• Nenhum resultado encontrado

Repair of composite and wood structures

N/A
N/A
Protected

Academic year: 2021

Share "Repair of composite and wood structures"

Copied!
376
0
0

Texto

(1)

DEPARTMENT OF MECHANICAL ENGINEERING AND INDUSTRIAL MANAGEMENT

REPAIR OF COMPOSITE AND WOOD STRUCTURES

by

Raul Duarte Salgueiral Gomes Campilho

M.Sc. in Mechanical Engineering

A thesis submitted in conformity with the requirements for the

Doctoral Degree in Mechanical Engineering

Supervisor:

Marcelo F.S.F. de Moura

Faculty of Engineering, Porto University

Co-Supervisors:

José J.L. Morais

Engineering Department, University of Trás-os-Montes e Alto Douro

Joaquim J.M.S. Domingues

Mechanical Engineering Department, Instituto Superior de Engenharia do Porto

(2)
(3)

Abstract

Carbon-epoxy composites are being increasingly used in structures requiring high specific strength and stiffness, introducing an issue regarding their handling after damage. Repair of these structures should be evaluated, instead of their disposal, for cost saving and ecological purposes. Adhesively-bonded repairs present several advantages relatively to alternative methods, such as fewer sources of stress concentrations, attractive fatigue characteristics and possibility of joining different materials. Most of the design approaches for these structures are based on Finite Element Modelling coupled with strength of materials or fracture criteria, which have some limitations. Cohesive Zone Models are an appealing alternative to these methods, overcoming their limitations and exploiting their advantages, by the use of strength of materials criteria to model damage initiation and fracture mechanics to deal with propagation. In this work, a mixed mode (I+II+III) trapezoidal Cohesive Zone Model to be included in Finite Element simulations was developed to simulate thin layers of ductile adhesives in bonded assemblies. To reproduce the adhesives behaviour, after the elastic region a constant strength plateau follows, corresponding to the development of plasticity. The cohesive laws for the adhesive used in this work were derived by an inverse method. This also applied to the interlaminar and intralaminar fracture characterization of the composite used as damaged structure or patch. Preliminary validations of this technique were carried out with parametric studies of single-strap repairs and single-lap joints on carbon-epoxy laminates.

The developed numerical methodology is applied to the fracture behaviour prediction and geometric parameters optimization of repairs in thin carbon-epoxy laminates. Single and double-strap, and also scarf repairs, were examined experimentally and numerically under tension, compression and bending loads. Particular emphasis was paid to the fracture mechanisms and failure load. A purely numerical geometric optimization investigation was carried out for single and double-strap repairs on composite structures under the same loads. Some of the geometric alterations regarded in the literature to increase the repairs strength are addressed, such as patch outer and inner chamfering, laminate outer and inner chamfering, adhesive filleting at the patch edges and plug filling the repair hole with adhesive. No accurate predictive tools are yet available to the designer for adhesively-bonded repairs of wood members with thin plates. To exploit this important field of application of composites, the numerical methodology developed was experimentally validated on repairs of wood structures under static bending. Repair techniques were proposed for three of the most common damage mechanisms under bending, i.e., compression failure, horizontal shear and cross-graining, aiming the full re-establishment of the beams undamaged strength. The possibility of wood failure was introduced in two different propagation planes, in addition to the patch interlaminar and adhesive layer cohesive failures.

The overall results of this dissertation show that, despite introducing several possibilities in the numerical models, these were always accurate in modelling the repairs fracture behaviour. The concurrent quantitative predictions of the repairs elastic stiffness, maximum load and corresponding displacement, as well as other parameters defined by the characteristics of each set of repair technique and loading, certify the suitability of the proposed methodology in simulating the fracture behaviour of bonded assemblies, opening a good perspective for a quicker design and reduction of costs due to extensive experimental characterization.

(4)
(5)

Résumé

Les composites carbone/époxy stratifiés sont de plus en plus employés en structures exigeant des résistances et des rigidités spécifiques élevées, ce qui entraîne des problèmes de réutilisation après l’endommagement. La réparation de ces structures est préférable à leur remplacement, pour des raisons économiques et écologiques. Les réparations collées présentent plusieurs avantages relativement aux autres méthodes, comme la réduction de concentrations de contraintes, la bonne tenue à la fatigue et la possibilité de lier différents matériaux. La plupart des méthodes de conception sont basées sur la modélisation par Eléments Finis alliée à des critères de la résistance des matériaux ou de la mécanique de la fracture, qui ont quelques limitations. Les Modèles de Dommage Cohésifs sont une alternative à ces méthodes, évitant leurs limitations et exploitant leurs avantages, en employant des critères de la résistance des matériaux pour modéliser l’initiation du dommage et de la mécanique de la fracture pour la propagation. Dans ce travail, un Modèle de Dommage Cohésif trapézoïdal en mode mixte (I+II+III) pour simulations d'Éléments Finis a été développé pour simuler des couches minces d’adhésifs ductiles dans des assemblages collés. Pour reproduire correctement le comportement des adhésifs, un plateau de contrainte apparaît après la région élastique, correspondant à la plasticité. Les lois cohésives pour l'adhésif utilisé ont été déterminées par une méthodologie inverse. Cette méthodologie également a été appliquée à la caractérisation inter laminaire et intra laminaire de rupture du composite utilisé comme structure ou patch. Des validations préliminaires de cette technique ont été effectuées avec des études paramétriques de joints et réparations de simple recouvrement sur des composites carbone/époxy stratifiés.

La méthodologie numérique développée a été appliquée pour prévoir la rupture et optimiser la géométrie des réparations en composites carbone/époxy stratifiés. Des réparations de simple et double recouvrement, et également en rampe, ont été examinées expérimentalement et numériquement en tension, compression et flexion. Les mécanismes de rupture et la charge maximum des réparations sont détaillés. Une recherche numérique d'optimisation géométrique a été effectuée pour des réparations de simple et double recouvrement sur les structures composites sous les mêmes cas de sollicitation. Quelques changements géométriques pour augmenter la résistance des réparations ont été considérés: le biseau extérieur et intérieur du patch, le biseau extérieur et intérieur du composite, le filet d’adhésif dans l’extrémité extérieure du patch et remplissant avec de l’adhésif le trou résultant de l’enlèvement du matériel endommagé.

Aucun outil prédictif précis n’est disponible à l’Ingénieur pour des réparations adhésives des membres en bois. Pour exploiter ce champ d'application des composites, la méthodologie numérique a été validée avec des essais expérimentaux pour des réparations des structures en bois sous flexion. On a proposé des techniques de réparation pour des mécanismes d’endommagement les plus communs en flexion: fracture en compression, cisaillement horizontal et croix granulation, de façon à rétablir la résistance initiale du bois. La possibilité de fracture du bois a été mise dans deux plans de propagation, en plus des fractures inter laminaires du patch et cohésives de la couche d’adhésif.

Les résultats de cette dissertation prouvent que, en dépit de l’introduction de plusieurs possibilités aux modèles numériques, les prévisions de ruptures des réparations ont toujours été précises. Les prévisions quantitatives simultanées de la rigidité élastique de réparations, de la charge maximale et du déplacement correspondant, comme d'autres paramètres définis par les caractéristiques de chaque technique de réparation et sollicitation, prouvent que la méthodologie proposée simule correctement le comportement des assemblages collés. De plus elle permet une conception plus rapide, avec la réduction des coûts dus à la caractérisation expérimentale vaste.

(6)
(7)

Resumo

A utilização dos compósitos de carbono-epóxido tem vindo a aumentar em aplicações que necessitam de materiais com elevada resistência e rigidez específicas, conduzindo ao problema da sua manipulação após sofrerem dano. Deve-se optar pela reparação destas estruturas, em detrimento da sua substituição, tanto por razões económicas como ecológicas. A utilização de reparações adesivas apresenta diversas vantagens relativamente aos métodos alternativos, tais como diminuição das concentrações de tensões, bom comportamento à fadiga e possibilidade de ligar materiais distintos. A maioria dos métodos de dimensionamento são baseados na modelação por Elementos Finitos acoplada a critérios de rotura da resistência dos materiais ou de fractura, que possuem algumas limitações. Os Modelos de Dano Coesivos são uma alternativa atraente, superando as suas limitações e explorando suas vantagens, pela utilização de critérios da resistência dos materiais para modelar a iniciação do dano e da mecânica da fractura para a propagação. Neste trabalho, foi desenvolvido um Modelo de Dano Coesivo trapezoidal em modo misto (I+II+III) para ser incorporado em simulações de Elementos Finitos, permitindo a modelação de camadas finas de adesivos dúcteis. Para reproduzir fielmente o comportamento dos adesivos, após a região elástica segue-se um patamar de tensão constante, correspondendo ao comportamento plástico. As leis coesivas para o adesivo usado neste trabalho foram obtidas por uma metodologia inversa, procedimento também aplicado à caracterização interlaminar e intralaminar da fractura do compósito usado como estrutura ou remendo. Foram realizadas validações preliminares desta técnica com estudos paramétricos de juntas e reparações por sobreposição simples em laminados de carbono-epóxido.

A metodologia numérica desenvolvida é aplicada à previsão do comportamento e à optimização de alguns parâmetros geométricos de reparações em laminados finos de carbono-epóxido. Foram avaliadas experimentalmente e numericamente reparações por sobreposição simples, dupla e por remendo embebido em tracção, compressão e flexão. Foi dada relevância aos mecanismos de rotura e à carga máxima. Um trabalho numérico de optimização da geometria foi também realizado em reparações por sobreposição simples e dupla em estruturas de carbono-epóxido sob as mesmas cargas. Algumas das alterações consideradas na literatura para aumentar a resistência das reparações são testadas, como o chanfro exterior e interior do remendo, o chanfro exterior e interior do laminado, a utilização de filetes de adesivo na extremidade exterior do remendo e o enchimento com adesivo do furo correspondente ao material danificado.

Neste momento, não se encontram disponíveis para o projectista ferramentas de previsão fiáveis para reparações adesivas em vigas de madeira. Para explorar esta aplicação dos materiais compósitos, a metodologia numérica foi validada experimentalmente com estas reparações sob flexão. Foram propostas técnicas de reparação para três dos mecanismos de dano mais comuns sob flexão: rotura por compressão, por corte horizontal e por desalinhamento do grão, com o objectivo da restituição da resistência inicial das vigas. A possibilidade de dano na madeira foi introduzida em dois planos de propagação, para além das roturas interlaminar do remendo e coesiva da camada de adesivo.

Os resultados apresentados nesta dissertação mostram que, apesar da introdução de diversas possibilidades de rotura nos modelos numéricos, estes reproduziram sempre fielmente os modos de rotura. Simultaneamente, as previsões quantitativas da rigidez elástica, carga máxima e respectivo deslocamento, assim como outros parâmetros definidos pelas características de cada técnica de reparação e solicitação, certificam a adequabilidade da metodologia proposta para prever o comportamento à fractura de conjuntos reparados por adesivos, abrindo uma boa perspectiva para um dimensionamento mais expedito e redução dos custos derivados de uma caracterização experimental detalhada.

(8)
(9)

Acknowledgements

I would like to express my sincere gratitude to the following individuals, for the guidance or technical contribution at some stage in this work, interesting discussions, writing and grammar review, friendship and moral support to the completion of this thesis, without which such a demanding task could not have been accomplished. I equally wish to thank my family for the lack of attention and support during these years. Finally, I show my gratitude to the Portuguese Foundation for Science and Technology for supporting the work here presented, through the individual grant SFRH/BD/30305/2006. Abel Ferreira Abílio de Jesus Albertina Medeiros Ana Almeida Ana Barreto André Roque Anselmo de Moraes Anselmo Vieira António Ferreira António Marques António Ribeiro Armindo Teixeira Arnaldo Pinto Avelino Pinheiro Carla Roque Carolina Garbe Cassilda Tavares Célia Novo Clara Frias Cristina di Angelis Cristóvão Santos Daniel Gonçalves Daniel Rocha Daniel Rodrigues Dimitra Ramantani Eduardo Marques Fernando Neves Filipe Chaves Francisco Silva Hannes Korber Hélder Damaso Hugo Faria Jaqueline Silva João Batista João Gonçalves Joaquim Domingues Joaquim Fonseca Joaquim Rocha Jorge Almeida Jorge Batista Jorge Facão José Chousal José Esteves José Gomes José Morais José Pereira José Reina José Xavier Liyong Tong Lucas Silva Lúcia Dinis Luís Durão Luís Ferreira Luís Magalhães Manuel Silva Marcelo Moura Marco Parente Mariana Banea Mário Pinto Mário Vaz Miguel Figueiredo Nuno Dourado Paulo Castro Paulo Neves Paulo Nóvoa Pedro Camanho Pedro Martins Pedro Moreira Pedro Neves Ricardo Lima Rui Fazenda Rui Martinho Rui Silva Sérgio Tavares Sónia Santos Sónia Vieira Susana Oliveira Tuani da Roza Valentin Trummer Victória Fernandez Vitor Alves

(10)
(11)

Table of Contents

1. INTRODUCTION ...1

2. STATE-OF-THE-ART REVIEW...5

2.1. COHESIVE ZONE MODELS TO SIMULATE DUCTILE ADHESIVE LAYERS...9

2.2. ADHESIVELY-BONDED ASSEMBLIES...15

2.2.1. Numerical analysis...15

2.2.1.1. Single and double-lap/strap assemblies ... 16

2.2.1.2. Scarf assemblies ... 26

2.2.1.3. Geometric changes ... 32

2.2.2. Experimental analysis ...36

2.2.2.1. Single and double-lap/strap assemblies ... 36

2.2.2.2. Scarf assemblies ... 39

2.3. STRENGTHENING AND REPAIR OF WOOD STRUCTURES WITH COMPOSITES...41

2.4. CONCLUDING REMARKS...50

3. FRACTURE APPROACHES FOR STRENGTH PREDICTION ...53

3.1. LINEAR ELASTIC FRACTURE MECHANICS...53

3.2. COHESIVE ZONE MODELS...55

3.2.1. Triangular cohesive zone model...56

3.2.2. Trapezoidal cohesive zone model...58

3.2.2.1. Cohesive parameters ... 62

3.2.2.1.1. Specimens preparation ... 63

3.2.2.1.2. Pure mode I (DCB specimen)... 66

3.2.2.1.2.1. Experimental work ... 67

3.2.2.1.2.2. Data reduction schemes... 68

3.2.2.1.2.3. Experimental results ... 69

3.2.2.1.2.4. Numerical analysis ... 70

3.2.2.1.2.5. Comparison between the experimental and numerical results ... 71

3.2.2.1.3. Pure mode II (ENF specimen) ... 72

3.2.2.1.3.1. Experimental work ... 72

3.2.2.1.3.2. Data reduction schemes... 73

3.2.2.1.3.3. Experimental results ... 74

3.2.2.1.3.4. Numerical analysis ... 75

3.2.2.1.3.5. Comparison between the experimental and numerical results ... 76

3.2.2.1.4. Summary of the results ... 78

3.2.3. Validation of the trapezoidal cohesive zone model...78

3.2.3.1. Single-strap repairs ... 79 3.2.3.1.1. Experimental work ... 80 3.2.3.1.2. Numerical analysis ... 82 3.2.3.1.3. Results ... 82 3.2.3.1.3.1. Stress analysis ... 82 3.2.3.1.3.2. Failure modes... 83

(12)

3.2.3.1.3.3. Summary of the results... 85 3.2.3.1.3.4. Sensitivity analyses... 87 3.2.3.2. Single-lap joints ... 88 3.2.3.2.1. Experimental work ... 88 3.2.3.2.2. Numerical analysis ... 90 3.2.3.2.3. Results ... 91 3.2.3.2.3.1. Stress analysis ... 91 3.2.3.2.3.2. Failure modes... 94

3.2.3.2.3.3. Summary of the results... 95

4. REPAIR OF COMPOSITE STRUCTURES ...99

4.1. MATERIAL PROPERTIES...100 4.2. PROCEDURE...100 4.3. STRAP REPAIRS...103 4.3.1. Numerical work...106 4.3.2. Experimental work ...108 4.3.2.1. Specimens preparation ... 108 4.3.2.2. Specimens testing ... 113 4.3.2.2.1. Tensile load ... 113 4.3.2.2.2. Compressive load ... 113 4.3.2.2.3. Bending load ... 114 4.3.3. Tensile load ...114 4.3.3.1. Stress analysis ... 114 4.3.3.1.1. Single-strap repairs... 114 4.3.3.1.1.1. Overlap length... 118 4.3.3.1.1.2. Patch thickness... 119 4.3.3.1.1.3. Adhesive thickness ... 121 4.3.3.1.2. Double-strap repairs ... 122 4.3.3.1.2.1. Overlap length... 126 4.3.3.1.2.2. Patch thickness... 128 4.3.3.1.2.3. Adhesive thickness ... 129 4.3.3.2. Failure analysis ... 130 4.3.3.2.1. Mechanical behaviour... 130

4.3.3.2.2. Summary of the results ... 134

4.3.4. Compressive load...135 4.3.4.1. Stress analysis ... 136 4.3.4.1.1. Single-strap repairs... 136 4.3.4.1.1.1. Overlap length... 139 4.3.4.1.1.2. Patch thickness... 139 4.3.4.1.1.3. Adhesive thickness ... 140 4.3.4.1.2. Double-strap repairs ... 140 4.3.4.1.2.1. Overlap length... 143 4.3.4.1.2.2. Patch thickness... 144 4.3.4.1.2.3. Adhesive thickness ... 144 4.3.4.2. Failure analysis ... 144

(13)

4.3.4.2.1. Mechanical behaviour... 144

4.3.4.2.2. Summary of the results ... 149

4.3.5. Bending load...151 4.3.5.1. Stress analysis ... 151 4.3.5.1.1. Single-strap repairs... 151 4.3.5.1.1.1. Overlap length... 154 4.3.5.1.1.2. Patch thickness... 156 4.3.5.1.1.3. Adhesive thickness ... 157 4.3.5.1.2. Double-strap repairs ... 158 4.3.5.1.2.1. Overlap length... 162 4.3.5.1.2.2. Patch thickness... 163 4.3.5.1.2.3. Adhesive thickness ... 165 4.3.5.2. Failure analysis ... 166 4.3.5.2.1. Mechanical behaviour... 166

4.3.5.2.2. Summary of the results ... 173

4.4. SCARF REPAIRS...174 4.4.1. Numerical work...177 4.4.2. Experimental work ...180 4.4.2.1. Specimens preparation ... 180 4.4.2.2. Specimens testing ... 183 4.4.2.2.1. Tensile load ... 184 4.4.2.2.2. Compressive load ... 184 4.4.2.2.3. Bending load ... 185 4.4.3. Tensile load ...186 4.4.3.1. Stress analysis ... 186 4.4.3.1.1. Scarf angle ... 191 4.4.3.2. Failure analysis ... 192 4.4.3.2.1. Mechanical behaviour... 192

4.4.3.2.2. Summary of the results ... 194

4.4.4. Compressive load...195

4.4.4.1. Stress analysis ... 195

4.4.4.1.1. Scarf angle ... 197

4.4.4.2. Failure analysis ... 198

4.4.4.2.1. Mechanical behaviour... 198

4.4.4.2.2. Summary of the results ... 200

4.4.5. Bending load...201

4.4.5.1. Stress analysis ... 201

4.4.5.1.1. Scarf angle ... 203

4.4.5.2. Failure analysis ... 205

4.4.5.2.1. Mechanical behaviour... 205

4.4.5.2.2. Summary of the results ... 206

5. GEOMETRIC CHANGES IN COMPOSITE REPAIRS ...209

5.1. MATERIAL PROPERTIES...211

(14)

5.3. SINGLE-STRAP REPAIRS...212

5.3.1. Patch outer chamfer ...212

5.3.2. Patch inner chamfer ...215

5.3.3. Plug filling...218

5.3.4. Fillets...220

5.3.5. Laminate outer chamfer ...223

5.3.6. Laminate inner chamfer ...225

5.3.7. Geometric changes combinations ...227

5.3.7.1. Tensile load ... 228

5.3.7.2. Compressive load ... 228

5.3.7.3. Bending load ... 229

5.4. DOUBLE-STRAP REPAIRS...231

5.4.1. Patch outer chamfer ...231

5.4.2. Patch inner chamfer ...234

5.4.3. Plug filling...236

5.4.4. Fillets...238

5.4.5. Laminate outer chamfer ...240

5.4.6. Geometric changes combinations ...242

5.4.6.1. Tensile load ... 242

5.4.6.2. Compressive load ... 243

5.4.6.3. Bending load ... 244

5.5. SUMMARY OF THE FAILURE MODES AND OPTIMAL SOLUTIONS...244

6. REPAIR OF WOOD STRUCTURES WITH COMPOSITES ...247

6.1. MATERIAL PROPERTIES...248

6.2. PROCEDURE...250

6.3. PURE BENDING DAMAGE...250

6.3.1. Numerical work...253

6.3.2. Experimental work ...257

6.3.2.1. Specimens preparation ... 257

6.3.2.1.1. Compression failure specimens ... 258

6.3.2.1.2. Cross-grain tension specimens... 260

6.3.2.1.3. Horizontal shear specimens ... 262

6.3.2.2. Specimens testing ... 263

6.3.3. Compression failure repairs...264

6.3.3.1. Stress analysis ... 264

6.3.3.1.1. Overlap length ... 268

6.3.3.2. Failure analysis ... 269

6.3.3.2.1. Mechanical behaviour... 269

6.3.3.2.2. Summary of the results ... 275

6.3.4. Cross-grain tension repairs...277

6.3.4.1. Stress analysis ... 277

(15)

6.3.4.2. Failure analysis ... 282

6.3.4.2.1. Mechanical behaviour... 282

6.3.4.2.2. Summary of the results ... 287

6.3.5. Horizontal shear failure repairs...289

6.3.5.1. Stress analysis ... 289

6.3.5.1.1. Patch length ... 292

6.3.5.2. Failure analysis ... 294

6.3.5.2.1. Mechanical behaviour... 294

6.3.5.2.2. Summary of the results ... 301

7. CONCLUDING REMARKS AND FUTURE WORK...303

(16)
(17)

List of Tables

Table 1 – Influence of the evaluated parameters on peel and shear stresses (Gunnion and Herszberg 2006)... 28

Table 2 – Groups of specimens tested (Liu and Wang 2007)... 39

Table 3 – CFRP components elastic orthotropic properties for a unidirectional ply aligned in the x direction (Campilho et al. 2005).67 Table 4 – JIc (N/mm) values of the five specimens obtained by different methods... 69

Table 5 – Input and predicted JIc [N/mm] values by the four methods... 72

Table 6 – JIIc [N/mm] values of the five specimens obtained by different methods. ... 75

Table 7 – Input and predicted JIIc [N/mm] values by the three methods... 77

Table 8 – Cohesive parameters of a tA=0.2 mm adhesive layer of Araldite® 2015 in pure modes I and II... 78

Table 9 – Cohesive parameters for CFRP interlaminar, intralaminar and fibre failures in pure modes I and II (Campilho et al. 2009a). ... 78

Table 10 – Cohesive parameters of the adhesive Araldite® 420 in pure modes I and II. ... 80

Table 11 – Laminates, patches and adhesive dimensions. ... 81

Table 12 –Geometries evaluated and respective failure modes. ... 81

Table 13 – SL joint dimensions. ... 88

Table 14 – Experimental and numerical values of Pm for the SL joints... 96

Table 15 – Failure modes of the repairs as a function of LO... 146

Table 16 – Failure modes of the repairs as a function of tH... 147

Table 17 – Failure modes of the repairs as a function of LO... 169

Table 18 – Failure modes of the repairs as a function of tH... 170

Table 19 – List of failure modes... 244

Table 20 – Failure modes of the repairs. ... 245

Table 21 – Summary of the most efficient solutions. ... 245

Table 22 – Elastic orthotropic properties for the Pinus Pinaster wood. ... 249

Table 23 – Cohesive parameters for wood fracture in the RL and LR propagation systems in pure modes I and II. ... 249

(18)
(19)

List of Figures

Fig. 1 – Nomenclature on the joining and repair techniques using adhesives (2D geometries). ... 5

Fig. 2 –SS (a) and scarf (b) repairs (3D geometries). ... 6

Fig. 3 – Trapezoidal traction-separation law in pure mode I used by Yang et al. (1999)... 9

Fig. 4 – Traction-separation law in pure mode II (a) and load as a function of the mid-span deflection (b) (Yang et al. 2001). ... 10

Fig. 5 – Pure mode I (a) and II (b) traction-separation laws (Yang and Thouless 2001, Kafkalidis and Thouless 2002)... 11

Fig. 6 – SL joint strength as a function of the overlap length for symmetric specimens (a) and numerical deformation sequence and crack growth in asymmetric SL joints (b) (Kafkalidis and Thouless 2002). ... 12

Fig. 7 – Two (a) and three-parameter (b) cohesive laws (Li et al. 2005a, Li et al. 2005b)... 13

Fig. 8 - Traction–separation laws for pure mode I (a) and II (b) (Li et al. 2006a)... 14

Fig. 9 – SS repair geometry (a) and shear stress distributions in the adhesive along the overlap (b) (Davis and Bond 1999)... 16

Fig. 10 – Stress distributions at the adhesive mid-thickness using linear (a) and non-linear (b) material behaviours for the adhesive layer (Mortensen and Thomsen 2002)... 17

Fig. 11 – σy (a) and τay (b) stress distributions at the adhesive mid-thickness (Mortensen and Thomsen 2002)... 17

Fig. 12 – Analytical and numerical stress distributions in the adhesive layer (Zou et al. 2004). ... 18

Fig. 13 – σy stresses in the adhesive layer (a) and laminate (b) (Bogdanovich and Kizhakkethara 1999). ... 18

Fig. 14 – Experimental and numerical strains at the overlap edge at the adhesive mid-thickness (Li et al. 1999). ... 19

Fig. 15 – σy and τxy stresses at the laminate/adhesive interface (a) and at the adhesive mid-thickness (b) (Li et al. 1999)... 19

Fig. 16 – Longitudinal E modulus grading in a SL joint (Ganesh and Choo 2002, Boss et al. 2003)... 20

Fig. 17 – Transverse displacement (a) and Von Mises stresses (b) at the fillet tip (Osnes and Andersen 2003)... 20

Fig. 18 – Stress distributions at the adhesive mid-thickness (Gonçalves et al. 2002)... 21

Fig. 19 – Detail of the model at the overlap and planes for the evaluation of stresses (Magalhães et al. 2005)... 22

Fig. 20 – σy (a) and τxy (b) stress distributions (Magalhães et al. 2005). ... 22

Fig. 21 – DS repair and mesh (a) and normalised load-oriented normal stresses (b) (Soutis et al. 1999). ... 23

Fig. 22 – Repair strength as a function of the overlap length (a) and the patch/laminate stiffness ratio (b) (Hu and Soutis 2000). ... 23

Fig. 23 – Repair strength as a function of the adhesive ultimate shear strain (a) and shear strength (b) (Hu and Soutis 2000). ... 23

Fig. 24 – Stress critical regions of the repair (Hu and Soutis 2000)... 24

Fig. 25 – Failure modes of the repaired structures (Liu and Wang 2007)... 24

Fig. 26 – Strength as a function of the overlap length for the SS (a) and DS (b) repairs (Campilho et al. 2005)... 26

Fig. 27 – Strength as a function of the patch thickness for the SS repairs (Campilho et al. 2005). ... 26

Fig. 28 – Repair techniques evaluated: SS (a) and scarf (b) repairs (Oztelcan et al. 1997)... 26

Fig. 29 – Repairing configurations (Odi and Friend 2002). ... 27

Fig. 30 – τxy stresses in the adhesive layer: stepped repair at the top step (a) and 3º scarf repair (b) (Odi and Friend 2002). ... 28

Fig. 31 – Normal and shear stresses at different planes at the adhesive mid-thickness (Gunnion and Herszberg 2006)... 29

Fig. 32 – Failure paths evaluated, besides cohesive failure (Charalambides et al. 1998a). ... 30

Fig. 33 – Shear stresses in the adhesive for a 3º scarf repair (a) and comparison between five scarf angles (b) (Odi and Friend 2004). ... 31

Fig. 34 – σn (a) and τtn (b) stress distributions at the adhesive mid-thickness (Campilho et al. 2007a). ... 31

Fig. 35 – Tested fillet configurations (a) and final solution adopted (b) (Bogdanovich and Kizhakkethara 1999). ... 32

Fig. 36 – σy (a) and τxy (b) stress distributions (Bogdanovich and Kizhakkethara 1999)... 32

Fig. 37 – Geometry and boundary conditions of the reinforced tabs (Rispler et al. 2000). ... 33

Fig. 38 – Different chamfer shapes at the overlap region (Boss et al. 2003)... 33

(20)

Fig. 40 –Wavy-lap geometry (Ávila and Bueno 2004a). ... 34

Fig. 41 – σy and τxy stress distributions in SL (a) and wavy-lap joints (b) (Ávila and Bueno 2004a)... 34

Fig. 42 – Maximum loads for the standard (a) and wavy-lap joints (b) (Ávila and Bueno 2004a)... 34

Fig. 43 – Experimental and numerical shear strains (a) and FEM stresses (b) at the overlap edge (Tsai and Morton 1995b)... 35

Fig. 44 – Principal stresses on different joint geometries (Fessel et al. 2007). ... 35

Fig. 45 – σy and τxy stresses (a) and failure load for an overlap length of 10 mm (b) (Fessel et al. 2007). ... 36

Fig. 46 – Experimental failure mode of a DS repair under compression (Hu and Soutis 2000)... 37

Fig. 47 - τxy-γ curves for different overlap lengths (Reis et al. 2005)... 37

Fig. 48 – Different bonding solutions (Kim et al. 2006)... 38

Fig. 49 – SL joints strength for secondary bonding with two adhesives and no fillet, and co-curing with and without adhesive (a) and for secondary bonding with and without fillet (b) (Kim et al. 2006)... 38

Fig. 50 – Mode A (a) and mode B (b) failures; experimental and numerical strengths (c) (Liu and Wang 2007)... 39

Fig. 51 – Strain gauges loci (a) and load-strain plots (b) (Found and Friend 1995). ... 40

Fig. 52 – Schematic representation of the repair (a) and geometry (b) (Baker et al. 1999)... 40

Fig. 53 –Experimental and numerical strains at different regions (Baker et al. 1999)... 40

Fig. 54 – Experimental failure modes of the scarf joints (Charalambides et al. 1998b)... 41

Fig. 55 – Natural defects in wood: knots (a) and splits (b) (Akbiyik 2005). ... 44

Fig. 56 – Natural defects in wood: checks (a), wanes (b), shakes (c) and heart checks (d) (Akbiyik 2005)... 44

Fig. 57 – Most common failures under static bending: compression failure (a), cross-grain tension (b) and horizontal shear (c) (Akbiyik 2005, Akbiyik et al. 2007, Lamanna et al. 2007)... 44

Fig. 58 – Wood beam reinforcement schemes (Borri et al. 2005)... 45

Fig. 59 – Most common damage types in wood beams (Akbiyik 2005, Akbiyik et al. 2007). ... 46

Fig. 60 – Repair methods tested in the wood beams fractured by horizontal shear (Akbiyik 2005, Akbiyik et al. 2007). ... 46

Fig. 61 –Calculation of the repair method effectiveness for beam B1 (a) and percentile increase of the residual load capacity (b) (Akbiyik 2005, Akbiyik et al. 2007). ... 47

Fig. 62 – Repair geometry, dimensions in mm (Radford et al. 2002)... 47

Fig. 63 – Repair method: section view (a), longitudinal view (b) and with shear connectors (c) (Lopez-Anido et al. 2005). ... 48

Fig. 64 – Flexural strength of the beams repaired in both faces as a function of the reinforcement material (Alam et al. 2009)... 49

Fig. 65 – Modes of crack propagation in structures. ... 54

Fig. 66 – Schematic representation of the crack tip in 2D for the application of the VCCT. ... 54

Fig. 67 – The triangular softening law in pure mode and mixed mode... 56

Fig. 68 – The trapezoidal softening law in pure mode and mixed mode... 60

Fig. 69 – Heating the plies (a) and application of pressure (b) during the hand lay-up procedure. ... 63

Fig. 70 – Laminate sealing with Teflon® film (a) and sealing with high-temperature adhesive tape (b)... 64

Fig. 71 – Laminate inside the press (a) and during curing (b). ... 64

Fig. 72 – Thermal cycle applied to the laminate. ... 64

Fig. 73 – Pressure application with grips (a) and detail of the vertical grips (b)... 65

Fig. 74 – Finishing of a specimen in a drilling machine with a spiral band. ... 65

Fig. 75 – DCB (a) and ENF (b) specimens after finishing. ... 65

Fig. 76 – DCB specimen painted with correction fluid and with a scale. ... 66

Fig. 77 – DCB specimen with glued piano hinges (a) and fillet detail (b). ... 66

Fig. 78 – Schematic representation of the DCB test... 67

Fig. 79 – Experimental setup (a) and experimental crack length measurement during propagation (b)... 68

Fig. 80 – Experimental R-curves obtained by different methods. ... 69

Fig. 81 –Experimental and numerical P-δ curves comparison. ... 70

(21)

Fig. 83 – Influence of σu,I on the P-δ curve (a) and cohesive laws range in pure mode I (b). ... 71

Fig. 84 – Numerical R-curves by different methods (a) and experimental and numerical CBBM R-curves (b). ... 71

Fig. 85 – Schematic representation of the ENF test. ... 73

Fig. 86 – Experimental setup (a) and experimental crack length measurement during propagation (b)... 73

Fig. 87 – Experimental R-curves obtained by different methods. ... 74

Fig. 88 – Experimental and numerical P-δ curves comparison (a) and cohesive laws range in pure mode II (b). ... 76

Fig. 89 – Deformed shape of the ENF specimen during propagation, with boundary and loading conditions. ... 76

Fig. 90 – Numerical R-curves by different methods (a) and experimental and numerical CBBM R-curves (b). ... 77

Fig. 91 – Experimental and numerical crack length as a function of the specimen compliance. ... 77

Fig. 92 – σ-ε curve of the adhesive Araldite® 420 and numerical approximation... 80

Fig. 93 – SS repair geometry... 80

Fig. 94 – Experimental setup in the testing machine. ... 81

Fig. 95 – Detail of the mesh for model S3. ... 82

Fig. 96 – Cohesive elements loci in the SS repairs. ... 82

Fig. 97 – σy (a) and τxy (b) stress distributions at planes L1, P1, P2, P3 and L2 for geometry S3... 83

Fig. 98 – Type A (a) and type B (b) experimental failures... 83

Fig. 99 – Type A (a) and type B (b) numerical damage initiations. ... 84

Fig. 100 – Type A (a) and type B (b) numerical final failures... 84

Fig. 101 –σx stress distributions at line A-A as a function of tH. ... 85

Fig. 102 – P-δ curves for geometry S5 (a) and Pm as a function of the intralaminar properties (b). ... 85

Fig. 103 – Eeq as a function of LO (a) and Eeq as a function of tH (b)... 86

Fig. 104 – Pm as a function of LO (a) and Pm as a function of tH (b)... 86

Fig. 105 – SL joint geometry. ... 88

Fig. 106 – Specimens bonding procedure. ... 89

Fig. 107 – LO=10 mm (a) and LO=20 mm specimens after finishing... 89

Fig. 108 – LO=40 mm specimen in the beginning (a) and during the test (b). ... 90

Fig. 109 – Detail of the mesh for the LO=40 mm model... 90

Fig. 110 – Deformed configuration of the SL joint under a tensile load. ... 91

Fig. 111 – σx stresses at the overlap region... 91

Fig. 112 – σy stresses at the repair region. ... 92

Fig. 113 – τxy stresses at the repair region. ... 92

Fig. 114 – σy stress distributions in the adhesive layer as a function of LO... 92

Fig. 115 – τxy stress distributions in the adhesive layer as a function of LO. ... 93

Fig. 116 – Experimental cohesive failure of the adhesive layer for a LO=20 mm (a) and 80 mm (b) joint... 94

Fig. 117 – Numerical cohesive failure of the adhesive layer for a LO=10 mm (a) and 80 mm (b) joint... 95

Fig. 118 – Experimental and numerical P-δ curves comparison for the LO=50 mm SL joints. ... 95

Fig. 119 – K as a function of LO (a) and Pm as a function of LO (b). ... 96

Fig. 120 – Numerical curves of P versus damage or crack length for the LO=10 and 80 mm SL joints... 97

Fig. 121 – SS repair geometry and characteristic dimensions (a) and test configuration under 4PB (b)... 105

Fig. 122 – Cohesive elements planes in the SS and DS numerical models. ... 107

Fig. 123 – Symmetry conditions for the numerical models under tensile or compressive (a) and bending (b) loads. ... 107

Fig. 124 – Detail of the mesh at the overlap region (SS repair). ... 108

Fig. 125 – Detail of the mesh for the failure analysis at the overlap region (SS repair)... 108

Fig. 126 – Specimens alignment with grips (a) and fixing to the screw-vice (b). ... 109

(22)

Fig. 128 – Specimens during the hole drilling operation (a) and after drilling (b). ... 110 Fig. 129 – Set of patches tightened in the device (a) and during the machining process (b). ... 110 Fig. 130 – Set of patches during the machining process (a) and after machining (b). ... 111 Fig. 131 – Scheme of the patch positioning system (a) and adhesive poured in the specimen in spiral (b)... 111 Fig. 132 – Repair after the patch placement (a) and application of pressure using grips (b). ... 112 Fig. 133 – Final look of a LO=5 mm (a) and LO=15 mm (b) repair. ... 112

Fig. 134 – Experimental setup in the testing machine (tensile load, tH=2.4 mm SS repair). ... 113

Fig. 135 – Experimental setup in the testing machine (bending load, LO=5 mm DS repair). ... 114

Fig. 136 – Deformed configuration of the SS repair under a tensile load. ... 115 Fig. 137 – σy (a) and τxy (b) stresses at the repair region. ... 115

Fig. 138 – σx stresses at the repair region. ... 115

Fig. 139 – σy stresses at the repair region. ... 116

Fig. 140 – τxy stresses at the repair region. ... 116

Fig. 141 – Normalized σy (a) and τxy (b) stress distributions at the repair region. ... 117

Fig. 142 – Normalized σy stress distributions at seven planes in the repair. ... 117

Fig. 143 – Normalized τxy stress distributions at seven planes in the repair. ... 118

Fig. 144 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3) as a function of LO. ... 118

Fig. 145 – Normalized σy (a) and τxy (b) stress distributions at the middle of the adhesive (P4) as a function of LO. ... 119

Fig. 146 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5) as a function of LO... 119

Fig. 147 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3) as a function of tH. ... 120

Fig. 148 – Normalized σy (a) and τxy (b) stress distributions at the middle of the adhesive (P4) as a function of tH. ... 120

Fig. 149 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5) as a function of tH... 120

Fig. 150 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3) as a function of tA. ... 121

Fig. 151 – Normalized σy (a) and τxy (b) stress distributions at the middle of the adhesive (P4) as a function of tA. ... 121

Fig. 152 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5) as a function of tA... 122

Fig. 153 – Deformed configuration of the DS repair under a tensile load... 123 Fig. 154 – σy (a) and τxy (b) stresses at the repair region. ... 123

Fig. 155 – σx stresses at the repair region. ... 123

Fig. 156 – σy stresses at the repair region. ... 124

Fig. 157 – τxy stresses at the repair region. ... 124

Fig. 158 – Normalized σy (a) and τxy (b) stress distributions at the repair region. ... 125

Fig. 159 – Normalized σy stress distributions at seven planes in the repair. ... 125

Fig. 160 – Normalized τxy stress distributions at seven planes in the repair. ... 126

Fig. 161 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3) as a function of LO. ... 126

Fig. 162 – Normalized σy (a) and τxy (b) stress distributions at the middle of the adhesive (P4) as a function of LO. ... 127

Fig. 163 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5) as a function of LO... 127

Fig. 164 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3) as a function of tH. ... 128

Fig. 165 – Normalized σy (a) and τxy (b) stress distributions at the middle of the adhesive (P4) as a function of tH. ... 128

Fig. 166 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5) as a function of tH... 128

Fig. 167 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3) as a function of tA. ... 129

Fig. 168 – Normalized σy (a) and τxy (b) stress distributions at the middle of the adhesive (P4) as a function of tA. ... 129

Fig. 169 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5) as a function of tA... 130

Fig. 170 – Damage growth in an open-hole laminate. ... 131 Fig. 171 – Damage growth in a LO=5 mm SS repair. ... 132

(23)

Fig. 172 – Damage growth in a LO=15 mm SS repair. ... 132

Fig. 173 – Cohesive failure of the adhesive layer for a tH=2.4 mm SS repair (a) and LO=15 mm DS repair (b)... 132

Fig. 174 – Numerical patch debonding for the LO=5 mm (a) and LO=15 mm (b) SS repairs... 133

Fig. 175 – Experimental and numerical P-δ curves comparison for the LO=5 mm SS (a) and DS (b) repairs. ... 133

Fig. 176 – Experimental and numerical P-δ curves comparison for the LO=15 mm SS (a) and DS (b) repairs. ... 134

Fig. 177 – K as a function of LO (a) and K as a function of tH (b)... 134

Fig. 178 – Pm as a function of LO (a) and Pm as a function of tH (b)... 135

Fig. 179 – Deformed configuration of the SS repair under a compressive load... 136 Fig. 180 – σy (a) and τxy (b) stresses at the repair region. ... 136

Fig. 181 – σx stresses at the repair region. ... 136

Fig. 182 – σy stresses at the repair region. ... 137

Fig. 183 – τxy stresses at the repair region. ... 137

Fig. 184 – Normalized σy (a) and τxy (b) stress distributions at the repair region. ... 138

Fig. 185 – Normalized σy stress distributions at seven planes in the repair. ... 138

Fig. 186 – Normalized τxy stress distributions at seven planes in the repair. ... 139

Fig. 187 – Deformed configuration of the DS repair under a compressive load. ... 140 Fig. 188 – σy (a) and τxy (b) stresses at the repair region. ... 140

Fig. 189 – σx stresses at the repair region. ... 141

Fig. 190 – σy stresses at the repair region. ... 141

Fig. 191 – τxy stresses at the repair region. ... 141

Fig. 192 – Normalized σy (a) and τxy (b) stress distributions at the repair region. ... 142

Fig. 193 – Normalized σy stress distributions at seven planes in the repair. ... 143

Fig. 194 – Normalized τxy stress distributions at seven planes in the repair. ... 143

Fig. 195 – Global bucking (a), laminate compression failure (b) and laminate failure outside the repair region (c). ... 145 Fig. 196 – Partial patch debonding (a), detail of the patch partial debonding (b) and patch debonding (c)... 145 Fig. 197 – Cohesive failures for a LO=5 mm SS repair (a) and tH=2.4 mm DS repair in the compression face (b). ... 146

Fig. 198 – Numerical patch debonding for the LO=15 mm (a) and tH=2.4 mm (b) SS repairs... 148

Fig. 199 – Experimental and numerical P-δ curves comparison for the LO=15 mm SS (a) and DS (b) repairs. ... 148

Fig. 200 – Experimental and numerical P-δ curves comparison for the tH=2.4 mm SS (a) and DS (b) repairs. ... 149

Fig. 201 – K as a function of LO (a) and K as a function of tH (b)... 150

Fig. 202 – Pm as a function of LO (a) and Pm as a function of tH (b)... 151

Fig. 203 – Deformed configuration of the SS repair under a bending load. ... 151 Fig. 204 – σy (a) and τxy (b) stresses at the repair region. ... 152

Fig. 205 – σx stresses at the repair region. ... 152

Fig. 206 – σy stresses at the repair region. ... 152

Fig. 207 – τxy stresses at the repair region. ... 153

Fig. 208 – Normalized σy (a) and τxy (b) stress distributions at the repair region. ... 153

Fig. 209 – Normalized σy stress distributions at seven planes at the repair region... 154

Fig. 210 – Normalized τxy stress distributions at seven planes at the repair region. ... 154

Fig. 211 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3) as a function of LO. ... 155

Fig. 212 – Normalized σy (a) and τxy (b) stress distributions at the middle of the adhesive (P4) as a function of LO. ... 155

Fig. 213 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5) as a function of LO... 155

Fig. 214 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3) as a function of tH. ... 156

(24)

Fig. 216 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5) as a function of tH... 157

Fig. 217 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3) as a function of tA. ... 157

Fig. 218 – Normalized σy (a) and τxy (b) stress distributions at the middle of the adhesive (P4) as a function of tA. ... 158

