• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número2"

Copied!
8
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Inhibition

of

cytochrome

P450

3A

enzyme

by

Millettia

aboensis:

its

effect

on

the

pharmacokinetic

properties

of

efavirenz

and

nevirapine

Sunday

O.

Nduka

a,∗

,

Mathew

J.

Okonta

b

,

Daniel

L.

Ajaghaku

c

,

Kosisochi

C.

Amorha

b

,

Chinwe

V.

Ukwe

b

aDepartmentofClinicalPharmacyandPharmacyManagement,NnamdiAzikiweUniversity,Awka,Nigeria bDepartmentofClinicalPharmacyandPharmacyManagement,UniversityofNigeria,Nsukka,Nigeria cDepartmentofPharmacologyandToxicology,NnamdiAzikiweUniversity,Awka,Nigeria

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received19May2016 Accepted17October2016 Availableonline15December2016

Keywords: Bioavailability Herb–druginteraction CytochromeP4503A(CYP3A) Antiretrovirals

Enzymeinhibition

a

b

s

t

r

a

c

t

ThechronicandcomorbidnatureofHIVinfectionnecessitatetheuseofmultipledrugsincludingherbs torelievesymptomswithapossibleincreaseinherb–druginteractioncases.Thisstudywasdesigned toevaluatetheeffectofMillettiaaboensis(Hook.f.)Baker,Fabaceae,oncytochromeP4503A isoen-zymeandtheinfluenceofthiseffectonthebioavailabilityoftwoantiretroviralagents.Invitroeffectof ethanolextractofM.aboensisonintestinalandlivermicrosomesextractedfromfemaleratswasassessed usingerythromycin-N-demethylationassaymethodwhileinvivoeffectsweredeterminedby estimat-ingsimvastatinplasmaconcentrationsinrats.Theeffectoftheextractonpharmacokineticparameters oforallyadministeredefavirenz(25mg/kg)andnevirapine(20mg/kg)wasdeterminedinratsdivided intogroups(n=5).PlasmadrugconcentrationswereassayedusingHPLCandpharmacokinetic parame-tersdeterminedthroughanon-compartmentalanalysisasimplementedinWinNonlinpharmacokinetic program.TheextractinhibitedbothintestinalandlivermicrosomalcytochromeP4503Aisoenzyme activitiesinvitroandenhancedsimvastatinabsorptioninvivowithpossibleinhibitionofmetabolizing enzymesasindicatedbysignificant(p<0.05)increaseinmaximalconcentration,areaundercurveand meanresidenttimeofthedrug.However,furtherinvivointeractionstudiesinanimalmodeldidnot producesignificant(p>0.05)changesinthepharmacokineticparametersofefavirenzandnevirapine. HPLCfingerprintingindicatedthepresenceofquercetinandkaempferolintheextract.Thesefindings revealedM.aboensisasaninhibitorofcytochromeP4503Aenzymebut,withnosignificanteffectonthe bioavailabilityoforallyadministerednevirapineandefavirenz.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

PolypharmacyinHIVtreatmentandresultantdruginteractions

duetothenatureofthediseaseremainanimportantchallenge

inHIVtreatment(MachtingerandBangsberg,2013),inaddition

to challenges related to pooradherence and intersubject

vari-abilityinpharmacokinetics(Michaudetal.,2012).Interindividual

variabilitywithitscrucial roleintreatmentfailureortoxicityis

probably,mostlydrivenbygeneticandenvironmentalfactorssuch

asdrug–druginteractions,drug–foodinteractionsanddrug–herb

interactions(Michaudetal.,2012), withdrug–herb interactions

becomingmoreremarkablebecauseofthecurrentincreaseinthe

useofherbalmedicines.AreportbyRahmanandSinghal(2002)

estimated that about 65–80% of the population in developing

∗ Correspondingauthor.

E-mail:so.nduka@unizik.edu.ng(S.O.Nduka).

countriesrelyonherbalmedicinesastheprimarysourceof

treat-mentwithanestimatedannualexpenditureofover60billionUS

dollars(WHO,2003).Someherbalconstituentshavebeenshown

toaffectthebioavailabilityofco-administereddrugs(Kangetal.,

2009)throughvariousmechanismsincludingmodulationofdrug

metabolizingenzymes(Dudhatraetal.,2012).Drugmetabolizing

enzymesplaymajorroles inthebioavailabilityand elimination

oforallyadministered drugsin thebody.Hence,modulationof

theseenzymesbyherbalextractscouldleadtoalterationinthe

pharmacokineticpropertiesofco-administeredsubstrateagents,

ultimatelyaffectingtheiroveralltherapeuticoutcomes.

Theplant,Millettiaaboensis(Hook.f.)Baker,Fabaceae,is

consid-eredtobeanall-purposeplantinmostpartsofAfricabecauseof

themultiplicityofitsuseinethnomedicine(Banzouzietal.,2008).

Itis usedforthetreatmentof constipationinchildren, as

laxa-tive,for thetreatmentofcold andcatarrh,diarrhea,headaches,

dysentery, chicken pox and measles including respiratory

dif-ficulties (Harrison et al., 2011; Borokini and Omotayo, 2012;

http://dx.doi.org/10.1016/j.bjp.2016.10.008

(2)

Onyegeme-OkerentaandOkafor,2014)mostofwhichare

asso-ciatedwithHIV/AIDS. Hence,ourunpublishedsurvey foundan

increaseduseofthisplantbypeoplelivingwithHIV/AIDS.

Although the use of Highly Active Antiretroviral Therapy

(HAART)hasmadelong-termsuppressionofHIVareality,

pharma-cotherapyofthisdiseaseisstillassociatedwithsomechallengesas

someoftheagentsaresubstratesforcytochromeP450enzymes

predisposingthemtodruginteractionswithenzymemodulators.

Also,thedrugsareassociatedwithlotsofadversedrugeventsthat

mayresultinpoormedication.

Nevirapineandefavirenzbelongtothenon-nucleosidereverse

transcriptaseinhibitorclassofantiretroviralagentsapprovedfor

the treatment of HIV-1 infection. Although nevirapine is well

absorbedafteroraladministration,across-overcontrolledstudy

ineighthealthyadultmalesindicatedsignificanteffectsonmost

ofitspharmacokineticparameterswhenco-administeredwitha

bioenhancer(Kasibhattaand Naidu,2007).It undergoeshepatic

oxidation by cytochrome P450 isoforms namely CYP3A4 and

CYP2B6toyieldseveralmetabolites(RaffantiandHaas,2001).The

mostfrequentadverseeventsassociatedwithnevirapineare:rash

thatmayprogresstoStevens-Johnsonsyndromeandelevatedliver

enzymes(Fagotetal.,2001;DumondandKashuba,2009)andboth

aredosedependent.Amongtheantiretroviralagentsthatare

cur-rently inuse, nevirapine isthemostcommoncause ofserious,

clinicallyapparentacuteliverinjury(UnitedStatesNationalLibrary

ofMedicine).

Efavirenz, with a low oral bioavailability of approximately

40–45%andalonghalf-lifeof40–55h(DumondandKashuba,2009)

isalsometabolizedbyCYP3A4andCYP2B6enzymes(Veldkamp

etal.,2001).Itcrossesthebrainbloodbarrierattaining0.5–1.2%

ofthecorrespondingplasmaconcentrationinthecerebrospinal

fluidcausinghighratesofneuropsychiatricsideeffectsin>50%of

individuals(Veldkampetal.,2001).

Therefore,sincenevirapineandefavirenzarecytochromeP450

enzymesubstratesandaresusceptibletopharmacokinetic

interac-tionswithenzymemodulators,itisimperativetoclinicallyevaluate

someoftheherbsusedbyHIV/AIDSpatientsforpossible

interac-tionswiththedrugs.Hence,thisstudyevaluatedtheinvitroand

invivoeffects ofM.aboensisleafextract onliverandintestinal

cytochromeP4503Aisoenzymes.Italsoevaluatedthe

pretreat-menteffectoftheextractonthebioavailabilityoftwoantiretroviral

agents–nevirapineandefavirenzinaratmodel.

Materialsandmethods

Drugs

Simvastatintablets,Teva® (Teva,UnitedKingdom),and

dexa-methasoneinjection,Ecnudexainjection® (Yanzhou,China)were

purchasedfromaregisteredcommunitypharmacyinAwka,

Anam-brastate,Nigeria.Erythromycinpuresamplewaspurchasedfrom

CenturyPharmaceuticalsLtd,India.EfavirenzUSPandnevirapine

anhydrousUSPwerepurchasedfromAurobindoPharmaLtd,India.

KetoconazoleUSPwaspurchasedfromAartiDrugsLtd,India.

Nevi-rapinesyrup, Nevimune® (Cipla Ltd,India)and efavirenztablet

(StridesArcolabLtd,India)wereobtainedasgifts.

Animals

Albinorats(127–320g)ofeithersexwereobtainedfromthe

FacultyofVeterinaryMedicine,UniversityofNigeria,Nsukka.All

animals were allowed to acclimatize to the new environment

beforethecommencementoftheexperiment.Feedandwaterwere

freelyprovidedandtheanimalshousedaccordingtotheirsex.Full

ethicalapprovalforuseofanimalsubjectswasobtainedfromthe

AnimalResearchEthicsReviewBoardoftheUniversityofNigeria,

Nsukkaon28thJune2013.Allanimalexperimentswereconducted

inlinewithNIHguideontheuseandcareoflaboratoryanimals.

Plantmaterial

The leaves of Millettia aboensis (Hook. f.) Baker, Fabaceae,

NigerialocalnamesEdoawo,Ukperurumwesi,Mkpukpumanya,

were collected from Nsukka, Enugu State, Nigeria, identified

and authenticatedby ataxonomist, Mr.Alfred Oziokoof

Biore-source Development and Conservation Project Center, Nsukka,

Enugu State,Nigeria. Avoucher specimenwasdepositedin the

DepartmentofPharmacognosy,oftheFacultyofPharmaceutical

Sciences,NnamdiAzikiweUniversitywiththeherbariumnumber,

PCG/474/A/021.Collectedleavesweresubsequentlycleaned,

air-driedunderroomtemperatureandpulverized.Pulverizedleaves

(500g)werecoldmaceratedin70%aqueousethanolforoneweek

with intermittent shaking and changing of solvent every 48h.

Theresultingsolutionwasfilteredand thefiltrateconcentrated

usingrotaryevaporatorat40◦C.Theresultingextractwasproperly

labeledasEMAandstoredintherefrigeratorforfurtheruse.

ExvivoeffectoftheextractoncytochromeP4503A(CYP3A) isoenzyme

TheexvivoeffectsofEMAonCYP3Aactivityinintestinaland

livermicrosomeswerestudiedusing themethoddevelopedby

Wrightonetal.(1985)andvalidatedbyUmatheetal.(2008).The

method is based on the principle that erythromycin is rapidly

demethylated by cytochrome P4503A microsomalenzymes to

yielddes-N-methyl-erythromycinandformaldehydewhich

pro-duceayellowcolorwithNashreagent.

Afteranovernightfast,femaleratswereeuthanizedwith

pento-barbitoneandcarefullyexcisedthroughlongitudinalincisioninthe

abdomentoexposetheperitonealcavity.Liverwasperfusedinsitu

with10mlof0.1Mice-coldphosphatebufferedsaline(PBS,pH7.4)

andthen,isolated.Similarly,apieceofupperpartoftheintestine

(about20cmfromthestomach)wasalsoisolatedandwashedwith

PBSandthetissuesusedforfurtherprocessing.

Preparationofintestinalmicrosomes

ThemethodsvalidatedbyCotreauetal.(2003),Takemotoetal.

(2003)andUmatheetal.(2008)wereused.Thisinvolved

scrap-ping of the intestinal mucosa witha light plastic slip and the

scrapingsweremixedfollowedbysuccessiveincreasing

centrifu-gationusingrefrigeratedultracentrifuge(TGL-20M,China)inice

coldhistidine-sucrosebuffer(HSB,pH7.0)toobtainasupernatant.

Thesupernatants werecombinedand then,mixed with52mM

CaCl2(0.2mlof52mMCaCl2to1mlofthesupernatant),andthis

wasallowedtostandfor 20mintoprecipitate themicrosomes

followedbycentrifugationat20,000×gfor15mintoobtainthe

microsomalpelletwhichwassuspendedin0.5mlof0.1M

potas-siumphosphatebuffercontaining20%glycerolandstoredat−20◦C

untilneeded.

Preparationoflivermicrosomes

Liver microsomes were prepared using the methods of

Schenkmanand Cinti(1978) modifiedby Umatheetal. (2008).

Theisolatedliverwasmincedandhomogenizedin10ml0.25M

sucrose containing 10mM Tris–HCl (pH 7.4) and then

cen-trifuged at 600×g for 5min followed by 12,000×g for 10min

toobtainapost-mitochondrialsupernatant.Theseparated

(3)

aconcentrationof8mMwiththesupernatant.Thiswasthen

cen-trifuged at 20,000×g for 20min to obtain pellets which were

suspended in a mixture of 150mM KCl-10mM Tris–HCl, and

centrifugedat20,000×gfor20mintoobtainapink-colored

micro-somal pellet.This wassuspended in 0.5ml of 0.1M potassium

phosphatebuffercontaining20%glycerolandstoredat−20◦Cuntil

needed.

Erythromycin-N-demethylationassay

Themicrosomal erythromycin N-demethylation activitywas

performedasdescribedbyWrightonetal.(1985).Mixtureof

micro-somal suspension (0.1ml, 25%), erythromycin (0.1ml, 10mM),

magnesiumchloride(0.1ml,150mM)and potassiumphosphate

buffer(0.6ml, 50mM, pH7.25) was preparedin duplicate test

tubes.Thesetubeswerepre-incubatedfor3minat37◦Calongwith

theplantextractattwodifferentdoses(0.1ml,50and100␮g)and

fornegativeandpositivecontrolscontainingTween20(0.1ml,1%)

andketoconazole(0.1ml, 5␮M) respectively.Reactionbetween

these agents was initiated by adding NADPH (0.1ml, 10mM),

and terminated after 10min by adding ice-cold trichloroacetic

acid(0.5ml,12.5%,w/v)solution.Thetubeswerecentrifugedat

1740×gfor10mintoremoveproteins.To1mlofthesupernatant,

1ml offreshly prepared Nashreagent(2Mammonium acetate

(30g),0.05Mglacialaceticacid(0.4ml),and0.02Macetylacetone

(0.6ml))wereaddedandthenheatedinawaterbathat50◦Cwith

intermittentshakingfor30min.Aftercooling,theirabsorbances

werereadat412nm.TheerythromycinN-demethylationactivity

wascalculatedfromstandard(0–100␮Mformaldehyde)prepared

and ran under the same conditions. The CYP3A4 activity was

expressedasnMofformaldehydeobtainedpermilligramofprotein

permincalculatedfromtheequation;

CYP3Aactivity=AmountofCHOproduced(n/mol)

× 1

25mgprotein×

1

10min

InvivocytochromeP4503Aactivityassay

Invivo,CYP3Aactivitywasassessedusinganadaptedmethod

developedbyKanazuetal.(2004)andvalidatedbyUmatheetal.

(2008)inratmodels.Thismethodisbasedontheprinciplethat

theconcentrationofaCYP3Asubstrateagentwhenorally

admin-isteredwillinverselyreflectontheplasmaconcentrationofthe

agentonmodulationoftheenzyme.Simvastatinwasusedasthe

probesubstrateofchoiceintheexperimentaccordingtoHuetal.

(2007)and inlinewiththefindingsofFotietal.(2010).CYP3A

activitywasartificiallyinducedbydexamethasonepretreatment

sothattheinhibitoryeffectoftheextractwouldbetterreflecton

simvastatinlevel.

Extractanddrugadministration

Femalerats(20)weredividedintofourgroupsoffiveanimals

pergroup.Threegroupsreceiveddexamethasone(80mg/kgi.p.)

dailyinthreedivideddosesforthreeconsecutivedays,whileone

groupreceivedthevehicleandservedasdexamethasoneuntreated

controlgroup.After24hoflastdoseofdexamethasoneand

vehi-cletreatment,EMAatthedoseof400mg/kg[basedonestablished

LD50(Ajaghakuetal.,2012), andunpublishedED50results]was

administeredtoonegroup,whileketoconazole,5mg/kg(positive

control)wasorallyadministeredtoanothergroup.Theremaining

twogroupsreceivedthevehicle(1%Tween20).After1hofthe

lastsetofadministrations,simvastatin(20mg/kg,p.o.)was

admin-istered to all the groups and blood samples were collected in

heparinizedtubesat0.5,1,2,4,8,12and24hintervalpost

simvas-tatinadministration.Bloodsampleswereimmediatelycentrifuged

at1740×gfor10mintoobtainplasmawhichwerestoredat−20◦C

forfurtheranalysis.

SamplepreparationandHPLCanalysisofsimvastatin

Simvastatin in the prepared samples was analyzed by the

methodof Eggadiet al.(2013)withmodifications.Plasma

sam-pleswerepreparedbyadding10%trichloroaceticacidaboutthree

times the amount of the plasma and then, mixed to

precipi-tate protein. The mixture was left in a cool place for 15min

followedbycentrifugationat1700×gfor10mintoobtaina

super-natant which was filtered through a 0.45-␮m disk membrane

filter. The filtrate (10␮l) was injected into the HPLC and

ana-lyzedusingC18(4␮m,30mm×4.60mm)asthestationaryphase

andacetonitrile:water:orthophosphoricacidinrespectiveratiosof

65%:35%:0.1%(v/v)asthemobilephaseataflowrateof1ml/min

andaUVdetectionwavelengthof235nmwitharetentiontimeof

0.24min.Differentconcentrationsofpuresimvastatinwere

pre-paredtoyieldvaryingconcentrationswhichwerefilteredthrough

themembranefilterandusedtoobtainthestandardcurvefor

sim-vastatin.

In vivo interactionstudies

InvivoeffectofMillettiaaboensisextractonefavirenzand nevirapinepharmacokinetics

Albinoratsweredividedintofourgroups(n=5).Feedandwater

werewithdrawn12hbeforethecommencementofthe

experi-ment.Animalsingroup1and2receivedanoraldoseofefavirenz

alone (25mg/kg) and nevirapine alone (20mg/kg) respectively.

Group3receivedEMA(400mg/kg)1hbeforetheadministrationof

nevirapine(20mg/kg)andGroup4receivedEMA(400mg/kg)1h

priortoefavirenz(25mg/kg)administration.Bloodsampleswere

collectedfromtheanimalsacrossthegroupsthroughocularvein

punctureusingcapillarytubesintoEDTAtubesattimeintervalsof

0,0.5,1,2,4,8,and12h.Thebloodsampleswerecentrifugedat

1740×gfor10minforplasmaseparationandtheplasmafrozenat

−20◦Cuntilassayed.

HPLCanalysisofefavirenz

Plasma efavirenz concentrations were assayed using HPLC

accordingtothemethodsofSailajaetal.(2007).Chromatography

wasperformedwithC18(4␮m,30mm×4.60mm)analytical

col-umnand50:50acetonitrile–phosphatebuffer(pH3.5)asmobile

phaseatUVdetectionof247nmataflowrateof0.8ml/minand

retentiontimeof0.2min.

HPLCanalysisofnevirapine

Nevirapineconcentrationsintheplasmaweredetectedusing

theHPLCmethoddevelopedbyKumaretal.(2010).The

chromatog-raphywascarriedoutonaC18column(4␮m,30mm×4.60mm)

usingamixtureofammoniumacetatebuffer(pH4.0)and

acetoni-trile(85:15,v/v)asthemobilephaseat254nmUVdetectionata

flowrateof1.2ml/minandretentiontimeof0.17min.

Determinationofpharmacokineticparameters

Differentpharmacokineticparametersweredeterminedusing

anon-compartmentalmethodusingWinNonLinpharmacokinetic

(4)

CA).Thepharmacokineticparametersdeterminedincluded:Tmax,

Cmax,Clast,AUC,AUMC,MRT,t1/2,VzandCl.

Tmax timetakenfordrugstoattainmaximalplasma

concentration

Cmax maximaldrugplasmaconcentration

Clast lastmeasurabledrugplasmaconcentration

AUC areaundercurvefromthetimeofdosingtothetimeof thelastobservation

AUMC areaundermomentcurvefromthetimeofdosingto thetimeoflastmeasurableconcentration

MRT meanresidencetime

t1/2 terminalhalf-life

Vz volumeofdistributionbasedontheterminalphase

Cl totalbodyclearance

HPLCfingerprintanalysisofMillettiaaboensisextract

Theextract(EMA,2mg)wasreconstitutedwith2mlofHPLC

grademethanol.Themixturewassonicatedfor10minand

there-after centrifuged at 1740×g for 5min. The dissolved sample

(100␮g)wasmixedwith500␮lofHPLCgrademethanol.HPLC

analysiswas doneusing Dionex P580HPLC systemcoupledto

photodiodearraydetector(UVD340S,DionexSofttronGmbH,

Ger-many). Detectionwas at 235, 254 and 340nm. The separation

column(125mm×4mm;length×internaldiameter)wasprefilled

withEurospher-10C18(Knauer,Germany),andalineargradient

ofnanopurewater(adjustedtopH2bytheadditionofformic

acid).Methanol wasusedas eluent.Compoundswere detected

usingdiodearrayandidentifiedbasedonsimilaritywithdatain

theinbuiltlibrary.

Statisticalanalysis

Allresultswerepresentedasmean±SEM.Thedatawere

sub-jectedtot-testandone-wayanalysisofvariance(ANOVA)testwith

groupdifferencesdeterminedusingposthoc Dunnett’smultiple

comparisonstestusingSPSS.Resultswereconsideredstatistically

significantatp<0.05.

Results

ExvivoassessmentofCYP3Aactivity

EffectofMillettiaaboensisextractonintestinalmicrosomes

The resultof the ex vivo effects of the extract onintestinal

CYP3AactivityispresentedinFig.1.Fromtheresult,whereasthe

50␮gconcentrationsoftheextractcouldnotproducereductions

inintestinalCYP3Aactivitythe100␮gconcentrationachieveda

significantinhibitionoftheenzymeactivity(p=0.040)similarto

ketoconazoleat5␮M.

EffectofMillettiaaboensisextractonlivermicrosomes

TheextractshowedadirectdosedependentliverCYP3A

inhibi-tion(Fig.2).WhileonewayANOVAshowedsignificancedifference

withtheextract,posthocanalysisindicatedthattheextractwas

significantat100␮gbutnotat50␮g.

AssessmentofinvivoCYP3Aactivity

Thepharmacokineticparametersofsimvastatinadministered

toalbinoratswithEMAtobothdexamethasoneandvehicle

pre-treated and then, to simvastatin control groups are presented

in Table1.The plasmaconcentration–time graphsused forthe

estimation ofthepharmacokineticparameters arepresented in

Fig. 3. One way analysis of variance showed significant

dif-ference in all the parameters with further subgroup analysis

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

nM/mg protein

p

er min

Ethanol extract of M. aboensis

50 µg 100 µg Ketoconazole (5µM) Tween 20 (1%) ∗

Fig.1.EffectofMillettiaaboensisextractonCYP3Aactivityinintestinalmicrosomes. *p<0.05comparedtothenegativecontrol.

(using LSD) indicating that pretreatment with dexamethasone

andvehicleresultedinasignificantdecreaseinCmax(p=0.005),

AUC (p=0.001), and AUMC (p=0.005) while t1/2, Vz (p=0.001)

of simvastatin and Ke were increased compared to the

non-dexamethasone treated control group. Pretreatment with EMA

significantly(p<0.05)increasedTmax,t1/2,AUC,AUMCandMRTof

simvastatinwithasignificantdecreaseinclearance(Cl)andvolume

ofdistributionwhiletheotherparameterswerenotsignificantly

changed compared to the dexamethasone and vehicle treated

group.

0 20 40 60 80 100 120

∗ ∗

nM/mg protein

p

er min

Ethanol extract of M. aboensis

50 µg

100 µg Ketoconazole (5µM) Tween 20 (1%)

(5)

Table1

ComparativeeffectofMillettiaaboensisextractonthepharmacokineticparametersofsingleoraldoseofsimvastatin.

Parameter Vehicle+SIMVA DX+EMA+SIMVA DX+KETO+SIMVA DX+vehicle+SIMVA

Tmax(h) 8.00±1.000 8.00±0.000a 4.00

±0.000 1.00±0.000

Cmax(␮g/ml) 5.92±0.013 3.38±0.017 5.42±0.014a 2.22±0.021b

AUC(␮g/ml/h) 83.3±0.487 69.6±0.636a 58.4±0.115a 29.5±0.345b

t1/2(h) 11±1.170 133±85.770a 10±0.547 26±2.375

Vz(ml/kg) 2.75±0.362 5.48±1.145a 3.75±0.809a 11.84±2.071b

Cl(ml/kg/h) 0.17±0.014 0.08±0.052a 0.26

±0.019a 0.31

±0.049 AUMC(␮g/ml/h2) 955.3

±4.151 842.2±10.498a 534.2

±6.030a 311.7

±4.881b

MRT(h) 11.47±0.107 12.07±0.406a 9.15

±0.184a 10.54

±0.423

Ke(1/h) 0.044±0.004 0.014±0.011 0.070±0.004a 0.027±0.002

DX,dexamethasone(80mg/kg,i.p.);SIMVA,simvastatin(20mg/kg,p.o.);EMA,ethanolextractofMillettiaaboensis(400mg/kg,p.o.);KETO,ketoconazole(5mg/kg).

ap<0.05comparedtoDX+vehicle+SIMVAgroup. b p<0.05comparedtovehicle+SIMVAgroup.

0 1 2 3 4 5 6 7

30 20

10 0

Simvastatin plasma conc. (µg/ml)

Time (h)

DX+EMA+SIMVA DX+KETO+SIMVA

DX+vehicle+SIMVA Vehicle+SIMVA

Fig.3.Plasmaconcentration–timecurveofsimvastatinadministeredwithethanol extractsofMillettiaaboensistodexamethasone/vehiclepretreatedrats.n=5 rep-resentedasmean±SEM;DX,dexamethasone(80mg/kg,i.p.);SIMVA,simvastatin (20mg/kg,p.o.);EMA,ethanolextractofM.aboensis(400mg/kg,p.o.);KETO, keto-conazole(5mg/kg).

Invivodruginteractionresults

InvivoeffectofMillettiaaboensisextractonefavirenz pharmacokinetics

Table2showsthepharmacokineticparametersobtainedfrom

rats following single oral administrations of efavirenz alone

and in the presence of EMA while Fig. 4 shows their plasma

Table2

ComparativeeffectofMillettiaaboensisextractonthepharmacokineticparameters ofsingleoraldoseofefavirenz.

Parameter EFValone EMA+EFV

Tmax(h) 2.67±0.667 2.00±0.000

Cmax(␮g/ml) 3.88±0.108 4.18±0.000

AUC(␮g/ml/h) 42.8±0.046 44.17±0.054

t1/2(h) 83.20±33.048 61.29±18.847

Vz(ml/kg) 5.06±2.317 4.90±1.970

Cl(ml/kg/h) 0.06±0.024 0.05±0.005

AUMC(␮g/ml/h2) 257.5±3.221 262.9±0.328

MRT(h) 6.01±0.034 5.95±0.003

Ke(1/h) 0.012±0.005 0.013±0.003

EMA,ethanolextractofM.aboensis(400mg/kg,p.o.);EFV,efavirenz(25mg/kg,p.o.).

concentration–timeprofiles.Theresultsshowedanon-significant increaseinCmaxfrom3.88±0.108␮g/mlinefavirenzonlygroup to4.18±0.000␮g/mlinEMApretreatedgroup.Areaundercurve showedlittleornochangeintheextractpretreatedgroup com-paredtothegroupthatreceivedonlydrug.AUMCincreasedfrom 257.5±3.221␮g/ml/h2whenefavirenzwasadministeredaloneto 262.9±0.328␮g/ml/h2 inthepresenceofEMA,though,not sig-nificant.Timetoreachmaximumconcentrations(Tmax)showeda non-significantdecreaseinthepresenceofEMAsimilartohalf-life (t1/2)andmeanresidenttime(MRT).Thevolumeofdistributionand clearancewerebothdecreased(p>0.05)inthepretreatedgroup comparedtothecontrol.

InvivoeffectofMillettiaaboensisextractonoralnevirapine pharmacokinetics

Table3showsthepharmacokineticparametersobtainedfrom

rats following oral administration of nevirapine alone and in

EMApretreatedratswiththeirplasmaconcentration–time

pro-filespresented in Fig. 5. From this table, it is evident that the

co-administrationofEMAextractinfluencedmostofthe

param-etersincludingTmax,Cmax,t1/2,andAUMChowever,withonlyt1/2

effectbeingsignificant(p=0.002).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

15 10

5 0

Ef

avirenz plasma conc. (µg/ml)

Time (h)

EFV alone EMA+EFV

(6)

Table3

ComparativeeffectofMillettiaaboensisextractonthepharmacokineticparameters ofsingleoraldoseofnevirapine.

Parameter NVPalone EMA+NVP

Tmax(h) 2.17±1.014 0.67±0.167

Cmax(␮g/ml) 2.82±0.070 3.23±0.020

AUC(␮g/ml/h) 31.02±0.514 31.79±0.750

t1/2(h) 75.70±1.915 29.75±0.450a

Vz(ml/kg) 10.39±0.545 8.07±0.295

Cl(ml/kg/h) 0.06±0.045 0.10±0.046

AUMC(␮g/ml/h2) 186.99±4.659 192.62±1.201

MRT(h) 6.13±0.065 6.07±0.113

Ke(1/h) 0.014±0.002 0.034±0.001

EMA,ethanolextractofM.aboensis(400mg/kg,p.o.);NVP,nevirapine(20mg/kg, p.o.).

ap<0.05comparedtoNVPalone.

HPLCfingerprintresult

Thechromatogram(Fig.6)obtainedfromtheHPLCprofileof

EMAshows five major peaksnumbered A, B, C, D and E.Peak

numbersA andBcorrespondtoa simple phenolic derivative–

flavonoidglycosidesbasedontheirUVcurves.PeaknumberC(the

majorcompound)exhibitedaUVcurvetypicalofquercetin

gly-coside,suggestedbecausetheHPLC-UVabsorbancemaximawere

achievedat256and352nmwhichisacharacteristicspectrumof

quercetinglycoside.Furtherliquidchromatographic-electrospray

ionizationmassspectroscopicanalysisrevealedstrongpeaksthat

showedlossofhexosesugars.Theionpeakatm/z303.2wasanother

diagnosticindicationofquercetinaglycone.PeaknumbersDandE

exhibitedUVcurvestypicalofkaempferolglycosides.

Discussion

Thisstudy indicated that the ethanol extract of M.aboensis

exhibitedgoodcytochromeP450enzymeinhibitorypropertyboth

0 0.5 1 1.5 2 2.5 3 3.5 4

14 12 10 8 6 4 2 0

Nevirapine plasma conc. (µg/ml)

Time (h)

NEV NEV+EMA

Fig.5.Plasmaconcentration–timeprofileofnevirapineinethanolextractof Millet-tiaaboensispretreatedrats.n=5representedasmean±SEM;EMA,ethanolextract ofM.aboensis(400mg/kg,p.o.);NVP,nevirapine(20mg/kg,p.o.).

.000

750

500

250

–200

0.0 10.0 20.0 30.0 40.0 50.0 60

min AB E

C

D

Fig.6. HPLCfingerprintofethanolextractofMillettiaaboensis.(AandB) Sim-plephenolicderivatives:flavonoidglycosides;(C)quercetinglycoside;(DandE) kaempferoltypeglycosides.

invitroandinvivo.Furtherinteractionstudiestodeterminethe

effectoftheextractonefavirenzandnevirapinepharmacokinetics

demonstratedthattheextractdidnotshowsignificanteffecton

thepharmacokineticprofileofthesedrugs.

Drug interactions involving cytochrome P450 enzymes are

mostlymediatedthroughenzymeinhibitionorinduction

mecha-nisms.Enzymeinhibitionisanimmediatephenomenonandoccurs

more in practice. The therapeutic importance of enzyme

inhi-bitioncouldbeseenin practicewhen,theco-administrationof

aninhibitorwithatherapeuticagentleadtoanincreasein the

bioavailabilityoftheparentdrugoradecreaseintheelimination

ofcompoundswithresultantsubstanceaccumulationand

toxic-ity.Thisprocessis referredtoasa “bioenhancingeffect”.Many

herbalinhibitorsofcytochromeP450enzymesandbioenhancers

havebeenreported(Randhawa etal.,2011;Ndukaetal.,2013;

MazzariandPrieto,2014).

Theeffectof theethanolextract ofM.aboensis onintestinal

microsomes indicated variable concentrationeffects on

intesti-nalCYP3Aenzymesactivity.Theextractatalowerconcentration

(50␮g)actedasanactivatoroftheenzymeswhileinhibitoryeffect

wasevidentathigherconcentration(100␮g).Thisfindingmaybe

duetothenatureofenzymeinhibitionwherecompetitive

inhibi-tionofcomplexenzymesatlowinhibitorconcentrationsallowsa

shiftintheequilibriumtotheactivatedform.Thesmallintestine

isshowntobeinvolvedinfirstpassprocessessimilartotheliver,

though,toa muchsmallerdegree(Mitschkeetal.,2008).

How-ever,someresearchershavesuggestedthattheroleofintestinal

metabolismmaybegreaterthanhepaticmetabolismirrespective

ofthelowerquantitiesofCYPenzymesinthesmallintestine(Lin

etal.,1999;Paineetal.,1997).Similarly,theresultofthestudyon

thelivermicrosomesfurtherindicatedthattheextractofM.

aboen-sisexhibitedadosedependentliverCYP3Ainhibition.Thisresult,

like that of the intestinal microsomalinhibition, indicated the

possibilityofdruginteractionsoccurringwithco-administration

of theplantextractwithCYP3Asubstrate agents. Ketoconazole

servedasthereferencestandardinthisstudybecauseofits

estab-lishedinvitroandinvivoinhibitoryeffectsonCYP4503Aactivity

(Greenblattetal.,2011)whichwasalsoobservedinthisstudy.

The result of erythromycin-N-demethylation assay in the

intestinalandthelivermicrosomesindicatedthattheintestinal

microsomalCYP3Aactivitywasinhibitedtoagreaterextentwith

morevariableinhibitionthanlivermicrosomalactivitysimilarto

(7)

tothehigherconcentrationsofCYPenzymesinlivermicrosomes

comparedtointestinalmicrosomes(Linetal.,1999).

Theinvivo assaymethodis based ontheprinciple thatthe

suppressionofamajormetabolizingenzymeresponsibleforthe

metabolismof a substrate drug willlead toan increase in the

plasmaconcentrationofthesubstratedrugwhenorally

adminis-tered.Femaleratswereusedforthestudybecausedexamethasone

treated female rat livermicrosomes have been shown to have

propertiessimilartothoseofhumansandhence,ausefulmodel

for evaluatingdrug interactions involvingcytochrome P450 3A

enzymeinhibition(Kanazuetal.,2004).Simvastatinwaschosen

asthesubstrateofchoiceinlinewithstudiesbyHuetal.(2007).

Differentprobesubstratesareavailableforuseincluding

midazo-lam,nifedipine andtestosteroneamong otherswithmidazolam

beingmostlyused.However,astudybyFotietal.(2010)revealed

buspironeandsimvastatintoberelevantclinicallyasCYP3Aprobe

substrateswithsimilarorgreatersensitivitythanmidazolam.

ThesignificantincreasesinAUC,AUMCandslightincreasein

Cmaxofsimvastatinintheextracttreatedgroupwereindicative

ofenhanced absorptionandbioavailability ofthedrug.

Accord-ingto Jambhekarand Breen (2009), AUCand Cmax are used in

the measurement of extent of drug bioavailability which inter

aliaisdependentonfirstpasseffect.Therefore,thehighervalues

ofAUC,AUMCandMRTintheextract-treatedratswere

indica-tiveofenhancedsystemicavailabilityofsimvastatinandpossible

suppressionof CYP3Awhich is theenzyme responsiblefor the

metabolismofsimvastatinbothintheintestineandliver.

There-fore,theconcurrentuseofthisherbwithdrugsthataresubstrates

ofcytochromeP4503Amaybeexposing thepatient(s)todrug

interactions andsevere adverse drugeffects which mayimpair

adherence,patientsafetyandclinicaloutcomes.

TheAUC,AUMC,CmaxandTmaxareimportantpharmacokinetic

parametersusedtoassessthedegreeofabsorptionand

bioavail-abilityofdrugs(Labaune,1989;Proudfoot,1999;Jambhekarand

Breen,2009).Thenon-significantchangesseenwiththese

param-etersintheextractpretreatedgroupcomparedtothegroupsthat

receivedonlyefavirenzornevirapinewereindicativeoflittleor

noeffectonthebioavailabilityofthedrugsbytheextract.These

observationsmightberelatedtothepropertiesofthesedrugsand

theenzyme(s)involvedintheirmetabolism.Ithasbeen

demon-stratedthatintheabsenceofanimportantdetoxifyingsystemsuch

asCYP3A,organisms canstillmetabolizesomexenobioticsas a

resultofoverlyingsubstratespecificityofP450enzymesand

poten-tialactivationofalternativeenzymesinvolvedintheirmetabolism

(vanWaterschootandSchinkel,2011).Sinceefavirenzand

nevi-rapinearesubstratestobothCYP3A4and2B6enzymes,inhibition

ofCYP3Abytheextractmaynothavesignificantlyalteredtheir

bioavailabilitiesduetopossibleadaptationmechanismsthatmay

haveutilizedtheotherroute(s)ofdrugmetabolism.This

inhibi-tionmayalsohaveactivatedthealternativemetabolicpathway

(CYP2B6)similarto thereportsof vanWaterschoot in

midazo-lammetabolismin CYP3Aknockoutrats(vanWaterschoot and

Schinkel,2011).Moreover,someresearchershavereportedCYP2B6

asthemajorenzymeinvolvedinefavirenzmetabolism(Wardetal.,

2003).Thesignificantreductioninthehalf-lifeofnevirapinewhen

co-administeredwiththeextractsuggestspossibleeffectofthe

extractonnevirapinemetabolismwhichmayleadtonevirapine

accumulationandtoxicitywithtime.

Fingerprintingconstructionisanimportantqualitycontroltool

forherbalsampleswhichisacceptedbytheWorldHealth

Organi-zationandusedforidentifyingplantextracts’constituents(Ciesela,

2012).Theconstituentssuggestedtobepresentinourextractwere

mainlyofflavonoidoriginandmostknown‘bioenhancers’ofplants

originare mainly alkaloids, saponinsand flavonoids. Quercetin

foundincitrusfruitwasreportedtoachieveitsbioenhancing

activ-itythroughinhibitionofcytochromeP4503A4andP-glycoprotein

mechanisms(Randhawaetal.,2011).Ithasbeenfoundtoincrease

theAUCandCmaxofdiltiazem,tamoxifenanddigoxin(Randhawa

etal.,2011).

Themajorlimitationsofthisstudyweretheinabilityofthestudy

toestablishtheenzymekineticsofthestudiedextract;secondly,

the study neitherisolated nor characterized the different

con-stituentsintheextracttoevaluatetheireffectsontheisoenzymes

ofinterest;inaddition,thisstudyonlyfocusedoncytochromeP450

3Aenzymeswithoutconsideringtheotherisoenzymeswhichmay

alsobeinvolvedintheinteractions.

Conclusion

This study established in vitro and in vivo inhibition of

cytochromeP4503AenzymebyM.aboensiswithoutasignificant

effectonthedispositionofnevirapineandefavirenz.However,

pos-sibleaccumulationofnevirapinewithtimewasobserved.Although

nosignificantinteractionswereobservedbetweentheplantextract

andtheusedantiretroviralagents,co-administrationofthisplant

withdrugsthatdependsolelyonCYP3Afortheirmetabolismmay

leadtosignificantinteractions.Therefore,otherinteractionstudies

betweenthisplantextractandotherdrugsarerecommended.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thattheproceduresfollowedwereinaccordancewiththe

regula-tionsoftherelevantclinicalresearchethicscommitteeandwith

thoseoftheCodeofEthicsoftheWorldMedicalAssociation

(Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethatnopatientdata

appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat

nopatientdataappearinthisarticle.

Authorscontribution

SONandMJOdesignedthestudy.SONandDAwere

responsi-bleforexecutionoftheprojectandconducteddataanalysis.SON,

KCAandCVUdraftedthemanuscript.Alltheauthorsreviewedand

approvedthemanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TheauthorsaregratefultoMrSebastianIgboemeofthe

Depart-mentofPharmacologyandToxicology,NnamdiAzikiweUniversity,

Awka,Nigeria,forhisassistanceandcontributionsinthelaboratory

procedures.We alsoappreciatethemanagement of Juhel

Nige-riaLtd,ChazmaxPharmaInd.Ltd,Nigeria andGauze Industries

andLaboratory,Nigeriafortheirassistancewithsomelaboratory

equipmentandprovisionofdrugs.

References

Ajaghaku,D.L.,Ilodigwe,E.E.,Obi,H.I.,Uzodimma,S.U.,2012.Toxicological evalua-tionofethanolleafextractofMilletiaaboensis(Hook.f)Baker.IJPIJ.Pharmacol. Toxicol.2,1–8.

Banzouzi,J.T.,Prost,A.,Rajemiarimiraho,M.,Ongoka,P.,2008.Traditionalusesof theAfricanMillettiaspecies(Fabaceae).Int.J.Bot.4,406–420.

(8)

Ciesela,L.,2012.Biologicalfingerprintingofherbalsamplesbymeansofliquid chro-matography.Chromatogr.Res.Int.,http://dx.doi.org/10.1155/2012/532418. Cotreau,M.M.,vonMoltke,L.L.,Beinfeld,M.C.,Greenblatt,D.J.,2003.Methodologies

tostudytheinductionofrathepaticandintestinalcytochromeP4503Aatthe mRNA,protein,andcatalyticactivitylevel.J.Pharmacol.Toxicol.Methods33, 45–55.

Dudhatra,G.B.,Mody,S.K.,Awale,M.M.,Patel,H.B.,Modi,C.M.,Kumar,A.,Kamani, D.R.,Chauhan,N.B.,2012.Comprehensivereviewonpharmacotherapeuticsof herbalbioenhancers.Sci.WorldJ.2012,1–33.

Dumond,J.B.,Kashuba,A.D.M.,2009.Pharmacotherapyofhumanimmunodeficiency virusinfection.In:Koda-Kimble,M.A.,Young,L.Y.,Alldredge,B.K.,Corelli,R.L., Guglielino,B.J.,Kradjan,W.A.,Williams,B.R.(Eds.),AppliedTherapeutics.The ClinicalUseofDrugs.,9thed.LippincottWilliamsandWilkins,NewYork,pp. 61-1-24.

Eggadi,V., Ponna,S.K.,Kankanala, S.R.,Sheshagiri, S.B.B.,Gaddam,S.R., 2013. DeterminationofsimvastatinanddiltiazeminratplasmabyHPLCand phar-macokineticstudies.Int.J.Pharm.Sci.Res.21,53–56.

Fagot,J.P.,Mockenhaupt,M.,Bouwes-Bavinck,J.N.,2001.Nevirapineandtheriskof Stevens-Johnsonsyndromeortoxicepidermalnecrolysis.AIDS15,1843–1848. Foti,R.S.,Rock,D.A.,Wienkers,L.C.,Wahlstrom,J.L.,2010.Selectionofalternative CYP3A4probesubstratesforclinicaldruginteractionstudiesusinginvitrodata andinvivosimulation.Am.Soc.Pharmacol.Exp.Ther.38,981–987.

Greenblatt,D.J.,Zhao,Y.,Venkatakrishnan,K.,Duan,S.X.,Harmatz,J.S.,Parent,S.J., Court,M.H.,vonMoltke,L.L.,2011.MechanismofcytochromeP4503Ainhibition byketoconazole.J.Pharm.Pharmacol.63,214–221.

Harrison,J.J.E.K.,Dankyi,E.,Kingsford-Adaboh,R.,Ishida,H.,2011.Insearchofnew leads:acloserlookatthetherapeuticpotentialoftheconstituentsof Millet-tiathonningii,Millettiapachycarpaandtheirstructuralanalogues.Int.J.Pharm. Pharm.Sci.3,71–81.

Hu,O.Y.,Hsiong,C.H.,Kuo,B.P.,Pao,L.,2007.CytochromeP4503Ainhibitorsand enhancers.UnitedStatesPatent,US7,169763B2.

Jambhekar,S.S.,Breen,P.J.,2009.BasicPharmaceutics:ExtravascularRoutesofDrugs Administration.PharmaceuticalPress,London.

Kanazu,T.,Yamaguchi,Y.,Okamura,N.,Baba,T.,Koike,M.,2004.Modelforthe drug–druginteractionresponsibleforCYP3Aenzymeinhibition.II: establish-mentandevaluationofdexamethasone-pretreatedfemalerats.Xenobiotica34, 403–413.

Kang,M.J.,Cho,J.Y.,Shim,B.H.,Kim,D.K.,Lee,J.,2009.Bioavailabilityenhancing activitiesofnaturalcompoundsfrommedicinalplants.J.Med.PlantsRes.3, 1204–1211.

Kasibhatta,R.,Naidu,M.U.R.,2007.Influenceofpiperineonthepharmacokineticsof nevirapineunderfastingconditions:arandomizedcrossoverplacebocontrolled study.DrugDev.Res.8,383–391.

Kumar,C.H.,Kumar,D.A.,Rao,J.V.L.N.S.,2010.AnewvalidatedRP-HPLCmethodfor thedeterminationofnevirapineinhumanplasma.Eur.J.Chem.7,821–826. Labaune,J.P.,1989.HandbookofPharmacokinetics.EllisHarwoodLtd.,Chichester. Lin,J.H.,Chiba,M.,Baillie,T.A.,1999.Istheroleofthesmallintestineinfirstpass

metabolismoveremphasized?Am.Soc.Pharmacol.Exp.Ther.51,135–157. Machtinger,E.L.,Bangsberg,D.R.,2013.AdherencetoHIVAntiretroviralTherapy.

HIVInSiteKnowledgeBaseChapter.UCSFCenterforHIVInformation. Mazzari,A.L.D.A.,Prieto,J.M.,2014.HerbalmedicinesinBrazil:pharmacokinetic

profileandpotentialherb–druginteractions.Front.Pharmacol.5,1–12. Michaud,V.,Bar-Magen,T.,Turgeon,J.,Flockhart,D.,Desta,Z.,Wainberg,M.A.,

2012.ThedualroleofpharmacogeneticsinHIVtreatment:mutationsand

polymorphisms regulating antiretroviral drug resistance and disposition. Pharm.Rev.64,803–833.

Mitschke, D., Reichel,A., Fricker, G., Moenning, U.,2008. Characterisation of cytochromeP450proteinexpressionalongtheentirelengthoftheintestine ofmaleandfemalerats.DrugMetab.Dispos.36,1039–1045.

Nduka,S.O.,Okonta,J.M.,Esimone,C.O.,2013.EffectsofZingiberofficinaleonthe plasmapharmacokineticsandlungpenetrationsofciprofloxacinandisoniazid. Am.J.Ther.20,501–513.

Onyegeme-Okerenta,B.M.,Okafor,U.A.,2014.Antimicrobialpropertiesofethanol leafextractofMillettiaaboensisonsomeselectedclinicalisolates.Univ.J.Plant Sci.2,97–101.

Paine,M.F.,Khalighi,M.,Fisher,J.M.,1997.Characterisationofinterintestinaland intraintestinalvariationsinhumanCYP3A-dependentmetabolism.J.Pharmacol. Exp.Ther.283,1552–1562.

Proudfoot,S.G.,1999.Factorsinfluencingbioavailability:factorsinfluencing absorp-tionfromthegastrointestinaltract.In:Aulton,M.E.(Ed.),Pharmaceutics:The ScienceofDosageFormDesigns.ChurchillLivingston,London,pp.135–137. Raffanti,S.,Haas,D.W.,2001.Antimicrobialagents:antiretroviralagents.In:

Hard-man,J.C.,Limbird,L.E.(Eds.),ThePharmacologicalBasisofTherapeutics.,10th ed.McGraw-Hill,US,pp.3–30.

Rahman,S.,Singhal,K.,2002.ProblemsinPharmacovigilanceofMedicinal Prod-uctsofHerbalOriginandMeanstoMinimizeThem.UppsalaReportsJanuary Supplement,Uppsala.

Randhawa,G.K.,Kullar,J.S.,Kumar,R.,2011.Bioenhancerfrommothernatureand theirapplicabilityinmodernmedicine.Int.J.Appl.BasicMed.Res.1,5–10. Sailaja,A.L.,Kumar,K.K.,Kumar,D.V.R.,Yugandhar,N.M.,Srinubabu,G.,2007.

Devel-opmentandvalidationofaliquidchromatographicmethodfordetermination ofefavirenzinhumanplasma.Chromatographia65,359–361.

Schenkman,J.B.,Cinti,D.L.,1978.Preparationofmicrosomeswithcalcium.Methods Enzymol.52,83–89.

Takemoto,K.,Yamazaki,H.,Tanaka,Y.,Nakajima,M.,Yokoi,T.,2003.Catalytic activ-itiesofcytochromeP450enzymesandUDP-glucuronosyltransferasesinvolved indrugmetabolisminratevertedsacsandintestinalmicrosomes.Xenobiotica 33,43–55.

Umathe,S.N.,Dixit,P.V.,Kumar,V.,Bansod,K.U.,Wanjari,M.M.,2008.Quercetin pretreatmentincreasesthebioavailabilityofpioglitazoneinrats:involvement ofCYP3Ainhibition.Biochem.Pharmacol.75,1670–1676.

vanWaterschoot,R.A.B.,Schinkel,A.H.,2011.Acriticalanalysisoftheinterplay betweencytochromeP4503AandP-glycoprotein:recentinsightfromknockout andtransgenicmice.Am.Soc.Pharmacol.Exp.Ther.63,390–408.

Veldkamp,A.I.,Harris,M.,Montaner,J.S.G.,2001.Thesteadystatepharmacokinetics ofefavirenzandnevirapinewhenusedincombinationinhuman immunodefi-ciencyvirustype1infectedpersons.J.Infect.Dis.184,37–42.

Ward,B.A.,Gorski,J.C.,Jones,D.R.,Hall,S.D.,Flockhart,D.A.,Desta,Z.,2003.The cytochromeP4502B6(CYP2B6)isthemaincatalystofefavirenzmetabolism: implicationforHIV/AIDStherapyandutilityofefavirenzassubstratemarkerof CYP2B6catalyticactivity.J.Pharmacol.Exp.Ther.306,287–300.

WHO, 2003. Traditional Medicine Facts Sheet. World Health Organisation, http://www.who.int/mediacentre/factsheets/2003/fs134/en/(accessedAugust 2015).

Imagem

Fig. 1. Effect of Millettia aboensis extract on CYP3A activity in intestinal microsomes.
Table 2 shows the pharmacokinetic parameters obtained from rats following single oral administrations of efavirenz alone and in the presence of EMA while Fig
Fig. 6. HPLC fingerprint of ethanol extract of Millettia aboensis. (A and B) Sim- Sim-ple phenolic derivatives: flavonoid glycosides; (C) quercetin glycoside; (D and E) kaempferol type glycosides.

Referências

Documentos relacionados

Anzitutto ho potuto cogliere quanto sia stato ben organizzato e cura- to nei dettagli, sia dal punto di vista esteriore (la scelta del luogo, ossia l’anfiteatro III della Facoltà

Este Plano procura con- solidar o sistema de proteção das vítimas e o combate à violência domésti- ca, assim como promover a adoção de medidas estratégicas em relação

Como se deve tomar o banho f Depois de des- pido, é bom ficar em toilette de banho alguns minu- tos sobre a areia da praia ; durante este tempo, o ar ambiente acha-se em contacto

Para determinar o teor em água, a fonte emite neutrões, quer a partir da superfície do terreno (“transmissão indireta”), quer a partir do interior do mesmo

The best way to achieve this goal is to apply a solvent-free, pH-neutral, hydrophobic adhesive resin layer in a separate step, as confirmed by inferior in vitro and in vivo

In European terms, we identified a number of countries, mainly located in southern Europe (Portugal, Spain, Greece, Italy, Malta and Cyprus) who have high levels of home

Experiment 2 “Effect of high water temperature 33ºC, on White Spot Syndrome Virus WSSV infection in pacific white shrimp Litopenaeus vannamei, when applied at different times 12 and

Neste trabalho procurou-se também estudar a sensibilização a proteínas das espécies Phleum pratense e Olea europea em pacientes que frequentam as consultas externas de