• Nenhum resultado encontrado

Effect of Bacillus sphaericus Neide on Anopheles (Diptera: Culicidae) and associated insect fauna in fish ponds in the Amazon

N/A
N/A
Protected

Academic year: 2021

Share "Effect of Bacillus sphaericus Neide on Anopheles (Diptera: Culicidae) and associated insect fauna in fish ponds in the Amazon"

Copied!
6
0
0

Texto

(1)

ww w . r b e n t o m o l o g i a . c o m

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution

Medical

and

Veterinary

Entomology

Effect

of

Bacillus

sphaericus

Neide

on

Anopheles

(Diptera:

Culicidae)

and

associated

insect

fauna

in

fish

ponds

in

the

Amazon

Francisco

Augusto

da

Silva

Ferreira

a,∗

,

Adriano

Nobre

Arcos

b

,

Raquel

Telles

de

Moreira

Sampaio

c

,

Ilea

Brandão

Rodrigues

c

,

Wanderli

Pedro

Tadei

c

aProgramadePósGraduac¸ãoemEntomologia,InstitutoNacionaldePesquisasdaAmazônia(INPA),Manaus,AM,Brazil

bProgramadePósGraduac¸ãoemBiotecnologiaeRecursosNaturaisdaAmazônia,UniversidadedoEstadodoAmazonas,Manaus,AM,Brazil cLaboratóriodeMaláriaeDengue,InstitutoNacionaldePesquisasdaAmazônia(INPA),Manaus,AM,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received25October2014 Accepted18March2015 Availableonline2July2015

AssociateEditor:MariaAniceM.Sallum Keywords:

Anophelesdarlingi Biologicalcontrol Chironomidae

a

b

s

t

r

a

c

t

WeanalyzedtheeffectsofBacillussphaericusonAnopheleslarvaeandontheassociatedinsectfaunainfish farmingponds.Fivebreedingsitesintheperi-urbanareaofthecityofManaus,AM,Brazil,werestudied. SevensampleswerecollectedfromeachbreedingsiteandB.sphaericuswasappliedandreappliedafter 15days.Thesamplesweremadeat24hbeforeapplication,24hpost-applicationand5and15days post-application.Wedeterminedabundance,larvalreductionandlarvaldensityforAnopheles,andabundance, richness,Shannondiversityindexandclassifiedaccordingtothefunctionaltrophicgroupsforassociated insectfauna.Atotalof904Anopheleslarvaewerecollectedanddistributedintofivespecies.Density dataandlarvalreductiondemonstratedtherapideffectofthebiolarvicide24hafterapplication.Atotal of4874associatedaquaticinsectsbelongingtosixordersand23familieswerecollected.Regression analysisofdiversityandrichnessindicatedthattheapplicationofthebiolarvicidehadnoinfluenceon theseindicesandthusnoeffectontheassociatedinsectfaunaforaperiodof30days.B.sphaericuswas foundtobehighlyeffectiveagainstthelarvaeofAnopheles,eliminatingthelarvaeinthefirstdaysafter application,withnoeffectontheassociatedinsectfaunapresentinthefishpondsanalyzed.

©2015SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

TheAmazonenvironmentisrichinwaterresources,very com-monmostlyduetotheexistingmeshofrivers,thusenablingthe formationofnumerousbreedingsitesformanygroupsofaquatic organisms (Sioli, 1984). These organisms particularly include insects,wheresomeofthemarevectorsofpathogensthatcause humantropicaldiseases.Accordingly,mosquitoesoccupyacentral rolebecauseoftheirplasticityincolonizingdifferentaquatic envi-ronments,highdensityinthisenvironmentandfoodpreference forhumanblood(TadeiandThatcher,2000;Forattini,2002).

Controlofthedisease,accordingtotheNationalProgramfor Pre-ventionandControlofMalariaBrazil,hasamongothermeasures, earlydiagnosisandtreatmentofpatients,majorstepsforliftingthe movementofparasite.Theyarealsorecommendedvectorcontrol measures:indoorresidualinsecticideapplication,thetreatmentof breedingsiteswithbiolarvicides,theuseofimpregnatedmosquito

∗ Correspondingauthor.