Fig. 219 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5) as a function of tA... 158

Fig. 220 – Deformed configuration of the DS repair under a bending load. ... 159 Fig. 221 – σy (a) and τxy (b) stresses at the repair region. ... 159

Fig. 222 – σx stresses at the repair region. ... 159

Fig. 223 – σy stresses at the repair region. ... 160

Fig. 224 – τxy stresses at the repair region. ... 160

Fig. 225 – Normalized σy (a) and τxy (b) stress distributions at the repair region. ... 161

Fig. 226 – Normalized σy stress distributions at seven planes in the repair. ... 161

Fig. 227 – Normalized τxy stress distributions at seven planes in the repair. ... 162

Fig. 228 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3) as a function of LO. ... 162

Fig. 229 – Normalized σy (a) and τxy (b) stress distributions at the middle of the adhesive (P4) as a function of LO. ... 163

Fig. 230 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5) as a function of LO... 163

Fig. 231 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3) as a function of tH. ... 164

Fig. 232 – Normalized σy (a) and τxy (b) stress distributions at the middle of the adhesive (P4) as a function of tH. ... 164

Fig. 233 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5) as a function of tH... 164

Fig. 234 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3) as a function of tA. ... 165

Fig. 235 – Normalized σy (a) and τxy (b) stress distributions at the middle of the adhesive (P4) as a function of tA. ... 165

Fig. 236 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5) as a function of tA... 166

Fig. 237 – Partial compression failure (a) and compression failure with delamination (b) for an open-hole laminate. ... 167 Fig. 238 –Outer patch partial debonding (a) and respective detail (b) for a LO=10 mm DS repair... 167

Fig. 239 –Outer patch debonding for a tH=1.8 mm SS repair (a) and inner patch debonding for a LO=5 mm DS repair (b). ... 168

Fig. 240 – Simultaneous patch, compression and delamination failure for a LO=10 mm DS repair... 168

Fig. 241 – Cohesive failure of the adhesive layer for a LO=10 mm (a) and tH=1.8 mm (b) SS repair... 168

Fig. 242 – Deformed configuration of the LO=10 mm SS (a) and tH=0.6 mm DS (b) repairs... 171

Fig. 243 – Experimental and numerical P-δ curves comparison for the tH=0.6 mm (a) and LO=10 mm (b) DS repairs... 171

Fig. 244 – Experimental and numerical P-δ curves comparison for the tH=1.8 mm (a) and tH=2.4 mm (b) SS repairs. ... 172

Fig. 245 – K as a function of LO (a) and K as a function of tH (b)... 173

Fig. 246 – Pm as a function of LO (a) and Pm as a function of tH (b)... 174

Fig. 247 – Scarf repair geometry and dimensions: 3D (a) and 2D (b) repair... 177 Fig. 248 – Cohesive elements loci in the scarf numerical models... 178 Fig. 249 – Detail of the mesh at the scarf region (a) and at the IES (b) (3D repair). ... 178 Fig. 250 – Detail of the mesh at the scarf region (2D repair). ... 179 Fig. 251 – Detail of the mesh at the IES (2D repair)... 179 Fig. 252 – Detail of the mesh for the failure analysis at the IES (2D repair)... 179 Fig. 253 – Cohesive elements loci with different laws in the numerical models. ... 179 Fig. 254 – Grinding of a α=15º angle in a milling machine (a) and scheme of the grinding process (b). ... 180 Fig. 255 – Laminates after the grinding operation (α=2º)... 181 Fig. 256 – Schematic representation of the bonding device without (a) and with the upper plate (b). ... 181 Fig. 257 – Pouring of adhesive in the specimens: α=9º (a) and α=2º (b) repairs... 181 Fig. 258 – Patch application (a) and set of repairs after the patches application (b) for α=2º repairs... 182 Fig. 259 – Covering of the repairs with a Teflon® sheet (a) and mould after positioning of the upper plate (b)... 183

(25)

Fig. 260 – Final look of α=3º (a) and α=6º (b) repairs at the bond region. ... 183 Fig. 261 – Experimental setup in the testing machine (tensile load, α=9º repair). ... 184 Fig. 262 – Experimental setup in the testing machine (compressive load, α=2º repair). ... 185 Fig. 263 – Experimental setup in the testing machine (bending load, α=2º repair)... 185 Fig. 264 – Deformed configuration of the scarf repair under a tensile load (3D repair). ... 186 Fig. 265 – σy (a) and τxy (b) stresses at the repair region (3D repair). ... 186

Fig. 266 – σx stresses at the repair region (3D repair). ... 187

Fig. 267 – σy stresses at the repair region (3D repair). ... 187

Fig. 268 – τxy stresses at the repair region (3D repair). ... 188

Fig. 269 – Normalized σn (a) and τtn (b) stress distributions at the repair region (3D repair). ... 188

Fig. 270 – Deformed configuration of the scarf repair under a tensile load (2D repair). ... 189 Fig. 271 – σx stresses at the repair region (2D repair). ... 189

Fig. 272 – σy stresses at the repair region (2D repair). ... 190

Fig. 273 – τxy stresses at the repair region (2D repair). ... 190

Fig. 274 – Normalized σn (a) and τtn (b) stress distributions at the repair region (2D repair). ... 190

Fig. 275 – Normalized σn (a) and τtn (b) stress distributions at the laminate/adhesive interface (P1) as a function of α. ... 191

Fig. 276 – Normalized σn (a) and τtn (b) stress distributions at the middle of the adhesive (P2) as a function of α. ... 191

Fig. 277 – Normalized σn (a) and τtn (b) stress distributions at the adhesive/patch interface (P3) as a function of α... 192

Fig. 278 – Schematic representation of the type B experimental failure... 192 Fig. 279 – Experimental fracture surfaces for a α=15º (a) and α=3º (b) repair. ... 193 Fig. 280 – Numerical type A failure for a α=45º (a) and type B failure for a α=9º (b) repair. ... 193 Fig. 281 – Experimental and numerical P-δ curves comparison for the α=9º repair... 194 Fig. 282 – K as a function of α (a) and δm as a function of α (b)... 194

Fig. 283 – Pm as a function of α... 195

Fig. 284 – Deformed configuration of the scarf repair under a compressive load... 195 Fig. 285 – σx stresses at the repair region. ... 195

Fig. 286 – σy stresses at the repair region. ... 196

Fig. 287 – τxy stresses at the repair region. ... 196

Fig. 288 – Normalized σn (a) and τtn (b) stress distributions at the repair region. ... 196

Fig. 289 – Normalized σn (a) and τtn (b) stress distributions at the laminate/adhesive interface (P1) as a function of α. ... 197

Fig. 290 – Normalized σn (a) and τtn (b) stress distributions at the middle of the adhesive (P2) as a function of α. ... 197

Fig. 291 – Normalized σn (a) and τtn (b) stress distributions at the adhesive/patch interface (P3) as a function of α... 198

Fig. 292 – Schematic representation of the type B experimental failure... 198 Fig. 293 – Experimental fracture surfaces for a α=45º (a) and α=2º (b) repair. ... 199 Fig. 294 – Numerical type A failure for a α=45º (a) and type B failure for a α=2º (b) repair. ... 199 Fig. 295 – Experimental and numerical P-δ curves comparison for the α=45º (a) and α=2º (b) repairs. ... 199 Fig. 296 – Experimental (a) and numerical (b) deformed configuration of the α=2º repair immediately before failure. ... 200 Fig. 297 – K as a function of α (a) and Pm as a function of α (b). ... 200

Fig. 298 – δm as a function of α (a) and δp as a function of α (b). ... 201

Fig. 299 – Deformed configuration of the scarf repair under a bending load. ... 201 Fig. 300 – σx stresses at the repair region. ... 202

Fig. 301 – σy stresses at the repair region. ... 202

(26)

Fig. 303 – Normalized σn (a) and τtn (b) stress distributions at the repair region. ... 203

Fig. 304 – Normalized σn (a) and τtn (b) stress distributions at the laminate/adhesive interface (P1) as a function of α. ... 203

Fig. 305 – Normalized σn (a) and τtn (b) stress distributions at the middle of the adhesive (P2) as a function of α. ... 204

Fig. 306 – Normalized σn (a) and τtn (b) stress distributions at the adhesive/patch interface (P3) as a function of α... 204

Fig. 307 – Schematic representation of the experimental failure. ... 205 Fig. 308 – Experimental fracture surfaces for a α=6º (a) and α=25º (b) repair. ... 205 Fig. 309 – Numerical failure for a α=45º (a) and α=25º (b) repair. ... 206 Fig. 310 – Experimental and numerical P-δ curves comparison for the α=6º (a) and α=25º (b) repairs. ... 206 Fig. 311 – K as a function of α (a) and δm as a function of α (b)... 207

Fig. 312 – Pm as a function of α... 207

Fig. 313 – Detail of the mesh at the overlap region for the 0.3 mm (a) and 1.2 mm (b) patch outer chamfer repairs... 213 Fig. 314 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (tensile load). ... 213

Fig. 315 – Normalized strength for different dimensions patch outer chamfer repairs... 214 Fig. 316 – Deformed shape of the standard (a) and 1.2 mm patch outer chamfer (b) repairs (tensile load). ... 214 Fig. 317 – Deformed shape of the 0.6 mm (a) and 1.2 mm (b) patch outer chamfer repairs (compressive load). ... 215 Fig. 318 – Deformed shape of the 0.3 mm (a) and 1.2 mm (b) patch outer chamfer repairs (bending load). ... 215 Fig. 319 – Detail of the mesh at the overlap region for the 0.3 mm (a) and 1.2 mm (b) patch inner chamfer repairs... 215 Fig. 320 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (tensile load). ... 216

Fig. 321 – Normalized strength for different dimensions patch inner chamfer repairs. ... 216 Fig. 322 – Deformed shape of the standard (a) and 1.2 mm patch inner chamfer (b) repairs (tensile load). ... 217 Fig. 323 – Deformed shape of the standard (a) and 1.2 mm patch inner chamfer (b) repairs (compressive load)... 217 Fig. 324 – Deformed shape of the 1.2 mm patch inner chamfer repair at damage onset (a) and patch debonding (b) (bending load).217 Fig. 325 – Detail of the mesh at the overlap region for the plug repair. ... 218 Fig. 326 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (tensile load). ... 218

Fig. 327 – Deformed shape of the plug repair at damage onset (a) and patch debonding (b) (tensile load). ... 219 Fig. 328 – Deformed shape of the plug repair at damage onset (a) and patch debonding (b) (compressive load)... 219 Fig. 329 – Deformed shape of the plug repair at damage onset (a) and patch debonding (b) (bending load). ... 219 Fig. 330 – Fillet shapes studied. ... 220 Fig. 331 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (tensile load). ... 220

Fig. 332 – Normalized strength for different fillet shapes. ... 221 Fig. 333 – Deformed shape of the 45º (a) and 15º (b) straight fillet repairs (tensile load). ... 221 Fig. 334 – Deformed shape of the 45º straight fillet repair at damage onset (a) and patch debonding (b) (compressive load). ... 222 Fig. 335 – Deformed shape of the 30º (a) and 15º (b) straight fillet repairs (compressive load). ... 222 Fig. 336 – Deformed shape of the 45º straight fillet repair at damage onset (a) and patch debonding (b) (bending load). ... 222 Fig. 337 – Deformed shape of the 15º straight fillet repair at damage onset (a) and patch debonding (b) (bending load). ... 222 Fig. 338 – Detail of the mesh at the overlap region for the 0.2 mm (a) and 0.6 mm (b) laminate outer chamfer repairs. ... 223 Fig. 339 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (tensile load). ... 223

Fig. 340 – Normalized strength for different dimensions laminate outer chamfer repairs. ... 224 Fig. 341 – Deformed shape of the 0.6 mm laminate outer chamfer repair at damage onset (a) and patch debonding (b) (tensile load).

... 224 Fig. 342 – Deformed shape of the standard (a) and 0.6 mm laminate outer chamfer (b) repairs (compressive load). ... 224 Fig. 343 – Deformed shape of the 0.6 mm laminate outer chamfer repair at damage onset (a) and patch debonding (b) (bending load).

... 225 Fig. 344 – Detail of the mesh at the overlap region for the 0.3 mm (a) and 1.5 mm (b) laminate inner chamfer repairs. ... 225 Fig. 345 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (tensile load). ... 225

(27)

Fig. 346 – Normalized strength for different dimensions laminate inner chamfer repairs. ... 226 Fig. 347 – Deformed shape of the 1.5 mm laminate inner chamfer repair at damage onset (a) and patch debonding (b) (tensile load).

... 226 Fig. 348 – Deformed shape of the 1.5 mm laminate inner chamfer repair at damage onset (a) and patch debonding (b) (compressive

load)... 227 Fig. 349 – Deformed shape of the 1.5 mm laminate inner chamfer repair at damage onset (a) and patch debonding (b) (bending load).

... 227 Fig. 350 – Detail of the mesh at the overlap region combining the 45º straight fillet and the 1.2 mm patch inner chamfer... 228 Fig. 351 – Deformed shape of the combination repair at damage onset (a) and patch debonding (b) (tensile load)... 228 Fig. 352 – Detail of the mesh at the overlap region for the combination 1 (a) and combination 2 (b) repairs. ... 229 Fig. 353 – Deformed shape of the combination 1 repair at damage onset (a) and patch debonding (b) (compressive load). ... 229 Fig. 354 – Deformed shape of the combination 2 repair at damage onset (a) and patch debonding (b) (compressive load). ... 229 Fig. 355 – Detail of the mesh at the overlap region for the combination 1 (a) and combination 2 (b) repairs. ... 230 Fig. 356 – Detail of the mesh at the overlap region for the combination 3 (a) and combination 4 (b) repairs. ... 230 Fig. 357 – Deformed shape of the combination 1 repair at damage onset (a) and patch debonding (b) (bending load)... 230 Fig. 358 – Deformed shape of the combination 2 repair at damage onset (a) and patch debonding (b) (bending load)... 231 Fig. 359 – Deformed shape of the combination 3 repair at damage onset (a) and patch debonding (b) (bending load)... 231 Fig. 360 – Deformed shape of the combination 4 repair at damage onset (a) and patch debonding (b) (bending load)... 231 Fig. 361 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (tensile load). ... 232

Fig. 362 – Normalized strength for different dimensions patch outer chamfer repairs... 232 Fig. 363 – Deformed shape of the standard (a) and 1.2 mm patch outer chamfer (b) repairs (tensile load). ... 233 Fig. 364 – Deformed shape of the 0.6 mm (a) and 1.2 mm (b) patch outer chamfer repairs (compressive load). ... 233 Fig. 365 – Deformed shape of the 0.6 mm (a) and 1.2 mm (b) patch outer chamfer repairs (bending load). ... 233 Fig. 366 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (tensile load). ... 234

Fig. 367 – Normalized strength for different dimensions patch inner chamfer repairs. ... 234 Fig. 368 – Deformed shape of the 0.3 mm (a) and 1.2 mm (b) patch inner chamfer repairs (tensile load)... 235 Fig. 369 – Deformed shape of the 0.9 mm patch inner chamfer repair at damage onset (a) and patch debonding (b) (compressive

load)... 235 Fig. 370 – Deformed shape of the 1.2 mm patch inner chamfer repair at damage onset (a) and patch debonding (b) (compressive

load)... 236 Fig. 371 – Deformed shape of the 0.3 mm (a) and 1.2 mm (b) patch inner chamfer repairs (bending load). ... 236 Fig. 372 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (tensile load). ... 237

Fig. 373 – Deformed shape of the plug repair at damage onset (a) and patch debonding (b) (tensile load). ... 237 Fig. 374 – Deformed shape of the plug repair at damage onset (a) and patch debonding (b) (compressive load)... 237 Fig. 375 – Deformed shape of the plug repair at damage onset (a) and patch debonding (b) (bending load). ... 238 Fig. 376 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (tensile load). ... 238

Fig. 377 – Normalized strength for different fillet shapes. ... 239 Fig. 378 – Deformed shape of the 45º (a) and 15º (b) straight fillet repairs (tensile load). ... 239 Fig. 379 – Deformed shape of the 45º (a) and 30º (b) straight fillet repairs (compressive load). ... 239 Fig. 380 – Deformed shape of the 30º straight fillet repair at damage onset (a) and patch debonding (b) (bending load). ... 240 Fig. 381 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (tensile load). ... 240

Fig. 382 – Normalized strength for different dimensions laminate outer chamfer repairs. ... 241 Fig. 383 – Deformed shape of the 0.6 mm laminate outer chamfer repair at damage onset (a) and patch debonding (b) (tensile load).

... 241 Fig. 384 – Deformed shape of the 0.6 mm laminate outer chamfer repair at damage onset (a) and patch debonding (b) (compressive

(28)

Fig. 385 – Deformed shape of the 0.6 mm laminate outer chamfer repair at damage onset (a) and patch debonding (b) (bending load). ... 242 Fig. 386 – Detail of the mesh at the overlap region combining the 45º fillet and the 1.2 mm patch inner chamfer... 242 Fig. 387 – Deformed shape of the combination repair at damage onset (a) and patch debonding (b) (tensile load)... 243 Fig. 388 – Detail of the mesh at the overlap region combining the 15º straight fillet, the 1.2 mm patch inner chamfer and the plug. 243 Fig. 389 – Deformed shape of the combination repair at damage onset (a) and patch debonding (b) (compressive load). ... 243 Fig. 390 – Wood directions of symmetry (Pereira 2005)... 249 Fig. 391 – Crack propagation systems in wood (Pereira 2005). ... 249 Fig. 392 – Compression failure (a) and cross-grain tension (b) repair procedures. ... 251 Fig. 393 – Horizontal shear failure repair procedure... 252 Fig. 394 – Test configuration under 4PB... 253 Fig. 395 – Cohesive elements in the compression failure (a) and cross-grain tension (b) repairs. ... 253 Fig. 396 – Symmetry conditions for the compression failure (a) and horizontal shear failure (b) repairs... 254 Fig. 397 – Mesh for the compression failure repair (a) and respective detail at the crack region (b). ... 254 Fig. 398 – Mesh for the cross-grain tension repair... 255 Fig. 399 – Mesh detail for the cross-grain tension repair at the repaired region. ... 255 Fig. 400 – Mesh for the horizontal shear failure repair... 256 Fig. 401 – Mesh details for the horizontal shear failure repair: patch (a) and crack tip (b) regions... 256 Fig. 402 – Cohesive elements loci for the compression failure (a) and cross-grain tension (b) repairs. ... 257 Fig. 403 – Setup in the drilling machine (a) and set of two beams after the drilling operation (b)... 258 Fig. 404 – Application of the fishing lines with adhesive tape (a) and adhesive poured in the wood beam (b)... 259 Fig. 405 – Repair after placing the patch (a) and application of pressure using grips (b). ... 260 Fig. 406 – Final look of a LO=20 mm (a) and a LO=10 mm (b) repair... 260

Fig. 407 – Cutting setup and specimen before (a) and after cutting the crack (b)... 260 Fig. 408 – Application of the fishing lines with adhesive tape (a) and adhesive poured in the wood beam (b)... 261 Fig. 409 – Repair after placing the patch (a) and application of pressure using a grip and a thick wood bar (b). ... 261 Fig. 410 – Final look of a LP=60 mm (a) and a LP=40 mm (b) repair... 262

Fig. 411 – Cutting setup and specimen before (a) and after cutting the crack (b)... 262 Fig. 412 – Application of the fishing lines with adhesive tape (a) and adhesive poured in the wood beam (b)... 263 Fig. 413 – Repair after placing the patch (a) and application of pressure using grips and a thick wood bar (b). ... 263 Fig. 414 – Final look of a LP=105 mm (a) and a LP=75 mm (b) repair... 263

Fig. 415 – Experimental setup in the testing machine (bending load, unrepaired compression failure beam)... 264 Fig. 416 – Deformed configuration of the compression failure repair under a bending load... 264 Fig. 417 – σx stresses at the repair region. ... 265

Fig. 418 – σy stresses at the repair region. ... 265

Fig. 419 – τxy stresses at the repair region. ... 266

Fig. 420 – Normalized σy (a) and τxy (b) stress distributions at the repair region. ... 266

Fig. 421 – Normalized σy stress distributions at seven planes in the repair. ... 267

Fig. 422 – Normalized τxy stress distributions at seven planes in the repair. ... 267

Fig. 423 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3) as a function of LO. ... 268

Fig. 424 – Normalized σy (a) and τxy (b) stress distributions at the middle of the adhesive (P4) as a function of LO. ... 268

Fig. 425 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5) as a function of LO... 269

Fig. 426 – Pure tension failure onset below a loading cylinder (a) and longitudinal growth (b) for an undamaged beam. ... 270 Fig. 427 – Two examples of cross-grain tension failures for an undamaged beam. ... 270 Fig. 428 – Compression failure (a) and corresponding detail (b) for an unrepaired beam. ... 270

(29)

Fig. 429 – Pure tension failure (a) and cross-grain tension failure (b) for an unrepaired beam. ... 270 Fig. 430 – Damage onset in the wood beam (a) followed by pure tension failure (b) for a LO=10 mm repair... 271

Fig. 431 – Cohesive failure of the adhesive (a) followed by pure tension failure (b) for a LO=10 mm repair. ... 271

Fig. 432 – Damage onset in the wood beam (a) followed by pure tension failure (b) for a LO=20 mm repair... 272

Fig. 433 – Cohesive failure of the adhesive (a) followed by cross-grain tension failure (b) for a LO=20 mm repair... 272

Fig. 434 – Damage onset by pure tension in the wood beam near the loading cylinders (a) and growth (b) for a LO=30 mm repair. 272

Fig. 435 – Damage onset by cross-graining in the wood beam near the loading cylinders (a) and growth (b) for a LO=30 mm repair.

... 272 Fig. 436 – Numerical damage initiation (a) and growth (b) below the loading cylinder for the undamaged beam. ... 273 Fig. 437 – Numerical damage initiation (a) and growth (b) at the symmetry plane A-A for the unrepaired beam. ... 273 Fig. 438 – Numerical damage initiation at plane P2 (a) and failure at the symmetry plane A-A (b) for the LO=10 mm repair. ... 273

Fig. 439 – Numerical damage initiation at plane P2 (a) and failure at the symmetry plane A-A (b) for the LO=20 mm repair. ... 274

Fig. 440 – Numerical damage initiation (a) and growth (b) below the loading cylinder for the LO=30 mm repair. ... 274

Fig. 441 – Experimental and numerical P-δ curves comparison for the unrepaired beam (a) and the LO=10 mm repair (b)... 275

Fig. 442 – Experimental and numerical P-δ curves comparison for the LO=20 mm (a) and LO=30 mm (b) repairs... 275

Fig. 443 – K as a function of LO (a) and δm as a function of LO (b)... 276

Fig. 444 – Pm as a function of LO... 277

Fig. 445 – Deformed configuration of the cross-grain tension repair under a bending load... 277 Fig. 446 – σx stresses at the repair region. ... 277

Fig. 447 – σy stresses at the repair region. ... 278

Fig. 448 – τxy stresses at the repair region. ... 278

Fig. 449 – Normalized σy (a) and τxy (b) stress distributions at the repair region. ... 279

Fig. 450 – Normalized σy stress distributions at seven planes in the repair. ... 280

Fig. 451 – Normalized τxy stress distributions at seven planes in the repair. ... 280

Fig. 452 – Normalized σy (a) and τxy (b) stress distributions at the laminate/adhesive interface (P3). ... 281

Fig. 453 – Normalized σy (a) and τxy (b) stress distributions at the middle of the adhesive (P4)... 281

Fig. 454 – Normalized σy (a) and τxy (b) stress distributions at the adhesive/patch interface (P5)... 281

Fig. 455 – Damage onset at path A2 horizontally (a) and with cross-graining (b) for an unrepaired beam... 282 Fig. 456 – Damage initiation (a) and growth (b) along paths A2 and A3 for an unrepaired beam... 283 Fig. 457 – Instantaneous failure at paths A1, A2 and A3 horizontally (a) and with cross-graining (b) for a LP=40 mm repair. ... 283

Fig. 458 – Damage initiation at paths A1 and A2 horizontally (a) and growth at path A3 (b) for a LP=40 mm repair. ... 283

Fig. 459 – Instantaneous failure at paths A1, A2 and A3 horizontally (a) and with cross-graining (b) for a LP=60 mm repair. ... 284

Fig. 460 – Two examples of instantaneous failure at paths A1, A2, A3 and A4 for a LP=60 mm repair. ... 284

Fig. 461 – Instantaneous failure at paths A1, A2 and A3 horizontally (a) and with cross-graining (b) for a LP=80 mm repair. ... 284

Fig. 462 – Two examples of instantaneous failure at paths A1, A2, A3 and A4 for a LP=80 mm repair. ... 285

Fig. 463 – Numerical damage initiation at path A2 (a) and growth at path A3 (b) for the unrepaired beam... 285 Fig. 464 – Numerical damage initiation at paths A1 and A2 (a) and growth at path A3 (b) for the LP=40 mm repair. ... 285

Fig. 465 – Detail of the failure at path A1 for the LP=40 mm (a) and LP=60 mm (b) repairs. ... 285

Fig. 466 –Numerical LP=60 mm repair immediately before (a) and after abrupt failure at paths A1, A2 and A3 (b)... 286

Fig. 467 – Numerical LP=80 mm repair immediately before (a) and after abrupt failure at paths A1, A2 and A3 (b)... 286

Fig. 468 – Experimental and numerical P-δ curves comparison for the unrepaired beam (a) and the LP=40 mm repair (b). ... 286

Fig. 469 – Experimental and numerical P-δ curves comparison for the LP=60 mm (a) and LP=80 mm (b) repairs... 287

Fig. 470 – K as a function of LP (a) and δm as a function of LP (b)... 288

Fig. 471 – Pm as a function of LP... 288

Referências

Documentos relacionados

Folhas flutuantes, ausência de anel de tricomas no ápice do pecíolo; limbo 12–23 × 10–20 cm, oval a suborbicular, ápice arredondado, margem inteira, nervuras radiais reticulando

Influence of mean temperature (MT), relative air humidity (RH) and the interaction of these two factors (mt*rh) variation in the abundan- ce of species of Calliphoridae in southern

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Estuda-se a importância dos bacharéis no pensamento constitucional brasileiro, com breves referências de sua importância para a atualidade, tais como o Poder Moderador e

Assim sendo, esta investigação tem três objetivos: analisar os pontos fortes da gastronomia na fronteira dominico-haitiana, analisar as motivações dos turistas estrangeiros que

Como resultado desse itinerário de maior risco, as mu- lheres com menos de 21 anos foram as que mais recorreram à internação hospitalar para a finali- zação do aborto (29 casos),

Entretanto, com o objectivo de obter maior clareza sobre a importância e interferência da imagem como factor de sucesso para os destinos turísticos, será também efectuado o