

!

E + 4

!

j

d

(1)

and

rot !

E = 1

!

H

t

(2)

HereweassumethatthetoroidalomponentofOhm's

lawhastheform

j=j

d

+(r;t)E (3)

where j,j

d

andE areaxial totalurrentdensity,

non-indutivelydrivenurrentdensity,andeletrield,

re-spetively. From these equations, weobtainthe

diu-sionequationfortheeletrield:

E =

4

2

(

t E+

E

t +

j

d

t

) (4)

Afterthesubstitutionsr=xa,

2

4a 2

=k,andj

d =S,

thefollowinginhomogeneousdiusionequationfollows

E

t

=k(x;t) 1

x

x (x

E

x )

1

(x;t)

(x;t)

t E

S

t 1

(x;t)

(x;t)

t

S (5)

Here weintroduedthe "eetive"eld S(x;t), whih

orresponds tononindutiveurrentdrivefore andis

determined by the input RF powerand urrent drive

eÆieny.

Thisequationhastobesolvedwith boundary

on-ditions

E

x

x=0 =0;

E

x

x=1 =

2

2

I

p

t

(6)

and initial ondition E(x;0) = '(x), where I

p is the

totalplasmaurrent.

TheboundaryvalueproblemEq.5-6issolvedusing

theCrank-Niolsonnumerialsheme,whihgiveshigh

aurayandisunonditionallystable. Somedetailsof

numerialshemearegivenbelow.

Asrststep,wedividethespatialinterval0x1

into N 1 elements h by N points i = 1;2:::N and

h= 1

N 1

; then x

i

=(i 1)=h. In Eq.5wedisretizy

spae andtime in inrementsofhand , respetively,

and obtain, for the inner points 2 i N 1, the

(3)

E n+1 i E n i = D i h 2 " E n i+1 +E n i 1 2E n i + h E n i+1 E n i 1 2x i # E n i n i n+1 i n i S n i n i n+1 i n i S n+1 i S n i : (7) Here E n i =E(x i ;t n ),D i =k(x i ;t n ), n i =(x i ;t n ),S n i =S(x i ;t n

):Aftersubstitutionx

i

=(i 1)h,weget

E n+1 i = E n i + D i h 2 " E n i+1 + E n i+1

2(i 1)

2+ h 2 D i n+1 i n i n i ! E n i +E n i 1 E n i 1

2(i 1) # S n+1 +S n ; (8)

Forouterpointsi=1andi =N, weuse boundaryonditions atx =0 ( E

x

x=0

=0) and atx =1( E x x=1 = 2 2 Jp t

)andobtaintheadditionalrelations

E n 1 =E n 2 (9) E n N =E n N 1 +h 2 2 J n+1 p J n+1 p (10) E n+1 i =E n i + i i+1 X

k =i 1 Z ik E n k S n+1 S n (11) Here i = Di h 2

andtheoperatorZ

ik

hasthefollowingtridiagonalstruture

Z ik =Æ i;k 1 1 1

2(i 1) +Æ i;k 2 1 i n+1 i n i n i ! +Æ i;k+1 1+ 1

2(i 1)

: (12)

TheoperatorelementsZ

1;k andZ

N;k

havetobedeterminedthroughtheboundaryonditionsatx=0andx=1:

E x x=0

= 0 =) E

n 1 =E n 2 E x x=1 = 2 2 J p t

=) E

n N =E n N 1 +h 2 2 J n+1 p J n+1 p (13)

Nowitispossibletodenetheoperator

i;k

for 1iN:

E n+1 i = N X k =1 " i;k E n k +Æ i;k Æ k ;N h 2 J n+1 p J n p # S n+1 k S n k (14) where i;k =Æ i;k +1 i 1 1

2(k 1) +Æ i;k 1 2 i n+1 i n i n i ! +Æ i;k 1 i 1+ 1 2(k 1) (15)

Eq.14representsexpliitFTCSnumerialshemeforthegivenpartialdierentialequation(PDE).Inthenext

stepweseparatetimeandspatial dependeniesandexpressEq.14intheform

E n+1 i =E n i + X k H i;k E n k +R n+1 i R n i (16) where R n i =Æ i;N h 2 2J n p S n i

is aknownmatrix, whih is determined by the driving urrent soureand by total

urrentevolution,and

(4)

E n+1

=(I+H)E n

+R n+1

R n

(18)

whereI istheunitaryoperator.

Now we apply the operator Hto the future value

E n+1

E n+1

=E n

+HE n+1

+R n+1

R n

(19)

and,solvingforE n+1

,weobtainimpliitFTCSsheme

forthegivenpartialdierentialequation

E n+1

=(I H) 1

E n

+R n+1

R n

: (20)

AfterndingtheaverageofEq.18andEq.20and

solv-ingforE n+1

,wenallygettheCrank-Niolsonsheme

forsolvingourpartialdierentialproblem

E n+1

=

I 1

2 H

1

I+ 1

2 H

E n

+R n+1

R n

(21)

This sheme was used in thenumerial simulationsof

theeletrielddiusion. Thenumerialproedure

in-ludedreadingtheexperimentaldataonthemeasured

plasma urrent, whih were stored by the data

aqui-sition system of TCABR. Then, after dierentiation,

these data were used as boundary onditions for the

numerialode(Eq.6). Afterthe numerialsolutionof

equation Eq.21,weobtainthe evolutionof radial

pro-leoftheplasmaurrentdensityandofthelongitudinal

eletrield duringthedisharge. Bothohmiheating

and RFheating and urrentdrivephases anbe

ana-lyzed. The numerial analysis hasbeen performed in

thefollowingorder.

1. Readingexperimentaldatasetfortheplasma

ur-rent, whih was obtained during a plasma

dis-hargein TCABR;

2. Smoothingof the experimental dataand nding

thederivativeoftheplasmaurrent;

3. Numerial solution of partial dierential

equa-tions for eletri eld diusion with obtained

boundaryonditionsand ndingthetime

evolu-tionofalulatedloopvoltage;

4. Analysis of simulation results and, if neessary,

repetition of alulations with modied plasma

parameters, whih inlude eletron temperature

prole and nonindutivedriving fore, until

rea-sonable tting to experimentally measured loop

voltagedataisobtained.

Asitwasshownin[2℄,[3℄theanalysisofloopvoltage

responseto nonindutiveplasmaurrentdrivepermits

tondboththeamplitudeofthedrivenurrentandits

harge with Alfven wave

heating and urrent drive

III.1 Experimental setup

Thebasi regimes forAlfven wave plasmaheating

and urrent drive experiments had following

parame-ters: toroidalmagnetield B

0

=1.1Tonaxis,major

plasma radius R = 0.61m, minor radius a= 0.18 m,

plasma urrent I

P

= 70 to 95 kA, edge safety fator

q(a) ' 3.5 to 5.5, line averagedplasmadensityin the

rangehn

e

i=(0.9to3.5)10 19

m 3

,workinggas

hydro-gen.

Theuseddiagnostitoolsinludeonventional

ele-trotehnial measurements of the loop voltage U,

plasma urrent I

P

, plasma olumn shift (dR , dZ),

plasmaenergyontenthnTibydiamagnetisignaland

plasma equilibrium parameters, fast bolometer

mea-surementsof plasmalosses, and optialmeasurements

ofvisibleradiationintensity. Thelineaveragedplasma

density wasmeasured bymulti-hannel mirowave

in-terferometer. Theionsaturationurrentinthelimiter

shadowwasmonitoredbyamovableLangmuirprobe.

The omplete desription of the RF system of

TCABR tokamak is given in [4℄. In the present

ex-perimentsonlyonemoduleoftheAlfvenwaveantenna

systemhas been used. It waspoweredbythe4-phase

RFgenerator,whihhasnominaloutput power e

P 1

MW in the frequeny range f = 3 to 5.5 MHz. It

provided RF pulses with duration 10 mse. The

shemeofantennastrapsfeedingis showninFig.1.

<

<

S

<

<

S

(5)

Thespatialspetrumof theexitedRFeld(wave

numbers M;N) and its heliity was ontrolled by the

phase ofRFfeeding urrents. Intheourseof RF

ex-periments,dierentantennaongurationsweretested.

As it isseenin Fig.1,the antennamodule ofTCABR

hasfour pairsofhalfloops, whih anbefed

indepen-dentlybytheRFurrents. ItallowstoexitetheAlfven

waveswithdierentmodestruture(M;N)andto

hoosethedesiredheliityofexitedwave(MN>0

orMN<0). IntheFig.2thereareshown

shemati-allythediretionoftoroidalmagnetieldB

T

,plasma

ohmiurrentIpandthewavevetor !

k,whihare

typ-ialfortokamakTCABR.Thelinedeterminesthe

posi-tionoftheRFwavefront,whihissetbyphasingofthe

antennafeedingurrents. Forthepresentase,the

he-liityoftheexitedwaveisnegative(MN<0). The

antennaurrentfeedingforthisaseisshowninFig.1.