E-mail:fcoaugusto.bio@gmail.com(F.A.d.S.Ferreira).

netsandlongterm,inspecialsituations,spatialfoggingof insecti-cides(MinistériodaSaúde/SVS,2003;Oliveira-Ferreiraetal.,2010). Breeding sites play an essential role in themaintenance of thedisease,sinceadultsemergereadyfortheirdailybloodmeal

(Rodriguesetal.,2008).Thecontrolofimmatureformscanbe

per-formedusingchemicallarvicides,butthis techniqueisnotused duetotheriskofdevelopmentofresistanceand environmental contamination,and therefore, theuseof biologicallarvicides is increasing.Themainrepresentativesoftheselarvicidesaretoxic crystal-producingbacteria of thegenus Bacillus (Galardo et al., 2013).TheuseofthespeciesBacillussphaericusNeide,1904for mosquito control was advocatedin 1985by the World Health Organization.Sincethen,larvicideshavebeenproducedwiththis bacteriumduetoitsrecognizedtoxicitytothegeneraAnopheles andCulex(Habib,1989;DeBarjac,1990).

The application of biological larvicides to control immature Anopheles sp. is carried out directly at the breeding sites (De

Barjac,1990).However,these environmentsalsohave an

asso-ciatedinsectfauna,whichis formedbyseveralothergroupsof aquaticinsectsthatsharethesamehabitatasthesemosquitoes

(Lang andReymond, 1994).About13ordersof insects havean

aquaticphase,andinsomebiotopes,theymaycomprisearound

http://dx.doi.org/10.1016/j.rbe.2015.03.013

0085-5626/© 2015 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

95%ofthemacroinvertebratecommunity.Theseinvertebratesplay akeyroleinthehealthofthewaterbody,byparticipatinginthe cyclingofnutrientsandthetransformationoforganicmatter, con-tributingtotheflowofenergy(Brasiletal.,2014).

TheeffectofB.sphaericusontheassociatedinsectfaunaunder laboratoryandfieldconditionshasbeeninvestigatedoverthepast decades,andmostoftheseorganismshavenotshownany suscepti-bilitytothebacteria(Mullaetal.,1984;AlyandMulla,1987;Karch

etal.,1991;Rodcharoenetal.,1991;Brownetal.,2004;Merritt

etal.,2005).

Rodriguesetal.(2008)conductedfieldtestsinManaus,Brazil,

applyingB.sphaericusinfishpondsandstandingwaterinpottery, andobservedtheeliminationoflarvaeatbreedingsites48hafter application.Rodriguesetal.(2013)investigatedtheeffectsofB. sphaericusinapplicationsontheNegroandSolimõesRivers,where itwasfoundmoreeffectiveintheblackwaterriverthanthewhite water,whichhasahigheramountofsuspendedmaterial.

Studiesoftheeffectof B.sphaericusagainst Anopheleslarvae havebeenconductedinBrazil,butthereisagapinourknowledgeof itsactionontheassociatedinsectfauna,particularlyintheAmazon environment.ThisstudyaimedtoanalyzetheeffectsofB.sphaericus onAnophelesandtheassociatedinsectfaunainfishfarmingponds intheperi-urbanareaofthecityofManaus,Amazonas.

Materialandmethods

Bioassaysinfield

The sampling sites are located in the peri-urban region of Manaus, Central Amazonia in northern Brazil. Five arti-ficial breeding sites of Anopheles, namely fish culture ponds, were selected: C1 (S03◦0432.2, W59◦5307.4); C2 (S03◦0207.6,W59◦5330.2);C3(S03◦0345.8,W59◦5111.3); C4 (S03◦0244.4, W59◦5309.0) and C5 (S03◦0243.9, W59◦5309.0)(Fig.1).ThelarvicideusedwasVECTOLEXCG®, for-mulatedgranules(ValentBioSciencesCorporation),concentrated driedserotypeH5a5bat7.5%withapowerofapproximately670 Bsinternationaltoxinunits(ITU),containingcornoilandcorncob granules.Weusedthedoserecommendedbythemanufacturer, i.e.,11kg/ha.

Theapplicationsweredonemanuallybyreachingacrossthe edge andover a perimeter of3mofthe breedingcenter.Field bioassayslasted30daysateachpondandtwoapplications (appli-cationandreapplication)ofbiolarvicidewereperformedwithan interval of15 days betweenthem.Samplesof Anopheleslarvae andassociatedinsectfaunawereobtainedatthefollowingtimes: pre-application–samplingperformedbeforeapplication;andafter applicationofbiolarvicide –threepost-applicationsamplesand threepost-reapplicationsamplesatthefollowing times:24h,5 days and 15 days. The period of larvicide application began in December2011andlasteduntilApril2012,wheretherewere9 fieldtripsateachbreedingsite,totaling45forthewholebioassay.

Sampledofinsects

Anopheleslarvaewerecollectedfor20minatthreerandomly selectedpointsontheedgeofeachbreedingsiteusingan ento-mologicalscoopwithvolumetriccapacityofabout350mL,11cm apertureandcapableofhandlinga meter.Duringsampling,the 4th instarlarvaeof Anopheleswere separatedand takentothe MalariaandDengueLaboratoryoftheNationalInstituteof Amazo-nianResearch,maintainedunderlaboratoryconditionsandgrown toadulthoodtofacilitatespeciesidentification.Theidentification ofAnopheleswasperformedusingthedichotomouskeyproposed

byConsoliandOliveira(1994).

Aquaticinsects werecollectedusinganaquaticinsectnet,at fourrandompointsfor30sateachpoint(Merrittetal.,2005). Sub-sequently,thematerialwasfixedin70%alcoholandbroughtto thelaboratorywhereitwasscreenedwiththeaidofa stereomi-croscope.Theinsectsfoundwereidentifiedtothelowestpossible taxonomiclevelusingdichotomouskeys(MerrittandCummins,

1996;Pesetal.,2005;Pereiraetal.,2007).Subsequently,the

indi-vidualswereclassifiedaccordingtothefunctionaltrophicgroups separated intoshredders,scrapers, collectors,filter feedersand predators,followingrecommendationsbyMerrittand Cummins

(1996)andCumminsetal.(2005).

Dataanalysis

Tocharacterizetheinsectfauna,therelativeabundance(%)of aquaticinsectsandspeciesofAnopheles(Magurran,1988)was cal-culated.ToevaluatetheeffectofB.sphaericusonAnopheles,larval reduction(%)wasobtainedbyusingthethreepost-applicationand post-reapplicationdata.Theindexusesthenumberoflarvaebefore andafterapplicationofbiolarvicide,obtainingthepercent reduc-tionofAnopheleslarvaeduringtheexperiment(Mullaetal.,1986). Larvaldensity(LNMH)wasdeterminedbeforeandafterapplication ofbiolarvicideatbreedingsitesLNMHwasobtainedaccordingto theformuladescribedbyTadeietal.(2007)andwassuperimposed onabundancedataovertimeinsectfaunaassociatedtocheckthe behaviorofthesepopulationsduringthebiolarvicideactionperiod. ToevaluatetheeffectofB.sphaericusoninsectfauna associ-atedvectors,richnessanddiversitydatawereanalyzedbylinear regressionanalysis,withtheaidoftheStatisticaStatsoft10.0 pro-gram.TheindependentvariablewastheapplicationofB.sphaericus anddependentwastherichnessanddiversityofassociatedinsect fauna.Therelationshipbetweenrichness/diversityandtheuseof biolarvicidewasassessedbyregressionmodelsthatbestfitthedata distribution.Thevaluesobtainedaftertwobiolarvicideapplication cyclesatthefiveartificialbreedingsitesweretakenintoaccount.

Results

Atotalof905larvaeofAnopheleswerecollectedidentifiedinfive species:Anophelesdarlingi,Anophelesalbitarsis,Anopheles brazilien-sis,AnophelestriannulatusandAnophelesnuneztovari.Therelative abundanceshowedthatA.darlingi(54%)wasthemostabundant speciesandA.albitarsis(1%)theleast.Consideringtheassociated insectfauna,4874specimensbelongingto6ordersand23families werecollected.Chironomidaewasthemostabundantfamilywith 51%,followedbyCeratopogonidae(14%)andCoenagrionidae(11%), andtheleastabundantwasGerridae(0.02%)(Table1).Amongthe functionaltrophicgroups,thecollectorswerethemostabundantin threeofthefivebreedingsitesanalyzed(C2:85%,C3:45.5%andC4: 60%);intheothertwo,thepredatorswerethemostabundant(C1: 73.5%andC5:68%).Thegroupofshredderswastheleastabundant (C4:0.2%)inallbreedingsitesanalyzed.

EffectsonAnopheles

Atthreeofthefivetreatedbreedingsites(C1,C2andC5),the larvaewereeliminatedat24h(100%)andupto5daysafterthe applicationofbiolarvicide,andatC4,thereductionwas98%.After reapplication,thelarvalreductionratewashighintheinitial read-ingsbutdecreased15daysafterre-application.Atbreedingsite C3,24hafterB.sphaericusapplication,larvalreductionwas56%, andatfivedays,negativevalueswereobtainedforlarval reduc-tion,becausetherewasanincreaseinlarvae.Afterreapplication, 100%reductioninlarvaewasobservedafter24handalsoafter15

(3)

61º0'0.000''W N S W E 60º0'0.000''W C2 C4 C3 C1 C5 60º0'0.000''W 61º0'0.000''W 2º0 '0.000 ''S 3º0 '0.000 ''S 2º0 '0.000 ''S 3º0 '0.000 ''S

Fig.1.LocationofbreedingsitesforapplicationsofB.sphaericus,Manaus,Amazonas,Brazil.

Table1

Relativeabundance(%)ofaquaticinsectfaunaassociatedwithanophelinesfoundinfishpondsduringapplicationsofBacillussphaericus,Manaus,Amazonas.

Order Family Fishponds n R.A.%

C1 C2 C3 C4 C5 Diptera Ceratopogonidae 8 186 43 211 238 686 14 Chironomidae 325 1341 143 528 169 2506 51 Culicidae 8 11 12 1 2 34 0.6 Odonata Libellulidae 294 13 31 9 3 350 7.1 Coenagrionidae 520 6 22 22 13 583 11 Corduliidae – 2 2 2 1 7 0.1 Hemiptera Belostomatidae 84 – 21 45 97 247 5 Notonectidae 23 14 4 – 7 48 0.9 Veliidae 16 1 1 2 5 25 0.5 Pleidae 8 – – – – 8 0.1 Nepidae 8 – – 4 5 17 0.3 Corixidae 4 – 33 23 6 66 1.3 Micronectidae – – 1 1 5 7 0.14 Gerridae – – – – 1 1 0.02 Coleoptera Noteridae – 2 1 30 5 38 0.7 Hydrophilidae 47 2 – 5 17 71 1.4 Elmidae 9 1 – 1 – 11 0.2 Dytiscidae 25 7 6 3 3 44 0.9 Ephemeroptera Caenidae 33 11 6 5 3 58 1.1 Baetidae – 29 4 13 1 47 0.9 Polymitarcyidae – 1 – 4 7 12 0.2 Trichoptera Hydroptilidae – – 6 – – 6 0.1 Leptoceridae – – – 2 – 2 0.04 Total 4874

(4)

100 C1 90 Relative abundance (%) 80 70 60 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 50 40 30 20 10 0 Pre 24h 5th Chironomidae Coenagrionidae LNMH 15th Readings 24th 5th 15th 100 C2 90 Relative abundance (%) 80 70 60 1.4 1.2 1 0.8 0.6 0.4 0.2 0 50 40 30 20 10 0 Pre 24h 5th 15th Readings 24th 5th 15th Chironomidae LNMH LNMH LNMH

Fig.2.AbundanceovertimeofaquaticinsectsandvaluesLNMHatC1andC2,Manaus,Amazonas,Brazil.

100 C3 90 Relative abundance (%) 80 70 60 7 6 5 4 3 2 1 0 50 40 30 20 10 0 Pre 24h 5th Chironomidae Coenagrionidae LNMH 15th Readings 24th 5th 15th 100 C4 90 Relative abundance (%) 80 70 60 1.4 1.2 1 0.8 0.6 0.4 0.2 0 50 40 30 20 10 0 Pre 24h 5th 15th Readings 24th 5th 15th Chironomidae LNMH LNMH LNMH

Fig.3.AbundanceovertimeofaquaticinsectsandvaluesLNMHatC3andC4,Manaus,Amazonas,Brazil.

ThelarvalreductiondatademonstratedtheeffectivenessofB. sphaericus,whicheliminatedlarval breedinginthreeof thefive sitesanalyzed24hafterapplication.However,recolonizationwas observedat15daysaftertheapplication,indicatingtheshort per-sistenceofbiolarvicideintheseenvironments(Table2).

Evaluationofassociatedinsectfauna

AsaparameteroftheeffectsofB.sphaericusonbreeding,larval densityvaluesofAnophelessp.(LNMH)weresuperimposed.There wasvariationintheabundanceofspecimensofChironomidaeand CoenagrionidaeatC1,but24hafterapplicationofbiolarvicide,the familieswerefoundexceedingthepre-implementationcollection number.AtC224haftertheapplicationofbiolarvicide,the abun-danceofChironomidaeincreasedcomparedtothevaluesfoundin pre-sampling(Fig.2).

AtC3,thepopulationofchironomidschanged inabundance, which accompaniedthe larvaldensity of Anopheles.At C4,two familiesweredominant,ChironomidaeandCeratopogonidae,both

Table2

Larvalreduction(%)foundinthebreedingofAnophelesafterapplicationand reap-plicationofBacillussphaericus,Manaus,Amazonas,Brazil.

Fishpond Applicationofreadings Reapplicationofreadings 24h 5days 15days 24h 5days 15days

C1 100 100 88 100 100 85

C2 100 98 23 98 98 78

C3 56 −23 22 100 40 100

C4 98 89 65 100 93 100

C5 100 81 69 100 97 100

demonstratingvariabilityinrelativeabundanceduringthe exper-iment,butattheend,bothshowedhighlevels(Fig.3).

AtC5,chironomidsalsovariedintheirpopulationthroughout theexperiment,buttheabundancefoundbeforeapplying biolarvi-cidewaslessthanthatfoundattheendoftheexperiment,withno eliminationoftheseindividualsthroughouttheexperiment(Fig.4). Themodelthatbestfitwasa2ndorderpolynomialregression, described by thefollowing equations.y=a+b*x, where a=0.54, b=0. 001 (r2=0.002), for diversity, y=a+b*x, where a=12.21,

b=0.21(r2=0.047),forrichness(Fig.5).Thelinedoesnotindicate

anegativevariationofthevariablesanalyzed,diversityfollowed aconstantandtherichnessindexshowedaslightincrease, possi-blybecauseofthelargevariationinthedatabetweenthepoints.

100 C5 90 Relative abundance (%) 80 70 60 50 40 30 20 10 0 Pre 24h 5th 15th 24th 5th 15th Readings Chironomidae LNMH 4 3.5 3 2.5 1.5 0.5 0 1 2 LNMH

Fig.4.AbundanceovertimeofChironomidaeandvaluesLNMHatC5,Manaus, Amazonas,Brazil.

(5)

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 5 Readings Diversity 10 15 25 20 15 10 5 0 0 5 Readings Richness 10 15

Fig.5. RegressionanalysisofdiversityandrichnessdatacomparedtoapplicationofBacillussphaericus.

ThisdatashowsthattherehasbeennoeffectofB.sphaericusonthe insectfaunaassociatedwiththisstudy.

Discussion

Theproximityoftheurbanareaispossiblythebiggestfactorthat determinestheabundanceofA.darlingi,sincethisspecieshashigh anthropophily(Tadeietal.,1998).TheorderDipterawasthemost abundantatfourofthefivebreedingsitesanalyzed;itiscommonly dominantinbothloticandlenticenvironmentsduetoitstolerance toextremeconditionssuchashypoxiaandalsobecauseofitsstrong competitiveability(Nessimian,1995;Callistoetal.,2001).

According to Amorim and Castillo (2009), chironomids showgeneralistand opportunistic feedinghabits, mainlybeing collectors-gatherers, which most often utilize periphyton orga-nismsasfood,afactthatexplainsthedominanceofthisgroupover theothertaxa,atmostbreedingsites.

Alargenumberofcollectorsareassociatedwiththepresence ofwetlandandriparianvegetationatbreedingsites,andaccording

KoetsierandMcArthur(2000),macrophytesplayanimportantrole

intheretentionof organicmatter,favoringthepresenceof this trophicgroup.Datafromthepresentstudycorroboratethoseof

Merrittetal.(2005)instudiesontheapplicationofB.sphaericus

ontheassociatedinsectfauna,whofoundthatofthetotalaquatic insectssampled,themajoritybelongedtothecollectorgroup.

Thelow frequencyofscrapersand shreddersinthe environ-mentsstudiedgroupswasinfluencedbythehighabundanceof Chironomidae,whichaccordingtotheliterature,competeforfood (fineparticulateorganicmatter)andspaceforshelterand

protec-tion(AmorimandCastillo,2009).

Wilson(1991)andPeterson(1992)statedthatinnatural

envi-ronments, the greater the presence of predators, the less the competitionisbetweenorganisms,resultinginincreaseddiversity. However,inthefishpondsstudied,thegreaterabundanceof preda-torsdidnotincreasethediversity,possiblybecauseitisanisolated environmentwithalimitednumberofnichestobeoccupied.

TheLNMHvaluesfoundpriortosamplingsinthisstudywere lowcomparedtothosefoundbyRodriguesetal.(2008)inB. sphaer-icusapplicationsinfishponds(mean13.7).However,ourfindings corroboratethoseregardingthedecreaseindensityoflarvae24h afterlarvacideapplication.

ConsideringtheresultsoflarvalreductionatbreedingsiteC3,no highmortalitywasobservedinthefirstdayspost-application.The marginalvegetationinfluencedthelarvicidalactivitysinceallthe breedingsitemarginwascoveredbyBrachiariasp.,thus increas-ingtheamountoforganicmatter.Thisfindingcorroboratesthe resultsobtainedbyAlvesetal.(2006)whoreportedlowactivity forVECTOLEX®larvicideatorganicallyenrichedbreedingsitesof Culexsp.

ThevariablesstudiedherereinforcethespecificityofB. sphaer-icusforAnophelesandCulex,asobservedbyMullaetal.(1984),Aly

andMulla(1987),Laceyand Mulla(1990),Becker(1997),Lacey

andSiegel(2000)andLaceyandMerritt(2003),whoalsofoundno

effectofB.sphaericusonchironomids,otherDipterafamiliesand predatorsofmosquitoesinthefield.ThefamilyChironomidaewas possiblynotaffectedduetothebenthichabitataslarvae,causing ittohavenocontactwiththeVECTOLEXthatwhenappliedonthe surfaceofthewaterisduetoitscompositionofcorncobs.

Finally,thefishpondbreedinghabitatwasalsoassociatedwith insectfaunathatwasnotaffectedbytheapplicationofB. sphaeri-cusover30days.However,studiesmonitoringwaterbodiesfora longerperiod,withrepeatedapplicationsandotherformulations ofbiolarvicide, shouldbeconductedtoobservethebehavior of aquaticpopulations.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

TheauthorsthankAugustoLeãoforhishelpwithstatistical anal-ysis,theGervilaneRibeiroandCarlosPraiaoftheNationalInstitute ofAmazonianResearch,whocontributedtotheidentificationof theindividuals ofAnophelessp.collectedand RaimundoNonato whoassistedin fieldsampling.WethankCNPqforthe scholar-shipgrantedtothestudentFerreira,F.A.S.Dr.A.Leyvahelpedwith Englisheditingofthemanuscript.

References

Alves,L.F.A.,Alves,S.B.,Lopes,J.,Lopes,R.B.,2006.Avaliac¸ãodeestirpesedeuma novaformulac¸ãogranuladadeBacillussphaericusNeideparaocontrolede mosquitos.Neotrop.Entomol.35,493–499.

Aly,C.,Mulla,M.S.,1987.Effectsoftwomicrobialinsecticidesonaquaticpredators ofmosquitoes.J.Appl.Entomol.103,113–118.

Amorim,A.C.F.,Castillo,A.R.,2009.Macroinvertebradosbentônicoscomo bioindi-cadoresdaqualidadedaáguadobaixorioPerequê,Cubatão,SãoPaulo,Brasil. Biodivers.Pampeana7,16–22.

Becker,N.,1997.Microbialcontrolofmosquitoes:managementoftheupperRhine mosquitopopulationasamodelprogramme.Parasitol.Today13,485–487.

Brasil,L.S.,Juen,L.,Batista,J.D.,Pavan,M.G.,Cabette,H.S.R.,2014.Longitudinal distri-butionofthefunctionalfeedinggroupsofaquaticinsectsstreamsoftheBrazilian cerradosavanna.Neotrop.Entomol.43,421–428.

Brown,M.D.,Watson,T.M.,Carter,J.,Purdie,D.M.,Kay, B.H.,2004.Toxicityof VectoLex(Bacillussphaericus)productstoselectedAustralianmosquitoand nontargetspecies.J.Econ.Entomol.97,51–58.

Callisto,M.,Moreno,P.,Barbosa,F.A.R.,2001.Habitatdiversityandbenthic func-tionaltrophicgroupsatSerradoCipó,SoutheastBrazil.Rev.Bras.Biol.6,71–82.

Consoli,R.A.G.B.,deOliveira,R.L.,1994.Principaismosquitosdeimportância san-itárianoBrasil.EditoraFiocruz,RiodeJaneiro.

Cummins,K.W.,Merritt,R.W.,Andrade,P.C.N.,2005.Theuseofinvertebrate func-tionalgroupstocharacterizeecosystemattributesinselectedstreamsandrivers insouthBrazil.Stud.Neotrop.FaunaEnviron.40,69–89.

(6)

DeBarjac,H.,1990.TheuseofBtiagainstmosquitoes.In:deBarjac,H.,Sutherland, D.J.(Eds.),BacterialControlofMosquitoesandBlackFlies:Biochemistry, Genet-icsandApplicationsofBacillusthuringiensisIsraelensisandBacillussphaericus. RutgersUniversityPress,NewBrunswick,NJ,pp.135–157.

Forattini,O.P.,2002.CulicidologiaMédica:Identificac¸ão,Biologia,Epidemiologia, vol.2.EditoradaUniversidadedeSãoPaulo,SãoPaulo.

Galardo,A.K.R.,Zimmerman,R.H.,Galardo,C.D.,2013.LarvalcontrolofAnopheles (Nyssorhinchus)darlingiusinggranularformulationofBacillussphaericusin abandonedgold-minersexcavationpoolsintheBrazilianAmazonRainforest. Rev.Soc.Bras.Med.Trop.46,172–177.

Habib,M.E.M.,1989.Utilizac¸ãodebactériasnocontrolededípterosdeimportância médica.Mem.Inst.OswaldoCruz84,31–34.

Karch,S., Manzambi,Z.A., Salaun, J.J., 1991. Field trials with Vectolex-Gand Vectobac-GagainstAnophelesgambiaeandCulexquinquefasciatusbreedingin Zaire.J.Am.Mosq.ControlAssoc.7,176–179.

Koetsier,P.,McArthur,J.V.,2000.Organicmatterretentionbymacrophytebedsin2 southeasternUSA,low-gradient,headwaterstreams.J.N.Am.Benthol.Soc.19, 633–647.

Lacey,L.A.,Mulla,M.S.,1990.SafetyofBacillusthuringiensis(H-14)andBacillus sphaericustonontargetorganismsintheaquaticenvironment.In:Laird,M., Lacey,L.A.,Davidson,E.W.(Eds.),SafetyofMicrobialInsecticides.CRCPress, BocaRaton,pp.169–188.

Lacey,L.A.,Siegel,J.P.,2000.Safetyandecotoxicologyofentomopathogenic bacte-ria.In:Charles,J.-F.,Delécluse,A.,Nielsen-LeRoux,C.(Eds.),Entomopathogenic Bacteria:FromLaboratorytoFieldApplication.KluwerAcademicPublishers, Dordrecht,pp.253–273.

Lacey,L.A.,Merritt,R.W.,2003.Thesafetyofbacterialmicrobialagentsusedforblack flyandmosquitocontrolinaquaticenvironments.In:Hokkanen,H.M.T.,Hajek, A.E.(Eds.),EnvironmentalImpactsofMicrobialInsecticides.KluwerAcademic Publishers,Dordrecht,pp.151–168.

Lang,C.,Reymond,O.,1994.Qualitébiologiquedesrivièresvaudoisesindiquéeparla diveritéduzoobenthos:campagnes1991–1993.Rev.SuisseZool.101,911–917.

Magurran,A.E.,1988.EcologicalDiversityandItsMeasurement.Princeton Univer-sityPress,Princeton.

Merritt,R.W.,Cummins,K.W.,1996.AnIntroductiontotheAquaticInsectsofNorth America,3rded.Kendall/HuntPublishing.

Merritt,R.W.,Lessard,J.L.,Wessell,K.J.,Hernandez,O.,Berg,M.B.,Wallace,J.R., Novak,J.A.,Ryan,J.,Merritt,B.W.,2005.LackofeffectsofBacillussphaericus (Vectolex®)onnontargetorganismsinamosquito-controlprogramin

south-easternWisconsin:a3-yearstudy.J.Am.Mosq.ControlAssoc.21,201–212.

MinistériodaSaúde/SecretariadeVigilânciaemSaúde,2003.ProgramaNacionalde Prevenc¸ãoeControledaMalária–PNCM,FUNASA,Brasília.

Mulla,M.S.,Darwazeh,H.A.,Davidson,E.W.,Dulmage,H.T.,Singer,S.,1984. Larvi-cidalactivityandfieldefficacyofBacillussphaericusstrainsagainstmosquito larvaeandtheirsafetytonontargetorganisms.Mosq.News44,336–342.

Mulla,M.S.,Darwazeh,H.A.,Aly,C.,1986.Laboratoryandfieldstudiesonnew for-mulationsoftwomicrobialcontrolagentsagainstmosquitoes.Bull.Soc.Vector Ecol.11,255–263.

Nessimian,J.L.,1995.Abundânciaebiomassademacroinvertebradosbentônicos emumbrejodedunasnolitoraldoEstadodoRiodeJaneiro.Rev.Bras.Biol.55, 661–683.

Oliveira-Ferreira, J., Lacerda, M.V.G., Brasil, P., Ladislau, J.L.B., Tauil, P.L., Daniel-Ribeiro, C.T., 2010. Malaria in Brazil: an overview. Malar. J. 9, 115.

Pereira,D.L.V.,Melo,A.L.,Hamada,N.,2007.ChavesdeIdentificac¸ãoparaFamílias eGênerosdeGerromorphaeNepomorpha(Insecta:Heteroptera)naAmazônia Central.Neotrop.Entomol.36,210–228.

Pes,A.M.O.,Hamada,N.,Nessimian,J.L.,2005.Chavesdeidentificac¸ãoparafamíliase gênerosdeTrichoptera(Insecta)daAmazôniaCentral.Bras.Rev.Bras.Entomol. 49,181–204.

Peterson,C.H.,1992.Competitionforfoodanditscommunity-levelimplications. BenthosRes.42,1–11.

Rodcharoen, J., Mulla, M.S., Chaney, J.D., 1991. Microbial larvicides for the controlnuisanceaquaticmidges(Diptera: Chironomidae)inhabiting meso-cosmsand man-made lakes in California.J. Am. Mosq. ControlAssoc. 7, 56–62.

Rodrigues,I.B.,Tadei,W.P.,Santos,R.L.C.,Santos,S.,Baggio,J.B.,2008.Controleda Malária:EficáciadeformuladosdeBacillussphaericus2362contralarvasde espé-ciesdeAnophelesemcriadourosartificiais–tanquesdepisciculturaecriadouros deolaria.Rev.Patol.Trop.37,161–176.

Rodrigues,I.B.,Tadei,W.P.,Dias,J.M.C.S.,Lima,C.A.P.,2013.Atividadelarvicidade Bacillussphaericus2362contraAnophelessp.(Diptera,Culicidae)emriosdo Amazonas,Brasil.BioAssay8,2.

Sioli,H.,1984.TheAmazonanditsmaineffluents:hydrography,morphologyof therivercourses,andrivertypes.In:Sioli,H.(Ed.),TheAmazonLimnologyand LandscapeEcologyofaMightyTropicalRiverBasin.Dr.W.JunkPublishers,pp. 127–165.

Tadei,W.P.,Thatcher,B.D.,Santos,J.M.M.,Scarpassa,V.M.,Rodrigues,I.B.,Rafael, M.S.,1998.Ecologicobservationsonanophelinevectorsofmalariainthe Brazil-ianAmazon.Am.J.Trop.Med.Hyg.59,325–335.

Tadei, W.P., Thatcher, B.D., 2000. Malaria vectors in the Brazilian Amazon: AnophelesofthesubgenusNyssorhynchus.Rev.Inst.Med.Trop.SaoPaulo42, 87–94.

Tadei,W.P.,Passos,R.A.,Rodrigues,I.B.,Santos,J.M.M.,Rafael,M.S.,2007.Indicadores entomológicoseoriscodetransmissãodemalárianaáreadeabrangência doprojetoPIATAM.In:Cavalcante,K.V.,Rivas, A.A.F.,Freitas,C.E.C.(Eds.), IndicadoresSocioambientaiseAtributosdeReferênciaparaotrecho Urucu-Coari-Manaus,RioSolimões,Amazônia.,p.160.

Wilson,W.H.,1991.Competitionandpredationinmarinesoft-sediment communi-ties.Annu.Rev.Ecol.Syst.21,221–241.

Referências

Documentos relacionados

Relatório de Estágio Profissional para apresentação do grau de Mestre em Ensino de Educação Física nos Ensinos Básico e Secundário apresentado à Faculdade

Thus, the products Biogermex • and Agro-Mos • in both application (preventive application on mulberry leaves and cura- tive application on the integument of the silkworms), Planta

Arthropod fauna associated with insect galls in the Area of Relevant Ecological Interest Floresta da Cicuta (Volta Redonda, RJ, Brazil).. Host Plant Gall morphotype Associated

Zn and Cd concentration in leaves, stem and grains decreased with the application of bentonite, indicating a positive effect of the clay application to the soil on

Tendo igualmente em conta as pressões recorrentes do Estado português para que as empresas reduzam o preço dos medicamentos, em Setembro de 2010 a Genéricos Portugueses mudou o

A bacia hidrográfica do rio Sete Saltos, alvo desta pesquisa, possui uma área de 3.821 ha, situada entre os municípios de Ponta Grossa e Campo Largo – PR – Brasil, onde se insere

a) Não existe uma pedagogia sexual em Lutero. A questão da práxis sexual, isto é, sobre o que deve ser praticado no leito conjugal, deve ser resolvido pelo casal. e) Homens e

No âmbito da investigação sobre as condições de conforto e qualidade do ambiente interior de espaços habitacionais e seus possíveis efeitos para os ocupantes,