• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número4

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número4"

Copied!
12
0
0

Texto

(1)

Hadroni Physis in Peripheral Heavy Ion Collisions

A. A. Natale

Institutode FsiaTeoria, UniversidadeEstadual Paulista,

RuaPamplona145, 01405-900,S~aoPaulo,SP,Brazil

Reeivedon9Marh,2002

Wedisusstheprodutionofhadroniresonanesinveryperipheralheavyionollisions,wherethe

ionsollidewithimpatparameterlargerthantwiethenulearradiusandremainintatafterthe

ollision. Weomparetheresonaneprodutionthroughtwo-photonanddoublePomeronexhange,

showingthatwhenweimposetheonditionforaperipheralinterationtheproessdominates

overthePomeroninteration,duetotheshortrangepropagationofthislastone. Wealsodisuss

theobservationoflightresonanesthroughthesubproess !R !,whihisaleansignal

forglueballandidatesaswellasonewaytohektheexisteneofapossiblesalar meson.

I Introdution

Collisionsatrelativistiheavyionolliderslikethe

RelativistiHeavyIonColliderRHIC/Brookhavenand

the Large Hadron Collider LHC/CERN (operating in

itsheavyionmode)aremainlydevotedtothesearhof

theQuarkGluonPlasma. Inadditiontothisimportant

feature of heavy-ionolliders, wewill also have

ultra-peripheralollisions with impat parameterb > 2R

A ,

where R

A

isthenulearradius,andwhere theions

re-main intataftertheollision.

These interations will be mostly of

eletromag-netiorigin:two-photon()orphotonulearproesses

(A). Duetotheverystrongphotoneldofeahharge

Z aeleratedion,the photonluminositywill bequite

high. IntheaseofRHIC nalstatesproduedin the

two-photonproesswithaninvariantmassuptoafew

GeV will appear at large rates. Above this sale the

photonluminositydropsveryfast. AtLHCanalstate

withamassalmosttwoordersofmagnitudelargeran

still be produed at reasonable rates. The variety of

proessesthat an be studied in heavy ionperipheral

ollisionshavebeenextensivelyreviewedreently[1℄.

Thefatthathadroniresonanes(R )ouldbe

pro-dued at largerates in peripheral heavyion ollisions

wasalreadydisussedmanyyearsago[2℄. Perhapsthis

may be oneof the mostinterestingstudies to be

per-formed at RHIC, beause the mahine will serve asa

fatory of light hadronsin and A reations.

Ve-tor resonanes will appear at huge rates in

photonu-lear reations[3℄, as well as salar and pseudosalar

resonanesintwo-photonproesses[4℄. Wewill

parti-andpseudosalarresonanesthroughtheproess.

Two-photon physisat e +

e olliders provided for

alongtimealotofinformationonhadroniresonanes

[5℄. Thetwo-photonproessisveryimportantbeause

it involves the eletromagneti oupling of the

reso-nane, and its knowledge with high preision is very

useful,for instane, to unravelthe possible amount of

mixing in some glueball andidates [6℄,

omplement-ing the information obtained throughthe observation

of hadroni deays. Another interesting study is the

possible prodution of alight salarmeson () whose

existenehas been disussed for several years [7℄. We

stressagainthattheadvantageofrelativistiheavyion

olliders isthat thephotonluminosityfor two-photon

physisis orders of magnitude larger than the one at

availablee +

e mahines.

Wewilldisusstheprodutionoflighthadroni

res-onanesinultra-peripheralheavyionollisions.Wewill

showthattheproess!R!,see Fig. (1),an

beobservedformanyresonanes aboveorat thesame

level of thebakground. Themain bakgroundis the

ontinuumreation!,thisonewillbedisussed

aswellassomeotherbakgroundontributions.

Dou-ble Pomeron exhange may also ompete with the

physis,wewillpointoutthatthisontributionisnot

importantforveryheavyions.

Thedistribution ofthis review isthe following: In

SetionIIwepresentthedistributionfuntionsfor

pho-tonsandPomeronsin theion,anddisusssomeofthe

approximations to obtain realisti ross setions. We

ompare proesseswith the ones initiated by

(2)

ofsomeglueballandidatesandintheaseofapossible

salar meson. SetionIVontainsouronlusions.

Figure1. Diagramfor fusioninaperipheralheavy-ion

ollision. Theblobrepresentsaontinuumorresonant

pro-essleadingtoatwo-photonnalstate.

II Two-photon and double

Pomeron exhange proesses

A. Distributionfuntions

The photon distribution in the nuleus an be

desribed using the equivalent-photon or Weizs

aker-Williamsapproximationintheimpatparameterspae.

DenotingbyF(x)dxthenumberofphotonsarryinga

frationbetweenx andx+dx ofthetotalmomentum

ofanuleusofhargeZe,weandenethetwo-photon

luminositythrough

dL

d =

Z

1

dx

x

F(x)F(=x); (1)

where = ^s=s, s^is the square of the enter of mass

(.m.s.) systemenergyofthetwophotonsandsofthe

ion-ion system. Thetotal ross setion ofthe proess

AA!AAis

(s)= Z

d dL

d ^

(^s); (2)

where(^^ s)istheross-setionofthesubproess!

X.

Thereremains only to determine F(x). Inthe

lit-eraturethere are several approahes fordoing so,and

we hoose the onservative and morerealisti photon

distributionofRef. [8℄. CahnandJakson [8℄,usinga

presriptionproposed byBaur [9℄, obtainedaphoton

distribution whih is not fatorizable. However, they

were able to give a t for the dierential luminosity

whihisquiteusefulin pratialalulations:

dL

=

Z 2

2

16

(z); (3)

wherez=2MR p

,Misthenuleusmass,Ritsradius

and(z)isgivenby

(z)= 3

X

i=1 A

i e

biz

; (4)

whih isat resulting from thenumerialintegration

ofthephotondistribution,aurateto2%orbetterfor

0:05 < z < 5:0, and where A

1

= 1:909, A

2

= 12:35,

A

3

= 46:28, b

1

= 2:566,b

2

= 4:948,and b

3

= 15:21.

Forz<0:05weusetheexpression(seeRef. [8℄)

dL

d =

Z 2

2

16

3

ln( 1:234

z )

3

: (5)

Theonditionforrealistiperipheralollisions(b

min >

R

1 +R

2

)ispresentinthephotondistributionsshowed

above.

Theproessesthat we shalldisuss analso be

in-termediated by the dirative subproess PP ! X,

whereP isthePomeron.

In the ase where the intermediary partiles

ex-hangedinthenuleus-nuleusollisionsarePomerons

instead of photons, we an follow losely the work of

Muller and Shramm [10℄ and make a generalization

oftheequivalentphotonapproximationmethodtothis

newsituation. Sotherosssetionforpartile

produ-tionviatwoPomeronsexhangeanbewrittenas

PP

AA =

Z

dx

1 dx

2 f

P (x

1 )f

P (x

2 )

PP (s

PP

); (6)

where f

P

(x)is the distribution funtion that desribe

the probability for nding a Pomeron in the nuleus

withenergyfrationxand

PP (s

PP

)isthesubproess

ross setionwith energy squareds

PP

. Inthe aseof

inlusivepartile produtionweusethe formgiven by

Donnahieand Landsho[11℄

f

P (x)=

1

4 2

x Z

(xM) 2

1

dtj

AP (t)j

2

jD

P (t;s

0

)j 2

; (7)

whereD

P (t;s

0

)isthePomeronpropagator[12℄

D

P (t;s)=

(s=m 2

)

P (t) 1

sin( 1

2

P (t))

exp

1

2 i

P (t)

; (8)

with s thetotalsquared.m. energy. TheRegge

tra-jetoryobeyedbythePomeronis

P

(t)=1+"+ 0

P t,

where " = 0:085, 0

P

= 0:25GeV 2

and t is a small

exhanged four-momentum square, t = k 2

<< 1,

so the Pomeron behaves like a spin-one boson. The

term in the denominator of the Pomeron propagator,

[sin( 1

2

P (t))℄

1

, is the signature fator that express

thedierentpropertiesofthePomeronunder CandP

onjugation. Atveryhigh.m. energythisfatorfalls

veryrapidly withk 2

(3)

by 0

P ln(s=m

2

),mistheprotonmass,anditispossible

to negletthisk 2

dependene,

sin 1

2

(1+" 0

P k

2

)os( 1

2

")1: (9)

IfwedenethePomeronrangeparameterr

0 as r 2 0 = 0 P ln (s=m 2 ); (10)

thePomeronpropagatoran bewritten as

jD

P

(t= k 2

;s)j=(s=m 2 ) " e r 2 0 k 2 : (11)

Sineweareinterestedinthespatialdistributionofthe

virtual quanta in the nulear rest frame we are using

t= k 2

.

Thenuleus-Pomeronouplinghastheform [11℄

AP

(t)=3A

0 F

A

( t); (12)

where

0

=1:8GeV 1

isthePomeron-quarkoupling,

A is the atomi number of the olliding nuleus, and

F

A

( t) is thenulear form fator forwhih isusually

assumed a Gaussian expression (see, e.g., Dreeset al.

in [13℄)

F

A

( t)=e t=2Q 2 0 ; (13) where Q 0

=60MeV.

Performing the t integration of the distribution

funtion inEq.(7) weobtain

f P (x) = (3A 0 ) 2 (2) 2 x s 0 m 2 2" Z (xM) 2 1 dte t=Q 2 0 = (3A 0 Q 0 ) 2 (2) 2 x s 0 m 2 2" exp " xM Q 0 2 # :

Thetotal rosssetionfor ainlusivepartile

pro-dutionisobtainedwiththeabovedistributionandalso

withtheexpressionforthesubproessPP !Xas

pre-sribedinEq.(6).

B. Is double Pomeron exhange a bakground

for proesses?

The double Pomeron exhange produing a nal

state X have matrix elements with the same angular

strutureastheone. Thisiseasytoobservewithin

theDonnahieandLandshomodel [12℄. Forinstane,

in this model toompute therosssetionof the

sub-proessPP !R it isassumedthat thePomeron

ou-plesto thequarksoftheresonane(R )likeaisosalar

photon[12℄. Thismeansthatthesubproessross

se-tion of PP ! R anbeobtainedfrom suitable

modi-ations onthe ross setion for ! R , and it will

dier onlybytheoupling onstantand aform fator

desribing the phenomenologial Pomeron-quark

ou-pling. Therefore it is natural to ask if the Pomeron

proessisabakgroundtothetwo-photonproess,and

whenithastobeaddedtothealulationofaspei

proess.

In general the double Pomeron exhange is not a

bakgroundforthetwo-photonproessandthisiseasy

to understand. The Pomeron ontrarily to the

pho-tondoesnotpropagateat largedistanes, atually its

propagatorhasarangeparameterr

0

denedinEq.(10).

Whenweimposetheonditionforultraperipheral

ol-lisions (i.e. the nulei do not physially ollide) the

rosssetiondiminishesonsiderably.

InEq.(6)theaseswherethetwonuleioverlapare

not exluded. To enfore the realisti ondition of a

peripheral ollisionit is neessary to perform the

al-ulationtakinginto aounttheimpatparameter

de-pendene,b. Itisstraightforwardto verify thatin the

ollisionof twoidential nulei thetotal ross setion

ofEq.(6)ismodiedto [10℄

d 2 PP!X AA d 2 b = Q 02 2 e Q 02 b 2 =2 PP AA ; (14) where(Q 0 ) 2 =(Q 0 ) 2 +2r 2 0

. Thetotal rosssetion

for inlusive proesses is obtained after integration of

Eq.(14)with theondition b

min >2R

A

in thease of

identialions.

Another way of to exlude events due to inelasti

entralollisionsisthroughthe introdutionof an

ab-sortionfatoromputedintheGlauberapproximation

[14℄. This fatormodies the rosssetion in the

fol-lowingform d gl AA d 2 b = d PP!R AA d 2 b exp A 2 b 0 Z dQ 2 (2) 2 F 2 A (Q 2 )e iQb = d PP!R AA d 2 b exp A 2 b 0 Q 2 0 4 e Q 2 0 b 2 =4 ; (15) where 0

is the nuleon-nuleon total ross setion,

whose value for the dierent energy domains that we

shall onsider is obtaineddiretly from the t of Ref.

[15℄ 0 =Xs +Y 1 s 1 +Y 2 s 2 ; (16)

with X = 18:256, Y

1

= 60:19, Y

2

= 33:43, = 0:34,

1

=0:34,

2

=0:55, F

A (Q

2

)=e Q

2

=2Q 2

0

and we

ex-empliedEq.(15)fortheaseofresonaneprodution,

i.e., PP!R

AA

isthetotalrosssetionfortheresonane

produtionto bedisussed in thesequene. The

inte-grationinEq.(15)isoverallimpatparameterspae

We ompared the rates for double Pomeron

ex-hange and two-photon prodution of several nal

states like resonanes, a pair of pions and a hadron

luster of invariant mass M

X

. The details of the

al-ulations an be found in Ref. [16℄ and here we will

desribepartoftheresultsofthat work.

In Table I we ompare the ross setions for

(4)

Meson M

R

(R!)

RHIC

LHC

RHIC

PP

0

135 810 3

7.1 40 0.05

547 0.463 1.5 17 0.038

0

958 4.3 1.1 22 0.04

2979 6.6 0:3210 2

0.5 0:4710 4

0

3605 2.7 0:3610 3

0.1 0:3410 5

b

9366 0.4 0:1310 7

0:3710 3

0:1110 10

TableI.Crosssetionsforresonaneprodutionthroughphoton-photon()anddouble-Pomeron(PP)proesses.

ForR HIC, p

s=200GeV/nuleon,weonsidered 238

UionandforLHC, p

s=6300GeV/nuleon,thenuleusis

206

Pb. Therosssetionsareinmbarn. Ratesomputedwiththegeometrialutb>2R

A .

Meson gl

AA =

PP!R

AA

(LHC) gl

AA =

PP!R

AA

(RHIC)

0

3:5410 3

1:510 2

3:5810

3

1:4710 2

0

3:4610 3

1:510 2

3:4710 3

1:3210 2

0

3:6110 3

1:510 2

b

3:510 3

1:4510 2

TableII.RatiosofrosssetionsfordirativeresonaneprodutionalulatedwiththeGlauberabsorptionfator

totheonewiththegeometrialutintheollisionof 238

UforenergiesavailableatRHIC( p

s=200GeV/nuleon),

andollisionsof 206

PbforenergiesavailableatLHC ( p

s=6:300GeV/nuleon).

Nuleus

p

s

PP!R

AA

gl

PP

AA

Au(A=197) 100 0.044 0:5510 3

2.4

Ca(A=40) 3500 0.043 0:3910 3

0.14

Si(A=28) 200 0:3410 2

0:1510 3

0:6910 2

Si(A=28) 100 0:2210 2

0:1210 3

0:3910 2

TableIII:Crosssetionfor 0

produtionfordierentionsandatdierentenergies. TheenergiesareinGeV/nuleon

andtherosssetionsinmbarn. PP!R

istherosssetionomputedwiththegeometrialutand gl

istheone

withtheabsorptionfator.

TableIIshowstheratiosofrosssetionsfor

dira-tiveresonaneprodutionalulatedwiththeGlauber

absorption fatorto theonewith thegeometrialut.

TheexlusionofentralollisionsthroughtheGlauber

absorptionfatorisstrongerthantheonewiththe

ge-ometrial ut. Table III shows the 0

prodution for

dierentionsandatdierentenergies. Weobservethat

theratesfordoublePomeronexhangebeomesloser

tothetwo-photonrateswhen wegoto lighter ions.

Theprodutionofalusterofpartilesthrough

dou-blePomeronexhangeisalsodominatedbythe

pro-ess(seeFig. (1)ofRef. [16℄).

Ingeneralwemaysaythatfor veryheavyionsthe

double Pomeron exhange gives ross setionsone

or-derofmagnitude(or more)belowthetwo-photon

pro-ess. This hangeswhenweollidelighterions. Aswe

godownfrom largehargeionstosmallerones the

ef-fetofPomeronphysisinreasesanditdominatesthe

The fat that the Pomeron has ashort range

param-eter is notthe only fat that ountswhen we analyze

eahspeiproess. Itmustbealsorememberedthat

thePomeron ouplesto lightand heavyquarks

dier-ently. Apartfromkinematisthedierenesintherates

of resonaneprodution byphotonsand Pomerons

in-reases between those resonanes formed by lightand

heavyquarks,asseenin TableI.

III The reation + ! +

A. The ontinuumproess

Wearepartiularlyinterestedinthephoton-photon

sattering beause it an be a very lean signal for

hadroniresonaneslikeglueballsandthemeson. On

theotherhandthissatteringisimportantbyitself,and

(5)

The subproess ! up to energies of a few

GeVis dominatedby theontinuousfermion box

dia-gram,andisabakgroundfortheresonant!R!

proess. It wasrst alulatedexatlyby Karplus

and Neuman[17℄andDeTollis[18℄. Therearesixteen

heliityamplitudes fortheproessand,dueto

symme-try properties, the numberof independent amplitudes

will be only ve, that may be hosen to be M

++++ ,

M

++ , M

+ + , M

+ +

and M

+++

. Where the

+ or denotes the irular polarization values +1

and 1. The remaining heliity amplitudes may be

obtained from parity and permutation symmetry. Of

theseveheliityamplitudes,threearerelatedby

ross-ing, heneit is suÆient to give just three, whih are

presentedin detailin Ref. [19℄.

Thedierentialrosssetionofphotonpair

produ-tionfromphotonfusion,i.e. theboxdiagram,is

d

dos =

1

2

4

s (

X

f q

2

f )

4 X

jMj 2

: (17)

is the sattering angle, is the ne-struture

on-stant, q

f

is the harge ofthe fermion in the loopand

thesumisovertheleptonseandandthequarksu,d

ands,whiharetherelevantpartilesinthemasssale

that weshalldisuss. Anotherpossibleontributionto

this ontinuum proess omesfrom pion loops, whih,

apartfrompossibledoubleounting,wereshowntobe

negligibleomparedtotheaboveone[22℄. Theseond

sumisoverthesixteenheliityamplitudes,M

1234 ,

where

1 and

2

orrespondtopolarizationsof

inom-ing photons and

3 and

4

for the outgoing photons.

The matrix elements summed over the nal

polariza-tionsandaveragedovertheinitialpolarizationsisgiven

by

X

jMj 2

= 1

2 fjM

++++ j

2

+jM

++ j

2

+jM

+ + j

2

+ jM

+ +

j 2

+4jM

+++ j

2

g:

Weonsiderthesatteringoflightbylight,thatis,

the reation ! , in Au-Au ollisions for

ener-gies available at RHIC, p

s = 200 GeV/nuleon. We

heked our numerial odereproduing themany

re-sultsoftheliteraturefortheboxsubproess,inluding

asymptoti expressions for the low and high energies

omparedtothefermionmasspresentintheloop,and

the peak value of the ross setion (see, for instane,

Ref. [20℄).

InFig. (2)thedependene oftheion-ionross

se-tion with the osine of the sattering angle , in the

twophoton enter-of-masssystem, isshownfor an

in-variantphotonpairmassequalto500MeV.Itis

possi-bleto observethattherosssetionisstronglypeaked

in the bakward diretion, but is relatively at out

to os 0:4, where it starts rising very fast. It is

symmetri withrespetto and thesamebehavioris

It is possible to observe that the ross setions is

stronglyrestrited when weintrodue anangular ut.

Wewill impose in allthe alulationsthroughout this

workautinthesatteringangleequaltojosj=0:5.

This ut is onservative, but it will make possible to

omparetherosssetionoftheboxdiagramwithrival

proesses, that will be disussed in the following

se-tions,aswellasit is enoughto eliminatethe eet of

doublebremsstrahlung(whihdominatestheregionof

josj1). Finally, this kindofut istotally

onsis-tentwiththerequirementsproposedin Ref. [3℄

The fermions that ontribute in the box diagram

are the leptons e and and the quarks u, d and s,

whih are important for the mass range that we are

interested (heavier quarks will give insigniant

on-tributions and the same is true for the harged weak

bosons). Weassumedfortheirmassesthefollowing

val-ues: m

e

=0:5109MeV,m

=105:6584MeV,m

u =5

MeV,m

d

=9MeVandm

s

=170MeV.

Theeletrongivesthemajorontributiontothe

to-tal result. Theseond most importantontribution is

duetothemuon,but itisatleastoneorderof

magni-tudesmallerthantheeletronone. Thedandsquark

ontribution(uptoO(2GeV))aresmallerduetotheir

massesandharges,beausetheproessisproportional

to(q 2

f )

4

where q

f

istheirharge. Theirontributionis

alsoinsigniantomparedto theeletronresult.

10

-7

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

1

Figure2. Angular distributionofZZ !ZZ sattering

ataninvariantmassof500MeV.Thesatteringangleis

inthephotonpairenter-of-masssystem.

AsdisussedinRef. [2℄thesatteringanindeed

bemeasuredinperipheralheavyionollisions. Theut

intheangular distributiongivesbak tobakphotons

(6)

wherethe!proessisoverwhelmedbythe

pres-ene ofresonanes likethe , 0 and others. Eventhe

broad resonaneouldbeoftheorder ofthe

ontin-uum proess. Just to give oneidea of the number of

events,withaluminosityof2.010 26

m 2

s 1

[3℄and

hoosingabinofenergyof200MeV,enteredatthe

en-ergyof700MeV(whihisfreeofanystrongresonane

deayinginto two-photons), wehave1532 events/year

assuming100%eÆienyinthetaggingoftheionsand

photondetetion.

B. The proess!R!: glueballs

Photon pair prodution via the box diagram is a

bakground to ! R ! proess (or vie versa),

bothhavethesameinitialandnalstates,andforthis

reasontheyaninterfereoneinanother. Normallythe

interferenebetweenaresonaneandaontinuum

pro-essis unimportant, beauseonresonanethetwoare

outofphase.

The total ross setion for the elementary

subpro-ess ! R ! assuming a Breit-Wigner prole

is

d

ZZ

dM

=16 dL

dM

2

(R!)

(M 2

m 2

R )

2

+m 2

R 2

total

; (18)

where M is the energyof thephotons reatedby the

ollisionof theions. (R!)(

)and

total are

thepartialandtotaldeaywidthoftheresonanewith

massm

R

initsrestframe.

WearegoingtodisussonlyJ =0resonanesmade

ofquarksaswellofgluons. Thereation! 0

!

was already disussed many years ago [21℄, where it

waslaimedthat theinterferenevanishes. This result

was ritiizedby De Tollis and Violini [22℄, aÆrming

(orretly)thattheinterfereneexists. However,aswe

willdisussafterwards,oresonanetheinterfereneis

negligible. Iftheinterfereneis negleted,Eq.(18)an

be used and we show in Fig. (3) the result for some

resonaneprodution(; 0

;(1440);f

0

(1710)),whose

invariantmassoftheproduedphotonpairisbetween

500MeVand2000MeV.Foromparisonwealsoshow

the urve of the ontinuum proess. It is possible to

seeinthatgurethewellpronounedpeaksofthe

res-onanes and 0

. We assumed for their masses the

valuesof547.3MeVand957.78MeV,respetively,the

totaldeaywidthisequalto1.18keVandthe 0

one

is equalto 0.203 MeV.Their partial deay width into

0

10

-9

10

-8

10

-7

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

1

10

10

2

600

700

800

900 1000

Figure 3. Invariant mass distribution of photon

produ-tion (with the ut josj < 0:5). The solid urve is for

theboxdiagram,thedashedurvesaredueto theproess

!R!,whereRarethepseudosalarsresonanes

and 0

andtheglueballsandidates(1410)andf0(1710).

WerestrittheanalysistotheJ =0glueballs

an-didates(1440)andf

0

(1710). Forthe(1440)weused

the mass and total deay width values of Ref. [23℄,

m

R

= 1405 MeV,

total

= 56 MeV, for the deay

widthintophotonsweusethevaluegiveninRef. [24℄,

= 5:4 keV. We see in Fig. (3) that the peak for

this resonane is of the same order of the ontinuum

proess. Fortheotherglueballandidate,f

0

(1710),the

peakis learlyabovethebakground. Forthis onewe

assumedthevalueslistedinRef. [23℄ofmassandtotal

width, m

R

=1715MeV

total

=125MeV,andforthe

two-photondeaywidthweadoptedthevalue

enoun-teredbytheALEPHCollab. [25℄,

=21:25keV.In

all these asesthe resonanesan be easily studied in

peripheralheavyionollisions.

O resonanewe anexpet a negligible

ontribu-tionfortheproess!R!andonsequentlythe

same for its interferene with the ontinuum proess.

However, it is instrutive to present a more detailed

argumentaboutwhytheinterfereneanbenegleted.

Inordertodosoweareobligedtointrodueamodelto

alulatetheamplitudesfortheproess!R!.

These amplitudes will be omputed with the help of

an eetive Lagrangian for the pseudosalar

intera-tionwith photons(the salarasewill be disussedin

thenextsetion),whihisgivenbyg

p "

F

F

p ,

where g

p

is the oupling of the photons to the

pseu-dosalareld

p ,"

istheantisymmetritensorand

F

(7)

pseudosalarhadroniresonaneare [22℄:

M

++++ =

2

2

F(r

t );

M

+ + =

2

2

F(t

t );

M

+ +

= 2

2

F(s

t );

M

+++

= 0;

M

++ =

2

2

fF(s

t

)+F(t

t

)+F(r

t )g;(19)

where isthene-strutureonstant,=(m

f =m

R )

2

,

and

F(x)=16x 2

m

R

4x 1+i total

m

R

1

: (20)

The presene of the ne-struture onstant in

Eq.(19)isaonsequeneofthefatthattheamplitudes

M in these equations will be used in Eq.(17), so it is

neessaryto get the orretdependene of thepartial

rosssetionwiththisonstant.

A numerial evaluation of the ross setion using

Eq.(19) (for the sameresonanes present in Fig. (3))

showsa totally negligible eet o resonanein

om-parison with the box ontribution. On resonane the

two proessesare out of phaseand the interfereneis

absent. Weannowproeedwithanargumentshowing

that theinterferene isnot important. Let us assume

thatoresonanetheproessesareinphase,andfora

momentweforgetthetanduhannelsontributionin

Eq.(19). Thes hannelontribution anbewrittenas

M

2

=(s m 2

R +i

R m

R

), and denoting the ontinuum

ontributionbyM

1

weanwritethefollowing

interfer-ene term

2

s

(s m 2

R )

2

+ 2

R m

2

R [(R eM

1 R eM

2

+ImM

1 ImM

2 )

(s m 2

R

)+(R eM

1 ImM

2

ImM

1 R eM

2 )

R m

R ℄:

We an verify that the term proportional to s m 2

R

integratestozerowhenintegratedin abinenteredat

m 2

R

. Withtheseondtermthesituationisdierent. If

ImM

1

orImM

2

6=0(assumingR eM

1

andR eM

2 6=0)

then there is anontrivialinterferene. However,sine

wearedealingwithJ =0amplitudes,theonly

nonvan-ishingheliityamplitudesarethoseinwhihtheinitial

heliities and the nal heliitiesare equal. Inspetion

of theM

++++

and M

++

amplitudes ofthe box

di-agram (in the limit m

f

m

R

) shows that they are

purely real, and thesamehappenswith M

2

(obtained

from thes hannel ontribution of Eq.(19)), resulting

in avanishinginterferene!

Ofourse,thisanalysisismodeldependent. In

par-tiular,atthequarkleveltheouplingg

p

hastobe

sub-stitutedbyatrianglediagram,whihmayhavearealas

wellasanimaginarypart(see,forinstane, Ref. [26℄).

However,thisouplingisreal forheavyquarksandits

imaginarypartisquitesuppressediftheresonane

ou-plesmostlyto lightquarks(m

f

m

R

,what happens

forthe resonanes that we areonsidering in thease

oftheu andd quarks,forthesquarkthesuppression

isnotsostronginthease,butwestillhaveanextra

suppressiondueto itseletriharge). Finally,the

in-terferenedoesappearwhenweonsidertheamplitudes

withtheresonaneexhangedin thetand uhannels,

but it is easy to see that they are kinematially

sup-pressedandalsoproportionalto thesmallvalueofthe

totaldeaywidth. Ifthetotalwidthislarge(asweshall

disussin thenextsubsetion)theinterfereneannot

benegleted. Althoughtheaboveargumenthastorely

onmodelsfor thelowenergyhadroniphysis,we

be-lievethat the diret omparison betweentheresonant

andtheontinuumproesses,aspresentedin Fig. (3),

isfairlyrepresentativeoftheatualresult.

In Table IV we show the number of events above

bakgroundforthe, 0

andf

0

(1710)whih,asshown

in Fig. (3) are learly above the box ontribution.

In the ase of the f

0

(1710), as well as in the

me-son ase to be disussed in the next subsetion, the

deay of the resonaneinto a pair of neutral pions is

present. A pair ofneutralpions analsobe produed

in aontinuous twophoton fusion proess. The rates

forallthereationsdisussedinthisworkanbe

mod-iedifbothneutralpions,nomatteriftheyomefrom

aresonaneora ontinuous proess, are misidentied

withphotons. Thisaidentalbakgroundanbeeasily

isolatedmeasuringitsinvariantmassdistribution,and

makinga utthat disriminates asingle photon

om-ingfrom theproessesthat weare studying, fromone

thatprodued twoneutralmesons(mostlypions)

sub-sequentlydeaying into two photons. Forexample,in

theaseofthesigmameson(seenextsetion)eahone

oftheneutralpionsfromitsmuhlargehadronideay

should be misidentied. These pions would produe

pairs of photons with a large opening angle , where

os(=2)= p

1 4m 2

=m

2

. However,thealorimeters

alreadyinuse inmanyexperimentsare ableto

distin-guishbetweenthesetwoandsinglephotoneventswith

higheÆieny(see,forinstane,Ref. [27℄).

partile events/year

7:4410

5

0

2:6710 4

f

0

(1710) 42

TableIV.Numberofevents/yearabovebakgroundfor

the, 0

(8)

There is alsoanother aidental bakgroundwhih

may ause problems to the measurement of the

res-onane deay into photons. This is the ontribution

from Pomeron!V!X. Thevetormesons,V,

areproduedwithap

T

distributionsimilartothe

reso-naneprodutionandathigherratesthansomeofthe

proesses!R ,e.g. Pomeron!! rateis10Hz

atRHIC[28℄,threeordersofmagnitudehigherthanfor

asimilarmass mesonofspin0or2. The ! branhing

ratio to three photons is 8.5%. If a small p

T

photon

fromthisdeayisundeteted,oneisleftwithalowp

T

two-photonnalstatethatouldbetakenforalighter

resonane. Athighermasses,onealsohas!, 0

,

K

L K

S

! X as well as ! f

2

(1270)! 0

0

and

possiblyopious produtionof(1450)and(1700)by

Pomeron interations. Clearly a full simulation of

allthesebakgroundproessesshould bekeptin mind

whenmeasuringtwo-photonnal states.

C. The proess!R!: the meson

Thepossibleexistene oflightsalarmesons(with

masseslessthanabout1GeV)hasbeenaontroversial

subjetforroughlyfortyyears. Therearetwoaspets:

theextrationofthesalarpropertiesfromexperiment

and theirunderlying quarksubstruture. Beausethe

J = 0hannels may ontainstrong ompeting

ontri-butions,suhresonanesmaynotneessarilydominate

their amplitudes and ould be hard to \observe". In

suh an instane their veriation would be linked to

themodelusedto desribethem.

Part of themotivation to study thetwo-photon

-nalstatesinperipheralheavy-ionollisionswasexatly

toverifyifweanobservesuhsalarmesonsinits

deay. Although this deay mode is quite rare, it has

theadvantageofnotbeingontaminatedbythestrong

interation of the hadroni nal states. In partiular,

itmayallowtoinvestigatethepossibleexisteneofthe

sigmameson. This meson is expeted to haveamass

between400-1200MeVanddeaywidth between

300-500MeV, deayingpredominantly into twopions. Of

ourse,anotherdeayhannelisintotwophotons,with

thebakgrounddisussedin thebeginningofthis

Se-tion.

ReentlytheE791CollaborationatFermilabfound

a strong experimental evidene for a light and broad

salar resonane, that is, the sigma, in the D +

!

+

+

deay [29℄. Theresonantamplitudes present

inthisdeaywereanalyzedusingtherelativisti

Breit-Wignerfuntiongivenby

BW =

1

m 2

m 2

+im

0 (m)

;

with

(m)=

0 m

0

m

p

p

0

2J+1

J

F 2

(p

)

J

F 2

(p

0 )

;

where m is the invariant mass of the two photons

forming a spin-J resonane. The funtions J

F are

the Blatt-Weisskopf damping fators[30℄: 0

F = 1for

spin 0 partiles, 1

F = 1= p

1+(rp

) 2

for spin 1 and

2

F =1= p

9+3(rp

) 2

+(rp

) 4

forspin2. The

param-eterr istheradius oftheresonane(3fm)[31℄and

p

=p

(M)themomentum ofdeaypartilesat mass

M,measuredintheresonanerestframe,p

0 =p

0 (m

R ).

TheDalitz-plotofthedeayanhardlybetted

with-outa0 ++

()resonane. Thevaluesofmassandtotal

deaywidth found bythe ollaborationwith this

pro-edure are 478 +24

23

17 MeV and 324 +42

40

21 MeV,

respetively.

We will disuss if this resonane an be found in

peripheralheavy-ionollisionsthroughthe subproess

!!. Itisimportanttonote thatallthe

val-ues related to the, like massorpartial widths, that

an be found in the literature are very dierent and

model dependent. In partiular, we nd the resultof

theE791experimentveryompellingandamongallthe

possibilitieswewill restritourselvesto theirrangeof

massand totaldeaywidth, while wevary thepartial

widthintotwophotons. Forthedeaywidthintotwo

photonsweassumethevaluesobtainedbyPennington

andBoglione,3:81:5keVand4:71:5keV[32℄,and

thevalueof106keV[33℄.

Ithasbeenveriedintheaseofsatteringthat

the use of a onstant total width in the resonane

shape is not a good approximation [34℄. In our ase

wewill disussthe! proessabovethe two

pi-onsthresholdwherethepeuliaritiesofthebroad

reso-nane,basiallydue tothe deayintopions, arenot

soimportant. Ofourse, anotherreasontostayabove

300MeV isthat we arealso far from the pion

ontri-butionto sattering. Inanyasewealsoomputed

the rosssetionwith aenergy dependent totalwidth

(m) '

0 (p

=p

0 )

2J+1

, whih, as shown by Jakson

many years ago [35℄, is more appropriate for a quite

broadresonane. Theneteetisaslightdistortionof

therosssetionshapewithasmallinreaseofthetotal

rosssetion. Sine thisoneisanegligibleeet

om-pared to the one that wewill presentin thesequene

wedonotshall onsideritagain.

O resonanewe anexpet a negligible

ontribu-tion for the proess ! R ! and onsequently

the same for its interferene with the ontinuum

pro-ess. Thisistrueiftheresonanehasasmalltotal

de-aywidth[19℄, butthisisnotthe ase. Totakeinto

(9)

to alulatetheheliityamplitudesof the meson

ex-hange. Using the eetive lagrangian g

s F

F

s ,

where g

s

is the oupling of the photons to the salar

eld

s andF

istheeletromagnetieldtensorthe

followingamplitudesomesout[19,22℄:

M

++++ =

2

2

F(r

t );

M

+ + =

2

2

F(t

t );

M

+ +

= 2

2

F(s

t );

M

+++

= 0;

M

++ =

2

2

fF(s

t

)+F(t

t

)+F(r

t )g:(21)

where isthene-strutureonstant,=(m

f =m

R )

2

,

andr

t ,s

t andt

t

arerelatedwiththestandard

Mandel-stamvariabless, t,andubyr

t =

1

4 s

m 2

f ,s

t =

1

4 t

m 2

f and

t

t =

1

4 u

m 2

f .

These amplitudes and the ones desribing the

fermion (with mass m

f

) box diagram enter in the

expression for the dierential ross setion of

pho-ton pair prodution from photon fusion d=dos =

(1=2)( 4

=s)( P

f q

2

f )

4 P

jMj 2

, to give the total ross

setionof Fig. (4). Weveriedthat theinterfereneis

destrutive.

10

-9

10

-8

10

-7

10

-6

10

-5

10

-4

400

500

600

700

800

900 1000

Figure4.Invariantmassdistributionofphotonpair

produ-tion. Thesolidurveisduetoboxdiagramonly,thedashed

oneisduetotheproess!!intheBreit-Wigner

approximation,thedash-dottedisthesalarontributionof

Eq.(21),andthedottedoneistheontinuumPomeron

pro-essPP!. Inallases

=4:7keV,andtheangular

utisequalto 0:5<os<0:5 .

TheeetiveLagrangianmodelusedtoomputethe

largerrosssetionthanthealulationwiththe

Breit-Wigner approximation at energies above M 600

MeV. It is dominated by the s hannel ontribution.

We onsider the Breit-Wigner result as the best

sig-nalrepresentationfor theresonantproessbeausewe

are using the E791 data and this onewastted by a

Breit-Wigner prole. The eetive Lagrangian gives

a nonunitary amplitude that overestimates the sigma

prodution above 600 MeV and shows the model

de-pendene inthe analysis thatweommentedbefore.

TheBreit-Wignerproleisnotabadapproximationas

longaswestay abovethe twopions threshold and in

thefollowingweassumethatthe signalis givingbyit

(the dashed urveof Fig. (4)) and the bakground is

givingbytheboxdiagramresult(thesolidurveofFig.

(4)). Notethat,duetothedestrutiveinterferene,the

atual measurement will give a urve below the solid

urveofFig. (4).

Fromtheexperimental pointof viewwewould say

thatthereation! hasto beobservedandany

deviation from the ontinuum proess must be

are-fully modeled until a nal understanding omes out,

withtheadvantagethat the nalstateis notstrongly

interating. Notethatinthismodelingthemesonwill

ontributeto!in asmallregionofmomentum

[19℄,evensoithastobesubtratedinordertoextrat

theomplete signal.

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

Figure5.Signianeasafuntionofdeaywidthintotwo

photons, , for a sigma meson with mass equal to 478

MeV and total deay width of 324 MeV. The solidurve

was obtained integrating the ross setions in the

inter-val 438 <M < 519 MeV, the dashedone inthe interval

300<M <800MeV.Thesignal and bakgroundare

(10)

Wehangedthevaluesofthemassandtotalwidth

aroundtheentralonesreportedbytheE791

Collabo-ration. Wedonotobservedlargevariationsin our

re-sult,butnotiedthatitisquitesensitivetovariationsof

thepartialdeaywidthintophotons. Itisinterestingto

lookatthevaluesofthesignianewhihiswrittenas

L

signal =

p

L

bak

and haraterizesthestatistial

de-viation ofthenumberof theobservedeventsfromthe

preditedbakground. Thesignianeasafuntionof

thetwophotonsdeaywidth ofthesigmameson,with

mass equalto 478MeV and total deay width of 324

MeV, is shown in Fig. (5), were we used a

luminos-ityof L =2:010 26

m 2

s 1

at RHIC and assumed

one year of operation. The signiane is above 2

95%ondenelevel limitfortwophotondeaywidth

greater than 4.7 keV, while for a 5 disovery

rite-riaanbeobtainedwith

>7:5keV.Thenumbers

in Fig. (5) were omputed with the signal given by

the Breit-Wigner prole, and the bakground by the

pure box diagram. The solid urve wasobtained

in-tegratingtherosssetionsin therangeof

experimen-tal mass unertainty438 <M <519 MeV,while the

dashed urve resulted from the integration in the

in-terval 300 < M < 800 MeV. Note that there is no

reason,apriori,torestritthemeasurementtoasmall

bin of energy. This hoie will depend heavily onthe

experimental onditions. Therefore, for values of

alreadyquotedintheliteraturethesigmamesonhasa

hane to beseenin itstwophoton deay mode. The

disoverylimitsdisussedabovereferonlytoa

statisti-al evaluation. Our work showstheimportane ofthe

omplete simulationof the signal and bakground

in-luding an analysis of possible systemati errors that

maydereasethesigniane.

IV Conlusions

Peripheralollisionsatrelativistiheavyion

ollid-ersprovideanarenaforinterestingstudiesofhadroni

physis. One of the possibilities is the observation of

lighthadroniresonanes,whihwillappearquite

sim-ilarlytothetwo-photonhadroniphysisate +

e

ma-hineswiththeadvantageofahugephotonluminosity

peaked at small energies [1℄. Due to this large

pho-tonluminosityitwillbeomepossibletodisover

reso-nanesthat oupleveryweaklyto thephotons [4℄.

The double Pomeron exhange may be a

bak-ground forthe two-photon proesses. We haveshown

thatingeneralthePomeronontributiondoesnot

om-pete with the one, in the ase of veryheavy ions,

afterimposingtheonditionforaultra-peripheral

olli-has to be performed for eah spei nal state, due

to the dierentPomeron ouplingto severalpartiles.

If the ollisioninvolves heavy ions and thenal state

wearelookingatdoesnothavealargeouplingtothe

PomeronweanaÆrmthat doublePomeronexhange

anbenegletedintheevaluation ofprodutionrates.

In the ase of light ions Pomeron proesses are

om-petitivewith the two-photons ones,and dominate the

rosssetionsforverylightions.

Wedisussed theperipheralreationAA!AA.

Thisproess isimportantbeauseitmayallowforthe

rsttimetheobservationoftheontinuoussubproess

! in a omplete olliderphysis environment.

Thispossibilityonlyarisesduetoenormousamountof

photonsarriedbytheionsattheRHICenergies.

The ontinuous subproess is desribed by a

fermioni boxdiagram alulatedmanyyearsago. We

omputedtheperipheralheavyionprodutionofapair

ofphotons,verifyingwhiharethemostimportant

on-tributionstotheloop,whihturnedouttobethe

ele-tron at the energies that we are working, and

estab-lishedutsthatnotonlyensurethattheproessis

pe-ripheral as well aseliminate most of the bakground.

Aftertheutisimposedwestillhavethousandsof

pho-tonspairsassuming100%eÆienyintaggingtheions

anddetetingthephotons.

Theontinuous!subproesshasan

interest-inginterplaywiththeoneresultingfromtheexhange

of a resonane. We disuss the resonaneprodution

anddeayintoaphotonpair. Thisisanieinteration

toobservebeauseitinvolvesonlytheeletromagneti

ouplingsoftheresonane.Therefore,wemaysaythat

it is a lean signal of resonanes made of quarks (or

gluons) and its measurement is important beause it

omplementstheinformationobtainedthroughthe

ob-servationofpurelyhadronideays. Itmayalsounravel

thepossibleamountofmixing insomeglueball

andi-dates [6℄. We disuss the interferene between these

proess and ompute the number of events for some

speiases.

Thepossibilityofobservingresonanesthat ouple

weaklyto thephotonsisexempliedwiththe meson

ase. This meson,whose existene hasbeenfor many

yearsontraditory,givesasmallsignalin thereation

! ! . Howeverits eets maybe seenafter

oneyearofdataaquisition,providingsomelueabout

thiselusiveresonane. Using valuesofmass, totaland

partial widths urrentlyassumed in theliterature, we

ompute the full rosssetion within aspei model

and disuss the signiane of the events. Our work

showstheimportaneoftheompletesimulationofthe

(11)

two photonnal states in peripheral ollisions anbe

observed andmayprovidealarge amount of

informa-tionabouttheeletromagnetiouplingof hadrons.

Aknowledgments

Most of this work has been done in ollaboration

with C.G. Rold~ao. I would like to thank I.Bediaga,

C.Dib,R.RosenfeldandA. Zimermanformany

valu-able disussions. This researh was supported by the

ConselhoNaionaldeDesenvolvimentoCientoeT

e-nologio (CNPq),by Funda~ao deAmparo aPesquisa

do Estado de S~ao Paulo(FAPESP) and byPrograma

deApoioaNuleosdeExel^enia(PRONEX).

Referenes

[1℄ G.Baur,K.Henken,D.Trautmann,S.Sadovsky,and

Y. Kharlov, hep-ph/0112211 Phys. Rep., in press;

G. Baur, hep-ph/0112239; C. A. Bertulani and G.

Baur, Phys.Rep.163, 299(1988); G. Baur, J.Phys.

G24, 1657 (1998); S.Kleinand E.Sannapieo,

hep-ph/9706358 (LBNL-40457); J.Nystrand and S. Klein,

hep-ex/9811997(LBNL-42524);C.A.Bertulani,

nul-th/0011065, nul-th/0104059; J. Rau, b. Muller, W.

Greiner, and G. So, J. Phys.G: Nul. Part. Phys.

16, 211(1990); M. Greiner, M. Vidovi,J. Rau,and

G. So, J. Phys.G. 17,L45 (1990); M. Vidovi, M.

Greiner, C.Best, andG.So, Phys.Rev.C47,2308

(1993); M. Greiner, M. Vidovi, and G. So, Phys.

Rev.C47,2288(1993).

[2℄ G.BaurandC.A. Bertulani, Nul.Phys.A505,835

(1989).

[3℄ S. Klein and J. Nystrand, Phys. Rev.C60, 014903

(1999); J.Nystrandand S.Klein(LBNL-41111)

nul-ex/9811007, in Pro. Workshop on Photon

Intera-tions and the Photon Struture eds. G. Jarlskog and

T.Sjostrand,Lund,Sweden,Sept.,1998;J.Nystrand,

nul-th/0112055; C. A. Bertulani and F. S. Navarra,

nul-th/0107035.

[4℄ A. A. Natale, Phys. Lett. B362, 177 (1995); Mod.

Phys.Lett.A9,2075(1994).

[5℄ V.M. Budnev,I.F.Ginzburg,G.V.Meledin,andV.

G.Serbo,Phys.Rept.15,181(1974); V.P.Andreev,

Nul.Phys.Pro.Suppl.96,98(2001).

[6℄ F.E.CloseandA.Kirk, Eur.Phys.J.C21,531(2001).

[7℄ N. A. Tornqvist and M. Roos, Phys.Rev. Lett. 76,

1575 (1996);M.R.Pennington,TalkattheWorkshop

on Hadron Spetrosopy (WHS99), Frasati (Marh,

1999), hep-ph/9905241; N. A. Tornqvist, Summary

talk oftheonferene onthesigmaresonane

(Sigma-meson2000),Kyoto(June,2000),hep-ph/0008136.

[8℄ R.N. CahnandJ.D.Jakson, Phys.Rev.D42,3690

(1990).

[9℄ G. Baur, in Pro. CBPF Intern. Workshop on

Rel-ativisti Aspets of Nulear Physis, Rio de Janeiro,

1989, edited by T. Kodama et al. (World Sienti,

[10℄ B.MullerandA.J.Shramm, Nul.Phys.A523,677

(1991).

[11℄ A.DonnahieandP.V.Landsho, Phys.Lett.B191,

309(1987); Nul.Phys.B303,634(1988).

[12℄ A.DonnahieandP.V.Landsho, Nul.Phys.B244,

322(1984);BB267,690(1985).

[13℄ E. Papageorgiu, Phys.Rev. D40, 92 (1989); Nul.

Phys.A498,593(1989);M. Grabiaketal., J.Phys.

G15, L25 (1989); M. Drees, J. Ellis, and D.

Zeppen-feld, Phys.Lett.B223,454(1989);M.Greiner,M.

Vi-dovi,J.Rau, andG.So, J.Phys.G17, L45 (1991);

B.Muller andA.J.Shramm, Phys.Rev.D42,3699

(1990);J.S.Wu,C.Botther,M.R.Strayer,andA.K.

Kerman, Ann.Phys.210,402(1991).

[14℄ V.Frano and R.J. Glauber, Phys.Rev.142, 1195

(1966).

[15℄ C.Caso et al. (Partile DataGroup), Eur. Phys. J.

C3,1(1998).

[16℄ C. G. Rold~ao and A. A. Natale, Phys. Rev. C61,

064907(2000).

[17℄ R. Karplus and M. Neuman, Phys. Rev. 83, 776

(1951).

[18℄ B.DeTollis, NuovoCimento32,757(1964);351182

(1965).

[19℄ A. A. Natale, C. G. Rold~ao, and J. P. V. Carneiro,

Phys.Rev.C65,014902(2002).

[20℄ V.B.Berestetskii,E.M.Lifshitz,andL.P.Pitaevskii,

inQuantum Eletrodynamis, (Editions

Butterworth-Heinemann,Oxford,1996),vol.4,pp.571.

[21℄ V.N.Oraevskii, Sov.Phys.JETP12,730(1961);M.

Y. Han and S. Hatsukade, Nuovo Cimento 21, 119

(1961).

[22℄ B.DeTollisandG.Violini, NuovoCimento A41,12

(1966).

[23℄ D.E.Groometal.(PartileDateGroup), Eur.Phys.

J.C15,1(2000).

[24℄ F.E.Close,G.R.Farrar,andZ.Li, Phys.Rev.D55,

5749(1997).

[25℄ ALEPH Collaboration, R. Barate et al., Phys.Lett.

B472,189(2000).

[26℄ S.F.Novaes, Phys.Rev.D27,2211(1983).

[27℄ LAPPCollaboration, D. Alde et al., Z. Phys. C36,

603(1987).

[28℄ S. Klein and J. Nystrand, Phys. Rev. C60, 014903

(1999).

[29℄ E791 Collaboration, E. M. Aitala et al., Phys.Rev.

Lett.86,770(2001).

[30℄ J.M. Blattand V. F.Weisskopf, in Theoretial

Nu-learPhysis,JohnWiley&Sons,New York,1952.

[31℄ ARGUSCollaboration,H.Albrehtetal., Phys.Lett.

B308,435(1993).

(12)

[33℄ A.Courauetal., Nul.Phys.B271,1(1986).

[34℄ F. Sannino and J. Shehter, Phys. Rev. D52, 96

(1995); M. Harada, F. Sannino, and J. Shehter,

Phys. Rev.D54, 1991 (1996); Phys. Rev.Lett. 78,

1603(1997).

Imagem

Figure 1. Diagram for  fusion in a peripheral heavy-ion
Table I. Cross setions for resonane prodution through photon-photon () and double-Pomeron (P P) proesses.
Figure 2. Angular distribution of Z Z ! Z Z sattering
Figure 3. Invariant mass distribution of photon produ-
+2

Referências

Documentos relacionados

“The First Physical Therapy Summit on Global Health” held at the 2007 World Congress of the World Confederation of Physical Therapy (WCPT) in Canada highlighted the discrepancy

he main aim of the present study was to investigate and compare the efects of NMES on the strength of the tibialis anterior muscle and on active and passive range of motion (ROM)

In a recent study 17 in which we applied eccentric isokinetic training of the quadriceps muscles to subjects who had under- gone ACL reconstruction, the knee extensor torque

Laboratório de Fisioterapia Aplicada ao Movimento Humano (LAFAMH), Departamento de Fisioterapia, Faculdade de Ciências e Tecnologia (FCT-Unesp) – Presidente Prudente (SP),

Essa demanda crescente no número de revisores é um grande desaio para o bom desenvolvi- mento da RBF/BJPT, uma vez que, sem a contribuição generosa dos nossos revisores, não

Because there are few studies in this area in the national literature, the objectives of the present study were to determine the prevalence of diastasis of rectus

Results: There was a decrease in the complex II activity in the groups irradiated for 5 days with 2 and 4 J/cm 2 , while superoxide anion production decreased significantly in

Objectives: To assess the effects of pursed-lip breathing (PLB) at rest on the behavior of heart rate (HR) and its variability, and on variations in blood pressure (BP),