• Nenhum resultado encontrado

On Stress-Strain State of a Non-Homogeneous Composite in Form of a Package Composed of an Arbitrary Finite Number of Elastic Wedges under Anti-Plain Deformation

N/A
N/A
Protected

Academic year: 2017

Share "On Stress-Strain State of a Non-Homogeneous Composite in Form of a Package Composed of an Arbitrary Finite Number of Elastic Wedges under Anti-Plain Deformation"

Copied!
9
0
0

Texto

(1)

5

 

67, №2, 2014

539.3

А Ё

А А Ь

А Ь А А

А. ., .А.

: , , - ,

-.

Keywords: composite, elasticity theory, equations of finite-difference, peace-wise homogeneous wedge

Ա. ., .Ա.

:

Gasparyan A.V., Davtyan Z.A.

On Stress-Strain State of a Non-Homogeneous Composite in Form of a Package Composed of an Arbitrary

Finite Number of Elastic Wedges under Anti-Plain Deformation

With the application of Mellin transforms stress-strain state of a piecewise non-homogeneous composite in form of a package composed of an arbitrary finite number of elastic wedges with different physical and geometrical parameters is considered under anti-plain deformation.

ё

-- ,

, ,

а а .

ё

, -

,

.

ё

[1, 2].

- [3].

, ,

.

1. х .

-( , , )

r

z

Oxyz

Ox

(2)

6

 

 

1

0

{

,

0

,

}

(

1, )

, (

0, ), 0

2

k k k

i n

z

r

k

n

i

n

     

  

   

     

     

. 1

0

( )

r

n

( )

r

, ,

,

  

0

  

n,

Oz

r

:

0 0

( , )

( ),

( , )

( ).

z z n

n

r

r

r

r



 

 

.

Б а ь, . Т а

 

k

-

k

:

1

2 2

2 2 2

1

, 1

1

1

0

( ),

( )

0

(

)

k k

k k k

k k k k

k k

z rz k k

w

w

w

r

r

r

r

G

w

G

w

r

r

r

r

r

 

 



 



 

 





  

 

   

(1.1)

( , )

k k

w

w r

а

k

Oz

,

k1

( )

r

k

( )

r

– , ,

1

k

  

  

k

, (

k

1, )

n

а

k. (1.1)

[4], а а

0( )r   

( )

n r

   G1

n

G

2 G

0  

1    

n

 

y

x

(3)

7

0 0

, (1.1) , ё щ

а а а :

1

2

2

1 2

1

0

(

,

1, ),

,

(

1 Re

0; 0

1).

k k

k

k k k

k k

k k

k k

d w

p w

k

n

d

d w

d w

G

G

p

d

d

 

   

 

 

 

  

  

(1.2)

(1.2)

1

( , )

k

cos

k

sin

(

k k

)

k k

w

w

p

 

A

p

 

B

p

    

, (1.3)

k

A

B

k (1.2)

1 1

1 1

cos

cos

1

(

1, )

sin

sin

sin (

)

k

k k k

k

k k k k k k

A

p

p

k

n

B

pG

p

p

p

 

 

 

  

 





.

1 1 1 1

1 1

cos

cos

sin

sin

,

(

1, )

sin (

)

sin (

)

k k k k k k k k

k k

k k k k k k

p

p

p

p

A

B

k

n

pG

p

pG

p

 

  

  

  

  

(1.4)

(1.3)

  

k

ё

k

k1

1

,

(

1,

1)

k k

k k

w

w

k

n





1 1

cos

sin

cos

sin

(

1,

1)

k k k k k k k k

A

p

 

B

p

 

A

p

 

B

p

k

n

. (1.5)

, (1.4), (1.5)

-k

:

1 1 1 1

1

(

)

0 (

1,

1)

ctg

1

,

,

(

1, ).

sin

k k k

k k k k

k

k k k k k

k k k

a

b

b

a

k

n

p

a

b

k

n

G

p

G

 

 

    

(1.6)

(1.6)

1 1

1 1

1 1 1

sin(

)

sin(

)

.

sin(

)cos(

)

sin(

)cos(

)

k k

k k k k

k

k k k k k k

G

p

G

p

G

p

p

G

p

p

 

 

  

 

 

 

 

  (1.7)

(1.6) -

1

k k

k k k

a

   

b

f

(1.8)

1

1 k 1 k 1

(

1,

1).

k k k

a

 

b

 

g

k

n

(1.9)

(4)

8

1

0,

(

1,

1).

k k

f

g

k

n

(1.10)

,

(1.8), (1.9) (1.10).

, (1.4)

k

A

B

k, (1.3) –

w

k

( , )

p

. ,

:

( , )

( , )

(0

;

1

Re

0; 0

1;

1, ),

c i

p k

k

c i

w r

w

p

r dp

r

c

p

k

n

 

 

 

      

  

.

2. х - х

. - (1.8) (1.9)

, [3]. (1.8)

1

( )

1

( ),

( )

,

( )

(

1,

1)

k k

k k k

k k

P k

Q k

b

a

f

P k

Q k

k

n

b

b

  

 

 

,

0

1 1

1

[1

( )]

(1,

1)

[1

( )]

k k

i

к i

i j

i r

f

P j

k

n

b

P r

 

 



(2.1)

(1.9)

1 1 1

1

1 1

1 1

1

1

[1

(

1)]

1

(

1)

(

)

(

1)

(1,

1).

n n n

i

к n

i k

j k i r i

k k

k

g

P r

P j

a

a

b

P k

k

n

a

  

   

 

 

 

 

 

(2.2)

(2.1) (2.2) (1.10),

(

1,

1)

i

f

i

n

:

1

1 1

1

1 1 1 1

1 1

cos(

)

sin(

)

cos(

)

cos(

)

n

r n

n r i

i i n i n

i k

j j

j k j k

p

G

p

f

p

p

 

 

   

 

 

(5)

9

1

1

1 1

tg(

)

, (

1,

1)

cos(p

)

cos(

)

r

i i k i k

i

j j

j j

G

p

f

k

n

p

 

 

. (2.3)

1 1

1

1 1

tg(

), (

1, ),

sin(

), (

,

1)

cos(

), (

1, ),

cos(

), (

,

1)

i i i i i i

i n

i r i r

r r i

A

G

p

i

k

B

G

p

i

k n

C

p

i

k

D

p

i

k n

 

 

(2.3)

1 1

0 1

1

, (

1,

1)

k n

n

i i

k k i i i i

i k i k k k k

C

D

A f

A

f

B

f

k

n

C

D

C

D

 

 

(2.4)

1

cos(

)

n

n r

r

K

p

,

:

1 1

1 1 1

1 1

cos(

)

;

cos(

)

cos(

)

(

,

1,

1,

1).

n n

n n

i r k r

r i i i j k k

K

K

D

p

D

p

p

C

C

i

k n

k

n

 

  

   

ё (2.4)

:

, 1

2 1

2 1

1

1

(

1,

1)

, (

1,

1),

(

),

,

,

(

)

k

ki i k

i

n n

k i

n

i i i k k n n i

i

ki i n i

k k

L f

h

k

n

C

A

A C

A

i

k

h

C

X

X

f

L

C

K

C

A C

i

k

  

  

 

[1].

3. .

, ,

0

( )

r

2

( )

r

,

  

0

  

2

. ,

- (1.7)

0 2

2 1

1

2 1 1 2

sin(

)

sin(

)

sin(

)cos(

) sin(

)cos(

)

p

p

p

p

p

p

  

 

 

 

(3.1)

2 2 1

,

1 1 0

,

G G

2 1

(6)

10

1 1 1

1

( )

2

c i p

c i

r

r

dp

i

   

 

,

[5, 6] ё

1 0 2

0 0

1

( )

( , ) ( )

( , ) ( )

2

r

K x r

x dx

L x r

x dx

r

 

 

(3.2)

2

1 1 2

0

1

2 1 1 2

0

sh(

) cos( ln )

( , )

sh(

)ch(

) sh(

)ch(

)

sh(

) cos( ln )

( , )

( 0

)

sh(

)ch(

) sh(

)ch(

)

x

s

s

ds

r

K x r

s

s

s

s

x

s

s

ds

r

L x r

r

s

s

s

s

 

  

 

а ,

, . .

0

( )

r

2

( )

r

T

(

r

r

0

)

 

  

,

( )

r

– .

1 0 0

0 2

0

1 1 2

0

0 1

0

2 1 1 2

0

( )

( , )

( , )

4

sh(

) cos( ln

)

( , )

sh(

)ch(

) sh(

)ch(

)

sh(

) cos( ln

)

( , )

( 0

)

sh(

)ch(

) sh(

)ch(

)

T

r

K r r

L r r

r

r

s

s

ds

r

K r r

s

s

s

s

r

s

s

ds

r

L r r

r

s

s

s

s

 

  

 

(3.3)

(0)

0 1 1

,

,

( )

a

(

)

r

а

r

а

a

T

 

      

(3.3)

(0) 1

1

( )

( , )

( , )

4

K

L

  

     



. (3.4)

) . 2-4

 

1(0)

( )

1

,

2

2

4

(7)

11

Ф . 2

Ф . 3 . 4

,

 

1

,

 

1

,

(

 

1

).

)

r

r

0

(

  

)

(3.3) (3.4)

(0) 1

2

1 1 2

0

1

2 1 1 2

0

1

( )

( , )

( , )

4

sh(

)

( , )

sh(

)ch(

) sh(

)ch(

)

sh(

)

( , )

( 0

)

sh(

)ch(

) sh(

)ch(

)

K

L

s

ds

K

s

s

s

s

s

ds

L

s

s

s

s

 

 

     



  

 

  

   

 

(3.5)

2 4 6 8 10 x

0.02 0.04 0.06

2 4 6 8 10 x 0.005

0.010 0.015 0.020 0.025 0.030 0.035

t10x

2 4 6 8 10 x 0.005

0.010 0.015 0.020 0.025

t10x

1

 

 

10

 

 

 

1

 

 

0.1

 

 

 

10

 

0.1

 

 

1

 

 

10

 

 

2

 

 

7

 

 

5

(8)

12

. 5 . 6

. 5

 

1(0)

( )

0,1; 0,5;1;3; 7

 

1

,

2

3

4

 

 

.

, ё

.

) На . 6

 

1(0)

( )

 

1

1

2

; ; ; ;

6 4 3 2

3

    

 

2

3

 

.

3.2 ё -

    

1 2 (1.7)

0 2

1

1

cos(

p

)

  

 

 

. (3.6)

Е

  

0 2 ,

0 1

cos(

p

)

 

, . .

ё

, . 4.

, (3.6) ,

[5, 6]

 

 

 

 

2 2

1 0 2

0 0

1

( )

( )

( )

2

(

1)

1

1

x r

x r

r

x

dx

x

dx

r

x r

x r

 

   

 

 

 

 

  

. (3.7)

I. ,

ё ,

0

( )

r

2

( )

r

P

 

, (3.7)

1

( )

, 0

2 cos

2

P

r

  

.

2 4 6 8 10 h

0.02 0.04 0.06 0.08 0.10 0.12 0.14

t10h

2 4 6 8 10 m 0.05

0.10 0.15 0.20

t101

1

4

  

1

2

3

  

1

2

  

1

3

  

7

 

0,1

 

0, 5

(9)

13

2 0 1

0

( )

4

1

r r

Т

r

r

r r

 

 

 

.

1. . ., . . ё

ё

// . . . 2010. .63. № 2. .10-20.

2. . ., . .

// . - .

28 – 1 2009, , , .186-189.

3. . . . : , 1967. 375 .

4. . . . :

, 1967. 403 .

5. ., . . .1. .: ,

1969. 343 .

6. . ., . . , , .

.: , 1971. 1108 .

х: А

. .- . ., ,

А : 0019, , . 24/2

.: (+37410) 52-48-90, -mail:anush@mechins.sci.am

А

. .- . ., ,

А : 0019, , . 24/2

.: (+37410) 52-48-90, -mail: anush@mechins.sci.am 

Referências

Documentos relacionados

We also determined the critical strain rate (CSR), understood as the tangent of the inclination angle between the tangent to the crack development curve and the crack development

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated

encontram-se expostos durante o trabalho em centro de material e esterilização e sumarizar as medidas propostas para sanar ou atenuar esses riscos, evidenciados

At the first stage of the measurements results analysis, the gear wheel cast surface image was compared with the casting mould 3D-CAD model (fig.. Next, the measurements results

Using the data entered, the materials characteristics built in the database system, and the knowledge base on changes in prop- erties due to additional treatment, the

42 The presentation concluded that ADT is associated with an increased risk of CV events; however, the GnRH antagonist degarelix may be a promising drug, ofering increased

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture