• Nenhum resultado encontrado

Publicações do PESC A Distributed Algorithm to Find <I>k</I>-Dominating Sets

N/A
N/A
Protected

Academic year: 2021

Share "Publicações do PESC A Distributed Algorithm to Find <I>k</I>-Dominating Sets"

Copied!
9
0
0

Texto

(1)

Lucia D.Penso

Valmir C.Barbosa

UniversidadeFederaldoRiodeJaneiro

ProgramadeEngenhariadeSistemaseComputac~ao,COPPE

CaixaPostal68511

21945-970RiodeJaneiro-RJ,Brazil

draque@cos.ufrj.br, valmir@cos.ufrj.br

Abstract

WeconsideraconnectedundirectedgraphG(n;m)withnnodesandmedges. Ak-dominatingsetDinGis

asetofnodeshavingthepropertythateverynodeinGisatmostkedgesawayfromatleastonenodeinD.

Findingak-dominatingsetofminimumsize isNP-hard. Wegiveanewsynchronousdistributed algorithm

to ndak-dominatingsetinGofsizenogreaterthan 

n=(k+1) 

. OuralgorithmrequiresO(klog 

n)time

andO(mlogk+nlogklog 

n)messagestorun. Ithasthesametimecomplexityasthebestcurrentlyknown

algorithm,but improvesonthat algorithm'smessagecomplexityandis,in addition,conceptuallysimpler.

Keywords: k-dominatingsets,distributed algorithms,graphalgorithms.

1. Introduction

Let G(n;m) be aconnectedundirected graphwith n nodes and m edges. Fork n 1,ak-dominating

set D in Gisaset ofnodeswith thepropertythat everynodein Gis atmostk edgesawayfromat least

oneofthenodesof D. Theproblem of ndingk-dominatingsets ofrelativelysmallsizes isimportantina

varietyofcontexts,includingmulticastsystems[11],theplacementofserversinacomputernetwork[2],the

cachingof replicasindatabaseandoperatingsystems[8],andmessageroutingwithsparsetables[9].

Findingak-dominatingsetinGwiththeleastpossiblenumberofnodesisthoughttobeanintractable

problem(itisNP-completewhenformulatedasadecisionproblem[4]),soone normallysettlesforasetof

small size that is notnecessarily optimal. In general, the small size to be sought is at most 

n=(k+1) 

,

sinceit canbeargued that a k-dominatingset withno morethan this numberof nodesalwaysexists [6],

and likewise that aconnectedgraphonnnodesnecessarilyexists forwhicheveryk-dominatingset hasat

least 

n=(k+1) 

nodes[10].

The argument for 

n=(k+1) 

as an upper bound is instructive in the present context, and goes as

follows[6]. LetT bearootedspanning tree ofGand D

1 ;:::;D

k +1

apartition ofits nodes such that,for

0`k,everynodeinD

`+1

isawayfromtherootanumberx

`

oftreeedgessuchthatx

`

mod(k+1)=`.

ThispartitioncanbeconstructedeasilybytraversingT breadth- rstfromtherootandassigningeverynew

layerofnodescircularly tothe setsD

1 ;:::;D

k +1

. Clearly, everyoneof these setsis ak-dominatingset in

G. Also, because theypartition the graph'snode set, and considering that n k+1, it must be that at

leastoneofthem hasnomorethan 

n=(k+1) 

nodes.

Our topic in this paper is nding a k-dominating set in G having no more than 

n=(k+1) 

nodes

(2)

in lockstepat theoccurrence ofclock pulses, and its edges arebidirectionalcommunicationchannels that

deliver messagesbetween their end nodes before the clock pulse that follows the sending of the message

occurs. Timeismeasuredbycountingclockpulses.

Thecurrentbest synchronousalgorithm to ndak-dominating setin Gis from[6], andishenceforth

referredtoasAlgorithmKP.Itproceedsintwostages: the rststagepartitionsGintothetreesofarooted

spanningforestF,eachhavingat leastk+1nodesandheightO(k);thesecondstage approacheseachtree

U 2F asdescribedearlierfor thespanning treeT and partitionsits nodesinto thesets D U 1 ;:::;D U k +1 . If

f isthenumberoftreesin F, thenthek-dominatingset outputbythealgorithmisD =D U1 `1 [[D U f `f , whereU 1 ;:::;U f

arethetreesofF andD U

i

`

i

isthesmallestset ofD U i 1 ;:::;D U i k +1 for1if. Ifn U isthe

numberofnodesof U 2F,then

jDj=jD U 1 ` 1 j++jD Uf ` f j  X U2F  n U k+1    P U2F n U k+1  =  n k+1  ; sincen U k+1forallU 2F.

While thesecond stage of Algorithm KP canbeeasily implemented within the bounds of O(k) time

and O(n) messages, its rst stage is based on an arcane combination of previously developed algorithms

for related problems [3, 5, 7], resulting in a time complexity of O(klog 

n) and a message complexity of

O(mlogk+n 2

log 

n). The latter, incidentally, is our best estimate of what is really involved, in terms

of communication needs, in Algorithm KP|such needs are thoroughly ignored in [6], but this message

complexityseemsto followfromthemessagecomplexities ofthealgorithm's buildingblocks.

Inthispaper,weintroduceanewsynchronousdistributed algorithmfor ndingak-dominatingset of

no more than 

n=(k+1) 

nodes in G. Like Algorithm KP, our algorithm toocomprises twosubsequent

stages, each having the samegoalas itscounterpartin AlgorithmKP. The second stage,in particular, is

exactlythesameasAlgorithmKP's.

OurcontributionistheintroductionofanewalgorithmforthepartitionofGintothetreesofF. When

comparedtoAlgorithmKP,ouralgorithmhasthesamecomplexityofO(klog 

n)timewhileimprovingon

themessagecomplexity,whichinourcaseisofO(mlogk+nlogklog 

n). Wealso ndouralgorithmtobe

conceptuallysimplerthanAlgorithmKP,whichcanprobablybeattributedtothefactthatitwasdesigned

from scratch with the partitioning problem in mind. While ouralgorithm simply generates asequence of

\meta-graphs,"thelastofwhichhasnodesthatdirectlygivetherootedtreesofF,AlgorithmKPreducesthe

partitionproblemtoother,relatedproblemsandthencombinesalgorithmsforthoseproblemsintobuilding

asolutiontothepartitionproblem. Henceforth,weletthealgorithmweintroducebecalled AlgorithmPB.

The following is how the remainder of the paper is organized. The rst stage of Algorithm PB is

introducedin Section2and analyzedforcorrectnessandcomplexityin Section3. Concluding remarksare

givenin Section4.

2. The algorithm

Inthissectionweintroducethe rststageofAlgorithmPB.Thisstage ndsarootedspanningforestF inG,

(3)

PartitionG startsby letting thenode set of G be thenode set of adirected graph G 0 , and proceeds fromtherein  log (k+1)  phases. For0i  log(k+1) 

1,phasei rstbuildstheedgesetof ~

G

i

andthen

beginsthetransformationof ~

G

i

intoanotherdirectedgraph, ~

G

i+1

,byclusteringthenodesof ~

G

i

togetherto

formthenodesof ~ G i+1 . Each nodeof ~ G i

standsforarootedtreein G,andthisclustering isperformedin

suchawaythatnotonlyiseachresultingnodeof ~

G

i+1

alsoarootedtreeinG,butonethathasatleast2 i+1

nodesandO(2 i+1

)height. Aftercompletionofphase 

log(k+1) 

1,thenodesetof ~

G

dlog (k +1)e

represents

thedesiredrootedspanning forestF (earlierterminationis alsopossible,aswediscussshortly).

Ifx andy arenodesof ~

G

i

, thenwesaythat xand y arepotential neighbors in ~

G

i

ifanedgeexists in

Gjoining somenode intherootedtree representedbyx tosomenodein therootedtreerepresentedbyy.

Wesaythat theyareneighbors in ~

G

i

ifadirectededgeexistsbetweenthem. Anodethathasnoneighbors

isisolated. Ifx andy areneighbors in ~

G

i

, thenweusex!y to indicatethat theedgebetweenx andy is

directedfromxtoy. Inthiscase,wesaythatxisanupstreamneighborofy,whichinturnisandownstream

neighborofx.

PartitionGisbasedonmanipulationsofnodeidenti ers,whichweassumetobeadistinctnonnegative

integerforeverynodeinG. Theidenti erofnodexin ~

G

i

,denoted byid(x), istheidenti eroftherootof

itstree. If anode's identi eris lessthan thoseofallitsneighbors,thenwecallthenodealocal minimum.

Ifitisgreater,thenwecallitalocalmaximum. ThefollowingishowPartition Gworksduringphasei. We

uselog (t)

nto denotelog:::logn,wherelog isrepeatedttimes.

Step1. Find theedgesof ~

G

i :

1a. Leteachnodeof ~

G

i

beinactive,iftheheightofthecorrespondingrootedtreeisatleast2 i+1

,oractive,

otherwise.

1b. For everyactive node x of ~

G

i

, nd thepotentialneighbors of x in ~

G

i

. If no potential neighbors are

foundforanynode,thenhaltandexitPartition G.

1c. Foreachactivenodex of ~

G

i

,lety bethe activepotentialneighborofx with theleastidenti er. If x

hasnoactivepotentialneighbors,thenlety bethe(inactive) potentialneighborof xhavingtheleast

identi er. Addx!y totheedgesetof ~

G

i

,thusmakingxandy neighborsin ~

G

i .

Remark. If no neighbors are found for any node in Step 1b, then in reality ~

G

i

has one single node that

encompasses all the nodes of G and therefore corresponds to a rooted spanning tree of G. In this case,

PartitionGterminatesprematurely,that is,before completingall 

log(k+1) 

phases.

Remark. Attheendof Step1c,everyactivenodeof ~

G

i

hasexactlyonedownstreamneighbor,whileevery

inactivenodehasnone. Similarly,bothactivenodeswhosedownstreamneighborisactiveandinactivenodes

mayhavebetweenzeroandsomepositivenumberofupstreamneighbors. Anactivenodewhosedownstream

neighborisinactivehasnoupstreamneighbors.

Step2. Find thenodesof ~ G i+1 : 2a. Ifx!y isanedgeof ~ G i

such thatx isanactivenodeandy aninactivenode, thencombine x intoy

bycreatingasingle node whoseidenti er remainsid(y). Let X be theset of activenodes of ~

G

i that

arenotisolated.

2b. For x2X,letZ(x)X betheset ofupstreamneighbors ofx. IfZ(x)6=;,thenletz bethemember

of Z(x) having the least identi er. For y 2 Z(x) such that y 6= z, check whether Z(y) = ;. In the

aÆrmativecase,combiney into x. Otherwise(i.e., Z(y)6=;),eliminateedgey !x. LetX betheset

ofactivenodesof ~

G

i

(4)

byeliminatingedgesfrom ~

G

i

appropriately. Also,combine intothenewly-formednodeanynodein X

thatmayhavebecomeisolated. LetX bethesetofactivenodesof ~

G

i

thatarenotisolated.

2d. RepeatStep2cforlocalmaxima,thenletX betheset ofactivenodesof ~

G

i

thatarenotisolated. For

x2X,letl x =id(x). 2e. For x2X,let l x = 8 < : l y ; ify!xisanedgeof ~ G i ; l x 1; ify!xisnotanedgeof ~ G i andl z >l x ; l x +1; ify!xisnotanedgeof ~ G i andl z <l x ,

wherez isthedownstreamneighborof x,and

l + x = 8 < : l y ; ifx!y isanedgeof ~ G i ; l x +1; ifx!y isnotanedgeof ~ G i andl z <l x ; l x 1; ifx!y isnotanedgeof ~ G i andl z >l x ,

wherez istheupstreamneighborofx. Nowconsider thebinaryrepresentationsofl

x ,l x , andl + x ,and

let A(x) be the set of positive natural numbers psuch that l

x and l

x

have the same bit at the pth

positionwhile l

x andl

+

x

do not. Likewise, letB(x) betheset of numberspsuch that l

x and l

x have

di erentbitsat thepthposition whilel

x andl

+

x

havethesamebit. Letp 

(x)bethegreatestmember

ofA(x)[B(x). Ifx!y isanedgeof ~ G i suchthatp  (x)=p 

(y),thencombinexintoy andmakethe

resultingnodeisolatedbyeliminating edgesappropriately(ifanynodein X becomes isolatedbecause

of this, then combine that node into the newly-formednodeas well). Now letX bethe set of active

nodesof ~

G

i

thatarenotisolated,thenrepeatSteps2cand2dwithp 

'sinplaceofid's,andonceagain

letX betheset ofactivenodesof ~

G

i

thatarenotisolated. IfX 6=;,thenletl

x =p



(x)forallx2X

andrepeatStep2e. IfX =;,thenlettheset ofisolatednodesof ~

G

i

bethenodesetof ~

G

i+1 .

Remark. InStep2a, itispossibleformorethanonex toexist forthesamey. Inthiscase,everysuchx is

combinedintothesingleresultingnodeofidenti erid(y). Notethatfornosuchxtheremayexistanodez

suchthat z!x ory !z isanedge of ~

G

i

. Thisisso,respectively,becausexhasan inactivedownstream

neighborandbyStep1chasnoactiveneighbors,andbecausey,beinginactive,hasnodownstreamneighbors.

As aconsequence,thenewly-formed node isisolated in ~

G

i

. Atthe end ofStep 2a, thesingledownstream

neighborofeverymemberofX isactive,andthereforealsoamemberofX.

Remark. InStep2b,theremayexist morethanoney2Z(x)suchthat y6=z andZ(y)=;. Everysuchy

getscombinedintonodex. AttheendofStep2b,everymemberofX hasexactlyonedownstreamneighbor

and at most oneupstream neighbor. That is, the membersof X are arranged into groupsof nodes, each

grouphavingatmostonenodewithnoupstreamneighborandexactlyonenodethathasthesameneighbor

for both upstream and downstream neighbor. Except for these two-node directed cycles, such groups of

nodesmayberegardedasdirectedchains.

Remark. AttheendofStep2d,themembersofX arearrangedintodirectedchainsofnodeswhoseidenti ers

arestrictlyincreasingordecreasingalongthechains. Eachsuchchainhasatleasttwonodes,ofwhichexactly

onehasnoupstreamneighborandexactlyonehasnodownstreamneighbor.

Remark. Step 2e repeatedly manipulates the node labels l

x

so that the nding of minima and maxima,

respectively as in Steps 2c and 2d, can once again be used to combine nodes in X into isolated nodes.

(5)

integershaveanever-dwindlingrange: ifj 1identi esaniterationwithinStep2e,thentherangeoflabels

during iteration j is 0;:::;log (j)

n. Eventually, during a certain iteration j  log 

n, this rangebecomes

f0;1gandconsequentlythetaking ofminima andmaxima asin Steps 2cand 2disguaranteedto produce

anemptyX. Atthebeginningofeachiteration,themembersofX arearrangedintodirectedchainswhose

labelsarestrictlyincreasingordecreasingalongthechains. Eachsuchchainhasatleasttwonodes,ofwhich

exactlyone hasnoupstreamneighborand exactlyonehasnodownstreamneighbor.

Steps1and2specifytheithphaseofPartitionGasthemanipulationofdirectedgraphs, rstto ndthe

edgesof ~

G

i

inStep1,theninStep2to ndthenodesof ~

G

i+1

. Ofcourse,therealizationofsuchoperations

ongraphsrequires communicationamongthenodesof ~

G

i

,whichultimatelytranslatesinto communication

amongthenodesofG. However,theassumptionofasynchronousmodelofdistributedcomputationmakes

thecommunicationneedsofPartitionGratherstraightforwardtorealize[10].

Becauseeachnodein ~

G

i

standsforarootedtreeinG,Steps1and2canberegardedasbeingexecuted

bythetrees'roots, which in turncoordinatetheremainingnodesin theirtreesin carryingoutthevarious

tasksprescribedbythealgorithm. Forexample,Step1ais abroadcastwithfeedbackontreeedgesstarted

by the root, which sends out the upper bound of 2 i+1

1 on the tree height for the ith phase. This is

propagatedbytheothernodesinthetree,whichsendonwhattheyreceive,ifnonzero,afterdecrementingit

byone. Thefeedbackisstartedbytheleaves,whichclearlyneverhappensifatleastoneleafisnotreached

bythebroadcast,thus signalingtotherootthatthetreeisoversized.

In the same vein, by simply letting every node in G that belongs to the same node x in ~

G

i

havea

recordofid(x), ndingthepotentialneighborsofxinStep1bandthedirectededgesincidenttoitin ~

G

i in

Step 1carealso simpleprocedures thatfunction byprobing theconnectionsofx in G. Wheneveranedge

isdeployed betweentwonodes in ~

G

i

, acorrespondingedgein G,referredto asthepreferrededge between

thosetwonodes,canalsobeeasilyidenti ed andrecordedforlateruse.

All the remainingactionsin Partition Gcanberealized viacommunication betweentheroots of two

treeswhosenodesin ~

G

i

areconnectedbyanedge. Wheneveramessageneedstobesent,itcanberoutedon

treeedgesonly,except tomovefromonetreeto theother,at which timeitmust gothroughthepreferred

edge between the twotrees. This is, for example, the basis for realizing the combination of a node into

another: combininga node x into a node y that is connected to it by anedge in ~

G

i

involvesmaking the

preferrededgebetweenthemanedgeofthenewtreeandthenpropagatingthroughx'streetheinformation

thatanewroot existsandhasidenti erid(y).

3. Correctness and complexity

MostofourcorrectnessandcomplexityargumentshingeonhowwellStep2esucceedsin breakingdirected

chainsofnodesin ~

G

i

asneeded. It istothepropertiesofStep2ethatweturn rst.

Lemma1. Letx!y beanedgeatthebeginningofaniterationofStep2eofPartition G. Thefollowing

holds:

(i) Ifp 

(x)2A(x)andp 

(y)2A(y),thenp  (x)6=p  (y); (ii) Ifp  (x)2B(x)andp 

(y)2B(y),thenp  (x)6=p  (y); (iii) Ifp  (x)2B(x)andp 

(y)2A(y),thenp 

(x)6=p 

(y).

Proof: BySteps2athrough2e,edgex!yisinachainofnodeswhoselabelsareeitherstrictlyincreasing

orstrictlydecreasingalongthechain. Supposetheformercase rst. Thenl

x <l x <l y <l + y .

(6)

Ifp (x)2A(x), then l

x andl

x

havethesamebitat positionp (x)while l

x and l

y

havedi erentbits

at that sameposition. Ifp 

(y)2A(y), thenl

x andl

y

havethe samebitat position p  (y)while l y andl + y

havedi erentbits atthatsameposition. Sop 

(x)andp 

(y)cannotbethesameposition,thusproving(i).

Ifp  (x)2B(x), then l x andl x

havedi erent bitsat position p 

(x) whilel

x andl

y

havethesamebit

at thatsameposition. If p 

(y)2B(y), thenl

x andl

y

havedi erentbits at position p  (y)while l y andl + y

havethesamebitatthatsameposition. Sop 

(x)andp 

(y)cannotbethesameposition,whichproves(ii).

Wenowprove(iii). If p 

(x) 2B(x), thenl

x and l

x

havedi erent bitsat position p  (x) whilel x and l y

havethesamebit at that sameposition. Suppose thesebits are100, respectivelyforl

x ,l x , and l y . By de nitionof p 

(x),at allotherpositions totheleftofp 

(x) inthebinaryrepresentationsofl

x ,l x ,l y (that

is, positions correspondingto higher powersof two) wemust havethesamebit for allthree labels orbits

thatdi erfrom l

x to l

x

andalsofroml

x to l

y

. Inotherwords,theonlypossibilitiesare000,111,010,and

101. Butthesepossibilitieshaveallthesamebitforl

x andl

y

,whichcontradictsthefactthatl

x <l

y . Then

thebitsforl

x ,l x ,andl y at position p  (x)mustbe011. Ifp  (x)=p 

(y),thenthebitsofl

x andl

y

areboth1atposition p 

(y),whichisinagreementwiththe

de nition ofA(y). Bythis samede nition,at position p 

(y) thebitof l +

y

must be0. Totheleft ofp 

(y),

thepossibilitiesforl

x ,l y ,l + y

are000,111,010,and101,againfollowingthede nitionofp 

(y). Thisimplies

the same bit for l

x and l

+

y

at all those positions, which like before contradicts the fact that l

x < l + y . So p  (x)6=p  (y).

Ifx!yisinachainofnodeswhoselabelsarestrictlydecreasingalongthechain,thenl

x >l x >l y >l + y .

Inthiscase,theargumentsthatprove(i)and(ii)remainunchanged,whilein theproofof(iii)itsuÆcesto

complementeverybitin thetripleswedisplayed(thisleadstocontradictionsofl

x >l y andl x >l + y ).

Lemma2. Letx!ybeanedgeatthebeginningofaniterationofStep2eofPartitionG. Ifp  (x)=p  (y), thenp  (x)2A(x)andp  (y)2B(y). Proof: If p  (x) 2B(x)with either p  (y)2B(y) or p 

(y)2 A(y), then byLemma 1, parts (ii) and (iii),

p  (x) 6=p  (y). If p  (x) 2A(x) and p 

(y)2A(y), then by Lemma 1,part(i), p 

(x)6=p 

(y). Thence the

lemma.

Lemma3. Letx!y !zbepartofachainatthebeginningofaniterationofStep2eofPartitionG. If

p  (x)=p  (y),thenp  (y)6=p  (z). Proof: ByLemma2,p  (x)2A(x) andp 

(y)2B(y). ByLemma1,parts(ii)and(iii),p 

(y)6=p 

(z).

NowletI be thelast phaseofPartitionGin which prematuretermination inStep 1bdoesnotoccur.

Then1I  

log(k+1) 

1andwehavethefollowing.

Lemma 4. For i = 0;:::;I, every node of ~

G

i+1

that is not an inactive node of ~

G

i

is formed by the

combinationofatleasttwonodesof ~

G

i .

Proof: ByStep2e,thenodesetof ~

G

i+1

isthesetofisolatednodesin ~

G

i

attheendofStep2. Thelemma

followseasilyfromthefactthateveryisolatednodeproducedduringStep2(thatis,isolatednodesthatare

notinactiveduring phasei)resultfromthecombinationofatleasttwonodesof ~

G

i .

WearenowinpositiontodemonstratethatPartitionGdoesindeedachieveitsgoals.

Theorem 5. Fori =0;:::;I+1,the nodesof ~

G

i

form arooted spanning forestof G. Each tree in this

foresthasatleast2 i

nodesandO(2 i

(7)

inductionhypothesisisthatthenodesof ~

G

i

formarootedspanningforestofG,eachofwhosetreeshaving

atleast2 i

nodesandO(2 i

)height.

Inordertoshowthatthenodesof ~

G

i+1

doindeedformarootedspanningforestofG,bytheinduction

hypothesis itsuÆces toarguethat theset X isemptyat theend ofphasei. Thereasonforthis isthat it

isthe setof isolatednodes atthe endof phaseithat wetaketo bethenodeset of ~

G

i+1

,and that X =;

indicatesthateverynodeinGispartofthetreerepresentedbysomeisolatednode. Butthisfollowsdirectly

fromthefactthattherangeoflabelsduringStep2edecreasessteadilyastheiterationsprogress. Eventually,

thisrangebecomessuch thateverylabeliseither 0or1,atwhichtime the ndingofminimaandmaxima

makesX empty.

Havingshownthis,weconsiderthenumberofnodesand heightofeachofthetreesin thenodeset of

~ G i+1 . Anodeof ~ G i+1

iseither aninactivenode of ~

G

i

or results,by Lemma4,from thecombinationof at

least two nodesof ~

G

i

. In theformer case,by Step 1athe nodecorrespondsto arooted treein Gwith at

least2 i+1

nodes. Inthelattercase,bythe inductionhypothesis,it correspondsto arooted treein Gwith

atleastq2 i

nodesforq2,that is,atleast2 i+1

nodes.

Asfortheheight,wereasonsimilarly. Ifanodein ~ G i+1 isaninactivenodeof ~ G i

,thenitsheightis,by

theinductionhypothesis,O(2 i

),whichinturnisO(2 i+1

). Ifitisacombinationofatleasttwonodesof ~

G

i ,

theneitherthiscombinationtakesplaceinoneofSteps2athrough2dorinStep2e. Intheformercase,the

combination iseither performed overasingleedge (Steps2aand2b), orit isperformedoverachainof at

mostsixedges( rstin Step2c, theninStep2d). Ineithercase,theinductionhypothesisleadstoaheight

ofq2 i

forq aconstant,whichisO(2 i+1

). ThecaseofStep2e isentirelyanalogous,sinceby Lemma3itis

eitherperformedoverasingleedge,orelsebythetakingofminimaandmaxima,asinSteps2cand2d.

Corollary 6. Thenodes of ~

G

I+1

form arooted spanning forest of G, and in this forest each tree has at

leastk+1nodesandO(k)height.

Proof: IfPartitionGterminatesinStep1bofsomephase,thenI < 

log(k+1) 

1andthecorollaryholds,

because ~

Ghasinthiscaseonesinglenodeencompassingallthenk+1nodesofG,andfurthermorethe

heightofthetreethatcorrespondstothissinglenodeisbyTheorem5O(2 I+1

),whichisO(k). IfPartitionG

runs throughall the phases,then I = 

log (k+1) 

1and the corollaryfollowsdirectly from Theorem5

withi=I+1= 

log (k+1) 

.

Wenow nalizethesectionbydiscussingthetimeandnumberofmessagesneededbyPartitionGand

byAlgorithmPBas awhole.

Theorem7. PartitionGrequiresO(klog 

n)timeandO(mlogk+nlogklog 

n)messagestocomplete.

Proof: Duringtheith phase,i=0;:::; 

log (k+1) 

1,each ofSteps1a through2drequires aconstant

numberofcommunication\rounds,"eachinturnrequiringanumberoftimeunitsproportionaltotheheight

of arootedtree in that phase,which byTheorem 5is O(2 i

). Thesameholds for each of theiterationsof

Step2e,ofwhichthereareat mostlog 

n. ThenthetimerequiredforPartitionGtocompletegrowswith

dlog (k +1)e 1 X i=0 2 i log  n dlog (k +1)e 1 X i=0 2 log(k +1) 2 i log  n =(k+1)log  n dlog (k +1)e 1 X i=0 1 2 i <2(k+1)log  n;

(8)

soPartitionGrequires O(klog n)time.

The number of messages that PartitionG requires canbe estimated likewise for phase i, as follows.

Thenumberof messagessentduring Step1is dominatedbyStep 1bto determinethepotentialneighbors

in Gofanodein ~

G

i

,which requiresO(m)messages. Steps2a and2brequireO(n)messages,whichisthe

totalnumberoftree edges,becauseseveralnodesmaybecombinedintothesamenodeduringthosesteps.

However,eachoftheO(log 

n)communication\rounds"inSteps2cthrough2eismoreeconomical,because

the chain structure of ~

G

i

in those stepsallows communication to take place along single paths from the

trees'roots, andsothenumberofmessages owingin each rootedtreeisproportionaltoits height,which

during phasei isO(2 i

)byTheorem5. AlsobyTheorem5,each rooted treein ~ G i hasat least2 i nodes, so

there areat mostn=2 i

rooted treesin ~

G

i

. Itfollowsthat thenumberofmessagesrequiredbyPartitionG

forcompletiongrowswith

dlog (k +1)e 1 X i=0 m+ n 2 i 2 i log  n=m  log(k+1)  +nlog  n  log (k+1)  ;

soPartitionGrequires O(mlogk+nlogklog 

n)messages.

Corollary8. AlgorithmPBrequiresO(klog 

n)timeandO(mlogk+nlogklog 

n)messagestocomplete.

Proof: Immediate from Theorem7,considering that thealgorithm'ssecond stage requiresO(k) timeand

O(n)messages.

4. Concluding remarks

Wehaveconsideredthe problemof nding ak-dominatingsetwith nomorethan 

n=(k+1) 

nodesin G,

andgivenanewsynchronousdistributedalgorithmtosolveitinO(klog 

n)timewhilerequiringO(mlogk+

nlogklog 

n)messages. Our algorithm follows thesame overall strategy of [6], accordingto which rsta

rootedspanning forestisfoundin Gwithcertaincharacteristics,andthen thedesiredk-dominatingseton

thatforest.

Our algorithm introduces a new approach to nding the rooted spanning forest, which we think is

conceptually simplerthan theone of [6], and shares withthe algorithm of [6] theadditional computation

that is requiredto nd the k-dominating set. In both algorithms, theoverall complexity isdominated by

theforest- ndingstage. Bothhavethesametimecomplexity,butourshasbettermessagecomplexity.

Acknowledgments

The authors acknowledge partial support from CNPq, CAPES, the PRONEX initiative of Brazil's MCT

undercontract41.96.0857.00,andaFAPERJBBPgrant.

References

1. V.C.Barbosa,AnIntroductiontoDistributedAlgorithms,TheMITPress,Cambridge,MA,1996.

2. J.Bar-Ilan,G.Kortsarz,andD. Peleg,\Howto allocatenetworkcenters,"J. ofAlgorithms 15(1993),

385{415.

3. J. A. Garay, S. Kutten, and D. Peleg, \A sub-linear time distributed algorithm for minimum-weight

(9)

Completeness,W. H.Freeman&Co.,NewYork,NY, 1979.

5. A. V.Goldberg, S. A.Plotkin, andG.E. Shannon,\Parallelsymmetry-breakingin sparsegraphs," in

Proc. of the NineteenthAnnualACMSymposiumonTheoryof Computing,315{323,1987.

6. S.KuttenandD.Peleg,\Fastdistributedconstructionofsmallk-dominatingsetsandapplications,"J.

of Algorithms 28(1998),40{66.

7. A.PanconesiandA.Srinivasan,\Improveddistributedalgorithmsforcoloringandnetwork

decomposi-tionproblems,"inProc. of the Twenty-FourthAnnual ACMSymposiumon the Theory of Computing,

581{592,1992.

8. D.Peleg,\Distributeddatastructures:acomplexity-orientedview,"inProc.oftheFourthInt.Workshop

onDistributedAlgorithms,71{89,1990.

9. D. Pelegand E. Upfal,\A tradeo betweensize andeÆciency for routingtables,"J. of the ACM 36

(1989),510{530.

10. L. D.Penso,ADistributedAlgorithm toFind k-dominating Setsin Graphs,M.Sc. thesis,Federal

Uni-versityofRiodeJaneiro,Brazil,December1999.(In Portuguese.)

11. R.WittmannandM.Zitterbart,MulticastCommunication:Protocols andApplications, Morgan

Referências

Documentos relacionados

Este artigo resulta de minha pesquisa como bolsista PIBIC 3 , e procuro nesse pequeno ensaio perceber a participação das mulheres no movimento estudantil da Universidade Federal

Relativamente ao aleitamento materno exclusivo, verificou-se que a proporção de crianças amamentadas de forma exclusiva filhos de mães com idade inferior ou igual a 18 anos na

Assim verificou-se que o diagnóstico de gestação em bovinos pode ser dado aos 30 dias e que, a partir da visualização do feto, a fetometria pode ser realizada,

These words describe the four basic steps of the scientific method.. I believe this to be so because I had a good solution to the problem and I was rebuilding my confidence with

No presente estudo, foram submetidos a exames laboratoriais um total de 165 mulheres, para verificar a incidência de microorganismos, particularmente do gênero

Os sistemas para operacionalização dos convênios são: sistemas de emendas parlamentares e o Sistema de Gestão Financeira de Convênios (GESCON). Na proposta questiona-se qual