Theoretial alulations predit more eÆient Alfven

waveheatingforthisasebeausetheprojetionofthe

wavevetoron the totalmagneti eld k

==

haslarger

valuethanintheaseofpositiveheliity(MN>0).

This resultappearedbeauseofthediretionofohmi

urrentin theTCABR tokamak,whih is opposite to

main toroidalmagnetield.

T

B

&

I

P

&

θ

ˆ

z

ˆ

B

&

k

&

k

//

k

const

m

z

k

z

+

θ

=

Figure2. ShematipresentationoftokamakTCABR

mag-netieldstrutureandantennaheliityhoosing.

III.2 Analysis of antenna phasing

inu-ene on exited wave spetrum

The position r

S

of the zone where the RF

power deposition ours, during Alfven wave

exi-tation, is determined by the wave dispersion

re-lation ! = k

== (r

S )C

A (r

S )

p

(1 ! 2

=! 2

i

). Here

C

A (r

S ) =

B

p

4(r

S )

is the Alfven veloity and k

== =

1

R

n+ m

q(r

S )

is the parallel omponent of wave

ve-systemharateristisaninuene r

S .

TheompleteantennasystemofTCABRtokamak,

whihhastobeomposedoffourantennamodules,

en-sures seletive mode exitation and makes it possible

to ontrol the radial prole of the RF power

deposi-tion. This advantageof Alfvenwaveheating and

ur-rentdrivesheme anbeused forplasmaonnement

andstabilityontrolin theinvestigationsthat are

ar-riedoutintheprogramsofadvanedtokamakonept.

The utilization of only one antenna module does not

permit to exiteamonohromati spatial spetrum of

Alfvenmodesandtorealizeompletelytheadvantages

ofthisplasmaRFheatingsheme. Inthisase,

dier-entmodesanbeexitedsimultaneouslyandtheyan

deposit RFpowerindierentplasmaradialregions.

-10

-5

0

5

10

-4

-2

0

2

4

0

0.5

1

1.5

N

M

Za(Ohm)

-10

-5

0

5

10

-4

-2

0

2

4

0

0.02

0.04

0.06

0.08

0.1

N

M

Za(Ohm)

D

E

Figure3.Wavespetrumofantennaimpedaneforone

an-tennamodule: a) four pairs of half-loops are powered by

RFurrentswith =2phasing, b)onepairof half-loopsis

powered.

TheresultingradialproleofRFpowerdeposition

depends strongly on antenna urrent phasing. With

orretly hosen antenna urrent phasing, a rather

(6)

de-theexitedmodestrutureisshowninFig.3a. Itisseen

that themaximumRF powerdeposition goesthrough

exitationofmodesgroupedaroundM= 1;N =2;3.

Theydeposittheirenergyindeterminedplasmaradial

positionsandpermittogenerateanonindutiveurrent

inthediretionofplasmaohmiurrentandtohange

the radial prole of safety fator q(r). For

ompari-son,theimpedanewavespetrum,whihisexitedby

the antennamodule when only one pair of half-loops

is powered,is shown in the Fig.3b. Inthis asemany

plasmamodesareexitedsimultaneouslyanditis

diÆ-ult toontrolradialposition ofthepowerdeposition

zone.

Thedependene ofradialdistributionofdissipated

RFpoweronplasmaentral densityforantenna

mod-ule ofTCABR is presented in Fig.4. The alulations

havebeenarriedoutwiththehelpofaMHDnumerial

ode[4℄[5℄foroneantennamodulewithurrent

phas-ing,whihisshownin Fig.1,andwhihorrespondsto

exitationofawavewithnegativeheliity(MN <0).

It is seenthat there are regionsof plasma parameters

whih permit eÆient plasma heating with RF power

depositionneartheplasmaolumnenter.

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

n

e

x10

19

m

-3

r/a

f= 3.5MHz

a

3 D X

Figure4.TheradialdependeneofRFpowerinputas

fun-tionofplasmaentraldensityn

e(0) .

III.3 Analysis of loop voltage hanges

during RF power input in tokamak

plasma

For the analysis, we have hosen the plasma

dis-harge shot #4893 in the TCABR tokamak , where

eÆientantenna-plasmaouplingwasobserved. The

traesofsomeexperimentalsignalsareshowninFig.5.

The Alfven waveantennae were powered at time

mo-ment t

1

= 55 mse, and the RF pulse duration was

10 mse, approximately. The details of the disharge

areshownin Fig.6.It isseenthat in theourseofthe

fallsdown. Thiseetanbeexplainedbothbyan

ele-trontemperatureinreasedue to Alfvenwaveheating

and by nonindutive urrent drive. In order to

sepa-ratethesetwoeets,wehavetoarryouttheanalysis

of theloopvoltagedropand omparetheresultswith

theindependentmeasurementsofplasmatemperature

evolution.

7&$%5

6+27

9

/223

9

,

3

N$

5) 3XOVH

Q

H

P

3RZHU /RVVN:

E

'LDP

WLPHPV

Figure5. Plasmadisharge#4893inTCABRtokamak.

β

Figure 6. Details of the signals U, IP, d of plasma

dis-harge#4893.

As it was shown in [2℄, the harater of the loop

voltage evolution in atokamak disharge during

non-indutiveurrentdrivedepends ontheradialposition

oftheresonanezone,wherethedrivenurrentis

gen-erated. The resultsof loop voltage reonstrution for

dierentradialpositionsoftheRFdrivenurrentx= r

a

in TCABR areshownin Fig.7. Heretheoriginofaxis

(7)

voltage response is quite dierent for x = 0:6 to 0:8

(Fig.7a), x = 0:45 to 0:65 (Fig.7b), x = 0:15 to 0:45

(Fig.7), in spite of thefat that thewaveformof RF

drivenurrentwasthesame. Thisphenomenonanbe

used as diagnosti tool for nding the exited Alfven

wave spetrum, whih is responsible for the observed

urrentdrive. Thisproedurehasto inlude

deompo-sitionoftheexperimentallyobtainedvoltagedropina

seriesofbasiloopvoltageresponses,whiharesimilar

to onesshownin Fig.7.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0

1

2

3

4

Us

im

(V

)

0

0.05

0.1

0.15

0

20

40

60

80

100

Jp

(k

A

)

r/a=0 .6 -0 .8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0

1

2

3

4

Us

im

(V

)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0

20

40

60

Jp

(k

A

)

r/a=0 .4 5 -0 .6 5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1

2

3

4

Us

im

(V

)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0

20

40

60

Jp

(k

A

)

t(s ec )

r/a=0 .1 5 -0 .4 5

R F current drive

D

E

F

Figure7. Numerialreonstrutionofloopvoltageresponse

to nonindutive urrent drive for dierent radial positions

ofRFpowerinputzone.

In our ase the shape of the experimentally

mea-suredloopvoltageurvehasbeenttedtotheshapeof

the reonstrutedloop voltage urves,whihwere

al-ulated for dierentradialpositions ofdrivenurrent.

Theinitialdatafornumerialproedurewereobtained

from the experimental data, whih are stored in the

TCABR database. This analysisshowsthatthemain

part of the RF driven urrent, whih an have been

generated in plasmadisharge#4893, owsin the

in-nerplasmaregions.

At the next step of our analysis, we suppose that

talmagnitudeoftheloopvoltagedropisduetoplasma

eletronheating. Theresultsofloopvoltage

reonstru-tionforthisaseareshowninFig.8. Itisseenthatthe

reonstruted loop voltage urve, whih is marked by

irles, ts the experimental urve (solid line) rather

well. The plasma ondutivity was alulated by the

SpitzerformulawithZ

eff

=4. Theeletron

tempera-ture,whih was used in ttingproedure,isshown at

thebottom of Fig.8. It isseenthat for reasonable

ex-planationoftheobservedloopvoltagedropwehaveto

assumethattheeletrontemperatureinreasesdue to

theAlfven waveheating, i.e.,T

e

'180 200eV.At

thesametimedataofdiamagnetimeasurements(in

Fig.8)showsmallervalues of T

e

. Forelimination of

thisdisrepany,wehavetorelatepartofloopvoltage

dropto nonindutiveurrentgeneration.

40

50

60

70

80

0

200

400

600

RF pulse

T

e

t(msec)

0.0

0.5

1.0

β

40

50

60

Jp(

k

A)

0

1

2

3

4

5

U(

V

)

Figure8.Loopvoltagereonstrutionforshot#4893

with-outRFurrentdrive.

Now we assume that some nonidutive urrent is

driven by Alfven waves in inner plasma regions, and

adjustthereonstrutedloopvoltagetothisase. The

result of the simulation is shown in Fig.9. It is seen

from the plasma urrent urves that during RF pulse

somepartofohmiurrentissubstitutedbyRFdriven

urrent, whih amounts to I

CD

' 8 kA. The

reon-strutedloopvoltagenowtstheexperimentally

mea-sured values with a smaller plasma temperature

in-reaseT

e

150eV andit better orrespondsto the

diamagnetimeasurements. InthisexperimenttheRF

powerthathasbeendissipatedintheplasmaamounted

toavalue e

P

RF

80kW,andtheeÆienyofRF

ur-rent drivean be estimated as = ICD

e P

RF

(8)

DRUS - T tokamak, at smaller plasma densities [3℄.

Rather higheÆieny of urrentdrivein TCABR an

beonnetedwithgenerationofurrentininnerplasma

regions, where the eet of trapped partiles plays

smaller role. Further experimental studies with more

auratediagnosti toolsareneessaryfor veriation

oftheseresults.

40

50

60

70

80

0

200

400

600

RF pulse

T

e

t(msec)

0.0

0.5

1.0

β

40

45

50

55

60

65

driven current

Jp(kA)

0

1

2

3

4

5

U(V)

Figure9. Loopvoltagereonstrutionforshot#4893with

RFurrentdriveinluded.

Thealulatedplasmaurrentproleforthese

sim-ulations is shown in Fig.10. It is worthwhile to note

that someevidene ofurrentprolemodiationan

befoundin theMHDativitymodiation,whihwas

registeredby Mirnov probesduring Alfvenwave

exi-tation.

IV Conlusion

IntheourseofAlfvenwaveexperimentsinTCABR

tokamak the regime of eetive antenna- plasma

ou-plingwasfoundwithRFpowerinput e

P

RF

>80kW.

30

35

40

45

50

55

60

0

0.2

0.4

0.6

0.8

1

0

50

100

150

200

250

300

350

400

r/a

t(msec)

j(A/cm

2

)

Figure10. Currentproleevolutioninplasmashot#4893

withAlfvenwaveurrentdrive.

Theresultsofexperiments onAlfvenwaveurrent

driveandplasmaheating havebeenanalyzedwiththe

helpofnumerialodeforsimulationoftoroidaleletri

eld diusion.

Thenumerialreonstrutionoftheloopvoltage

re-sponsetotheRFpowerinputsuggeststhepossibilityof

RFurrentdriveI

CD

'8kAwithaneÆieny '0.1

A/W,howevermoreauratediagnostisareneessary.

Aknowledgement

ThisworkhasbeensupportedbyConselhoNaional

dePesquisaeDesenvolvimentoCient

ioeTenologio,

Funda~ao de Amparo a Pesquisa do Estado de S~ao

PauloeFinaniadoradeEstudoseProjetos,Brasil.

Referenes

[1℄ Ya. I. Kolesnihenko, V.V. Parail, G.V. Pereverzev,

Rev. Plasma Phys. edited by Kadomtsev B.B.,

Con-sultantsBureau,NewYork,17,3,1990.

[2℄ C.Litwin,Phys.Plasmas2,4542 (1995).

[3℄ C. Litwin, N. Hershkowitz, S. Wukith, T. Intrator,

M. Vuovi,D. Brouhous, R.Breun,and M.Harper,

Phys.Plasmas2,4551 (1995).

[4℄ L.F. Ruhko, E. Ozono, R.M.O. Galv~ao, I.C.

Nasi-mento,F.T. Degasperi,E.Lerhe,FusionEngineering

andDesign43,15(1998).

[5℄ L.F.Ruhko,M.C. Andrade,R.M.O.Galv~ao. Nulear

Imagem

Figure 1. Shemati presentation of antenna straps feeding
Figure 2. Shemati presentation of tokamak TCABR mag-
Figure 4. The radial dependene of RF power input as fun-
Figure 7. Numerial reonstrution of loop voltage response
+2

Referências

Documentos relacionados

Remelted zone of the probes after treatment with current intensity of arc plasma – 100 A, lower bainite, retained austenite and secondary cementite.. Because the secondary

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

elements are important to estimate the wave power absorbed by eletron Landau damping (e.g.,.. during the plasma heating and urrent drive generation) in the frequeny range of Alfv

H„ autores que preferem excluir dos estudos de prevalˆncia lesŽes associadas a dentes restaurados para evitar confus‚o de diagn€stico com lesŽes de

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente