• Nenhum resultado encontrado

Isomerization of a-pinene oxide over cerium and tin catalysts : selective synthesis of trans-carveol and trans-sobrerol.

N/A
N/A
Protected

Academic year: 2021

Share "Isomerization of a-pinene oxide over cerium and tin catalysts : selective synthesis of trans-carveol and trans-sobrerol."

Copied!
6
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Journal

of

Molecular

Catalysis

A:

Chemical

jo u rn al h om epa g e :w w w . e l s e v i e r . c o m / l o c a t e / m o l c a t a

Isomerization

of

␣-pinene

oxide

over

cerium

and

tin

catalysts:

Selective

synthesis

of

trans-carveol

and

trans-sobrerol

Vinícius

V.

Costa

a

,

Kelly

A.

da

Silva

Rocha

b

,

Líniker

F.

de

Sousa

b

,

Patricia

A.

Robles-Dutenhefner

b

,

Elena

V.

Gusevskaya

a,∗

aDepartamentodeQuímica,UniversidadeFederaldeMinasGerais,31270-901,BeloHorizonte,MG,Brazil bDepartamentodeQuímica,UniversidadeFederaldeOuroPreto,35400-000,OuroPreto,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received3March2011

Receivedinrevisedform9May2011 Accepted22May2011

Available online 27 May 2011

Keywords: Isomerization ␣-Pineneoxide Solventeffect Tincatalysts Ceriumcatalysts

a

b

s

t

r

a

c

t

Aremarkableeffectofthesolventnatureontheacidcatalyzedtransformationof␣-pineneoxideallowed directionofthereactiontoeithertrans-carveolortrans-sobrerol.Eachofthesehighlyvaluable com-poundswasobtainedinnearly70%yieldusinganappropriatepolarsolvent,whosebasicityaffected stronglytheproductdistribution.Inacetone,aweaklybasicsolvent,thereactionoverheterogeneous sol–gelSn/SiO2orCe/SiO2catalystsgavemainlytrans-sobrerol.Noleachingofactivecomponentsoccurs

underthereactionconditionsandthecatalystscanberecoveredandreused.Ontheotherhand,inmore basicsolvent,i.e.,dimethylacetamide,thereactionwasessentiallydirectedtotrans-carveol.Duetothe leachingproblemswithSn/SiO2 andCe/SiO2materials,thesynthesisoftrans-carveolwasperformed

underhomogeneousconditionsusingCeCl3orSnCl2 ascatalystswithacatalystturnovernumberup

toca.1200.Themethodrepresentsoneofthefewexamplesofthesynthesisofisomersfrom␣-pinene oxide,otherthancampholenicaldehyde,withasufficientforpracticalusageselectivity.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Terpeniccompounds,ingeneral,areanimportantrenewable

feedstockfortheflavorandfragranceindustry.Theiroxygenated

derivativesusuallyshowinterestingorganolepticpropertiesand

formoneofthemostimportantgroupsoffragranceingredients

[1,2]. ␣-Pinene,a majorconstituent ofturpentine oils obtained

fromconiferoustrees,is aparticularlyvaluableraw materialin

theproduction of syntheticsubstitutes for natural aromas.The

epoxidationof␣-pineneprovides␣-pineneoxide,whichcanbe

convertedbyacid-catalyzedtransformationsinvariousexpensive

ingredientsfortheflavorindustry,suchascampholenicaldehyde,

trans-carveol,trans-sobrerolandtrans-pinocarveol.

␣-Pineneoxideishighlyreactiveinthepresenceofacidandcan

resultinagreatvarietyofproducts.Inoneofthepreviousworks,

over200compoundsformedfrom␣-pineneoxideattemperatures

above100◦Chavebeenfound[3].Therefore,thedevelopmentof

thereactionwhichisselectiveforoneparticularproductisavery

challengingtask.Mostofthestudieshavebeenfocusedonthe

syn-thesisofcampholenicaldehyde,whichisusedforthemanufacture

∗ Correspondingauthor.Tel.:+553134095741;fax:+553134095700. E-mailaddress:elena@ufmg.br(E.V.Gusevskaya).

ofsandalwood-likefragrances[4].Campholenicaldehydecanbe

obtainedfrom␣-pineneoxidewithasufficientforpractical

appli-cationsselectivity[5–7],whereasallothercompoundsareusually

producedasminorproductswithlessthan25%selectivities.

We have recentlystudiedtheapplicationof heteropoly acid

H3PW12O40(PW)fortheliquid-phaseisomerizationof␣-pinene

oxide in various solvents [8,9]. A remarkable effect of solvent

polarityandbasicityonthechemoselectivityofthisreactionwas

found,whichallowedaselectivesynthesisofvariousvaluable

fra-grancecompoundswithreasonableselectivities.Incyclohexane,

anon-polarsolvent,70%selectivitytocampholenicaldehydewas

obtainedonaheterogeneoussilica-supportedPWcatalyst,witha

combinedyieldforcampholenicaldehydeandtrans-carveolbeing

nearlyquantitative.Ontheotherhand,theuseofpolarsolvents

allowedswitchingthereactionpathwaytotheformationof

com-poundswithapara-menthenicskeleton,suchastrans-carveoland

trans-sobrerol.Polar basicsolvents, suchasdimethylacetamide,

favoredtheformationoftrans-carveol;whereaspolarweaklybasic

solvents,suchasacetone,promotedtheformationoftrans-sobrerol

[9].

Thehighest previously reportedyieldof trans-carveol(45%),

anexpensiveconstituentoftheValenciaorangeessenceoilused

in perfume bases and food flavor compositions, was obtained

usingacidicmolecularlyimprintedpolymersasproticcatalystsin

equimolarto␣-pineneoxideamounts[10].trans-Sobrerol,a

well-knownmucolyticdrug,presentlyattractsincreasingattentionfor

1381-1169/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2011.05.020

(2)

O 1 2 O OH OH OH 3 4

α-pineneoxide trans-carveol trans-sobrerol

5

+ + +

OH

trans-pinocarveol

campholenicaldehyde

Scheme1. Someproductsoftheacid-catalyzedtransformationsof␣-pinene-oxide.

itsotherimportantbiologicalactivities[11].Thehighestpreviously

reportedyieldoftrans-sobrerol(30%)wasobtainedinthereflux

dichloroethanesolutionsof␣-pineneoxideandcatalyticamounts

ofTiCl4[12].AlthoughwefoundthatthePWcatalystcouldpromote

theformationoftrans-carveolandtrans-sobrerolinhigherthan70%

yieldeachusinganappropriatepolarsolvent[9],thereactionswere

performedunderhomogeneousconditionsduetohighsolubilityof

PWinpolarsolvents.Nevertheless,theseresultsencouragedusto

workfurtherwiththeisomerizationof␣-pineneoxideinorderto

developheterogeneouscatalyticprocessesfortheselective

synthe-sisoftheproductsotherthancampholenicaldehyde,inparticular,

trans-carveolandtrans-sobrerol.

Withinourprogram aimedataddingvaluetonatural

ingre-dientsofrenewableessentialoils[13–16]wedecidedtoprepare

ceriumandtincontainingmolecularsievesandusedthemasacid

catalystsfortheisomerizationof␣-pineneoxideinpolarsolvents.

Thecatalystshavebeensynthesizedthroughadirecthydrothermal

sol–geltechniquewhichusuallyaffordsmorestabletoleaching

materialsthanconventionalimpregnationmethodsduetohigher

levelsofmetalincorporationinasilicaframework.

Inthepresentwork,wereportasimpleandefficientsynthesis

ofseveralhighlyvaluablefragranceand/orpharmaceutical

com-poundsthroughtheliquid-phaseisomerizationof␣-pineneoxide

inthepresenceofceriumandtincatalysts.Aremarkableeffectof

solventbasicityonchemoselectivityalloweddirectionofthe

reac-tiontoeithertrans-carveolortrans-sobrerol,whichwereobtained

innearly70%yields.

2. Experimental

2.1. Catalystpreparationandcharacterization

The Sn/SiO2 and Ce/SiO2 catalysts were prepared by a

sol–gel method using tetraethoxysilane (14.90g, TEOS, 99%,

Sigma–Aldrich) and SnCl2×2H2O (0.90g, Sigma–Aldrich) or

CeCl3×7H2O(1.44g,Sigma–Aldrich),respectively,asprecursors.

The sol was obtainedfrom a TEOS/ethanol/water mixture in a

1/3/10molarratiowiththeadditionofHClandHF(uptopH2.0)

ascatalysts.Thesamplesweredriedat110◦Cfor24hand

ther-mallytreatedfor2hat500◦Cinair.ApureSiO2 tobetestedin

blankreactionswaspreparedbythesameprocedurewithoutthe

additionofceriumortinchlorides.Thedeterminationoftotaltin

andceriumcontentswasperformedbyinductivelycoupledplasma

atomicemissionspectrometry(ICP-AES) onaSpectroCirosCCD

instrument.

Thetexturalcharacteristicsofthecatalystsweredetermined

from nitrogen adsorption isotherms (Autosorb-Quantachrome

NOVA-1200 instrument, nitrogen, −196◦C). Samples were

out-gassed for 2h at 300◦C before analysis. Specific surface

areas were determined by the Brunauer–Emmett–Teller (BET)

equation. Average pore diameters were determined by the

Barrett–Joyner–Halenda(BJH)method.

2.2. Catalyticexperiments

The reactions were carried out in a glass reactor equipped

withamagneticstirrerat5–140◦C.Inatypicalrun,amixtureof

␣-pineneoxide(0.122–0.365g,0.8–2.4mmol),dodecane(110␮L,

0.5mmol,internalstandard)andthesolidcatalyst(0.03–0.12gof

Ce/SiO2,Sn/SiO2orSiO2)orsolublemetalchloride(5–20␮molof

CeCl3×7H2OorSnCl2×2H2O) inaspecifiedsolvent(5mL) was

intensivelystirredunderairataspecifiedtemperature.The

reac-tionprogresswasfollowedbygaschromatography(GC)usinga

Shimadzu17 instrument fittedwitha Carbowax20Mcapillary

columnandaflameionizationdetector.Atappropriatetime

inter-vals,aliquotsweretakenandanalyzedbyGC.TheGCmassbalance,

productselectivitiesandyieldswerecalculatedbasedonthe

sub-stratechargedusingdodecaneasinternalstandard.Thedifference

wasattributedtotheformationofoligomers,whichwerenotGC

determinable.

Catalystrecyclingexperimentswereperformedasfollows:after

thereaction,thecatalystwascentrifuged,washedwithacetonitrile

andthen withcyclohexane andreused.Tocontrolmetal

leach-ing,thecatalystwasremovedatthereactiontemperatureandthe

solutionwasallowedtoreactfurther.

The structures of products 2–5 were confirmed by GC/MS

(ShimadzuQP2010-PLUSinstrument,70eV)bycomparisonwith

authenticsamples.Majorproductswereisolatedbycolumn

chro-matography(silica)andidentifiedby1Hand13CNMRspectroscopy

(BrukerDRX-400,tetramethylsilane,CDCl3,COSY,HMQC,DEPTand

NOESYexperiments).

Spectroscopicdataforcampholenicaldehyde(2)andtrans-carveol

(3)havebeenreportedinourpreviouswork[8].

Spectroscopicdata fortrans-pinocarveol (4): MS(m/z/rel.int.):

134/27[M+−H

2O],119/53,109/33,105/20,95/20,93/32,92/100,

91/80,83/78,81/38,79/32,77/20,70/92,69/50,67/22,55/90,53/20.

Spectroscopicdatafortrans-sobrerol(5)havebeenreported

pre-viously[9].

3. Resultsanddiscussion

The results of the elemental analysis of the prepared solid

materials,theirBETsurfaceareas,averageporesizes,andpore

vol-umesarepresentedinTable1.BothCe/SiO2andSn/SiO2samples

exhibited theisotherms characteristic of mesoporous materials

andrelativelyhigherspecificsurfaceareas(297and366m2g−1,

respectively). Thematerials were tested as heterogeneous acid

catalystsintheliquid-phaseisomerizationof␣-pineneoxidein

various solvents. Transformations of ␣-pinene oxide (1) under

acidicconditions canresultincampholenic aldehyde(2),

trans-carveol(3),trans-pinocarveol(4)andtrans-sobrerol(5)shownin

Scheme1,aswellasinnumerousotherproducts.Inthepresent

work,oureffortsweredirectedtoachievehighselectivitytoany

otherthancampholenicaldehydeproductandtoperformthe

(3)

Table1

ElementalanalysisdataandtexturalpropertiesoftheCe/SiO2andSn/SiO2catalysts.

Sample CeorSn

content(wt%)

BETsurface

area(m2g−1) Totalvolumepore(cm3g−1) BJHdiameteraverage(nm)pore

SiO2 – 272 0.91 10.2

Ce/SiO2 4.1 297 0.82 5.2

Sn/SiO2 4.6 366 0.56 6.7

ofactive componentsfromthesolid. Asthebest resultsinthe synthesisoftrans-carveolandtrans-sobrerolfrom␣-pineneoxide werepreviouslyobtainedindimethylacetamide(DMA)and ace-tonesolutions,respectively[9],we initiatedourstudywiththe

Ce/SiO2andSn/SiO2catalystsusingthesecompoundsassolvents.

␣-PineneoxidewasrelativelystableinDMAat140◦C.Inablank

reaction,onlya5%conversionwasobservedfor20h(Table2,run

1).Tooursurprise,puresilica,whichwaspreparedbythesame

procedureasCe/SiO2andSn/SiO2,promotedtheisomerizationof

␣-pineneoxideatareasonableratewithhighselectivityfor

trans-carveol.In thepresenceofonly2wt%ofSiO2 in DMA,a nearly

completeconversionof␣-pineneoxidewasattainedfor10h

result-ingintrans-carveolin70%selectivity(Table2,run2).Itisimportant

thatonlytwominorproductshavebeenobservedindetectable

amounts,i.e.,campholenicaldehydeandtrans-pinocarveol,which

arealsovaluable compounds.Acombinedselectivityfor

camp-holenicaldehyde,trans-carveolandtrans-pinocarveolwasashigh

as97%.

Thesol–gelsilica-includedceriumcatalyst,Ce/SiO2,promoted

muchfasterreactionthanpuresilicagivingasimilarproduct

distri-bution(Table2,run3andrun2).Inrun4,trans-carveolwasformed

innearly70%yield.However,inafurtherstudyithasbeenshown

thatthereactionisnottrulyheterogeneousandthecatalystloses

theactivityduetoleachingofactivecomponents.TheCe/SiO2

cat-alystrecoveredfromthereactionmixtureafterrun3byfiltration

andreusedinrun5showedmuchloweractivity(52%vs.98%

con-versionin3h)thanduringthefirstuse(Table2).Althoughinthe

thirdreactioncycle(Table2,run6)theactivityofthecatalystdid

notdecreasefurther,therateofthereactionwiththespentcatalyst

wasnearlythesameasthatwithpuresilica.Whereasthefresh

cat-alystresultedinavirtuallycompleteconversionfor3h(Table2,run

3),inrecyclingexperimentsaswellaswithpuresilica,onlyca.60%

ofthesubstratewasconvertedforthesamereactiontime(Table2,

runs2,5and6).Moreover,whenthecatalystwasfilteredoffatthe

reactiontemperature,thefiltratecontinuedtoconvert␣-pinene

oxide.Thus,theCe/SiO2catalystreleasesactivecomponentstothe

DMAsolutionandtheprocessisnottrulyheterogeneous.

Thesol–gelsilica-includedtincatalyst,Sn/SiO2,alsopromoted

theisomerizationof␣-pineneoxide,withthereactionbeingeven

fasterthanthatoverCe/SiO2(Table2,cf.runs3and7).Themain

reactionproductwasalsotrans-carveolobtainedina70%yield.

Thecombinedyieldfortrans-carveolandcampholenicaldehyde

reached90%inthisreaction.However,leachingexperimentswith

thetincatalystalsoshoweddisappointingresults.Inrun8(Table2),

which wasperformedunder thesame conditionsas run7, the

catalystwasremovedbyfiltrationafter0.5hatthereaction

tem-peratureandthefiltratewasallowedtoreactfurther.Asitcanbe

seen,thereactionkeepsgoingintheabsenceofthesolid,albeitat

alowerrate.Thus,boththeCe/SiO2andSn/SiO2materialsarenot

stableinDMAsolutionsunderthereactionconditionsandrelease

activecomponentstothesolution.

In a furtherstudy, we decided to usecerium and tin

chlo-ridesassoluble homogeneouscatalystsfor theisomerizationof

␣-pineneoxideinDMA.Thesecompoundscouldrepresentcheaper

alternativesforthehomogeneousPWcatalystforthesynthesisof

trans-carveolfrom␣-pineneoxidedevelopedinourpreviouswork

Table2

Isomerizationof␣-pineneoxide(1)indimethylacetamide(DMA)solutionsat140◦C.a

Run Catalyst CeorSn(␮mol) Substrate(mmol) Time(h) Conversion(%) Productselectivity(%) TONb TOFb(h−1)

2 3 4 1 – – 0.8 20 5 2 SiO2(0.12g) – 0.8 3 58 10 95 16 70 11 3 Ce/SiO2 40 0.8 3 98 19 72 5 4 Ce/SiO2 40 2.4 8 98 18 73 5 5c Ce/SiO 2 40 0.8 3 52 19 69 7 6d Ce/SiO 2 40 0.8 3 58 20 70 6 7 Sn/SiO2 40 0.8 0.5 48 1.5 100 20 70 5 8e Sn/SiO 2 40 0.8 0.5 52 3 92 20 71 6 9 CeCl3 20 0.8 2 100 17 42 36 40 20 10f CeCl 3 20 0.8 4 100 16 41 38 40 10 11 SnCl2 20 0.8 0.5 100 16 70 10 40 80 12f SnCl 2 20 0.8 1 100 15 68 12 40 40 13 SnCl2 20 1.6 1 100 19 62 15 80 80 14 SnCl2 5 1.6 1.5 100 17 65 15 320 213 15g SnCl 2 5 1.6 1.5 98 17 62 17 634 210 1.6 2.5 95 19 64 15 938 122 1.6 4 90 18 60 19 1226 72

aDMA5mL,solidcatalystca.2.0–2.5wt%.ConversionandselectivityweredeterminedbyGC. bTONmolesofthesubstrateconverted/molesofCeorSn.TOFtheaverageturnoverfrequency. c Thecatalystwasre-usedafterrun3.

d Thecatalystwasre-usedafterrun5.

eThecatalystwasremovedbyfiltrationafter0.5hatthereactiontemperatureandthefiltratewasallowedtoreactfurther. f 120C.

gAfterrun14,threefreshportionsofthesubstrate(1.6mmoleach)wereaddedconsequently,eachoneafterthenearlycompleteconversionofthepreviousportion.Total

(4)

Table3

Isomerizationof␣-pineneoxide(1)inacetonesolutions.a

Run Catalyst CeorSn(␮mol) Substrate(mmol) T(◦C) Time(min) Conversion(%) Productselectivity(%)

2 3 5 1 – – 0.8 25 300 5 2 SiO2(0.12g) – 0.8 25 180 84 19 10 69 3 SiO2(0.12g) – 0.8 40 180 97 16 13 70 4 Ce/SiO2 40 0.8 25 30 96 14 12 72 5 Ce/SiO2 40 0.8 40 30 100 21 11 65 6 Ce/SiO2 40 0.8 5 90 100 18 10 70 7b Ce/SiO2 20 0.8 25 180 98 16 10 72 8 Sn/SiO2 20 0.8 25 15 100 17 11 70 9 Sn/SiO2 10 0.8 25 15 100 16 10 72 10 Sn/SiO2 10 1.6 25 60 95 17 11 72 11b Sn/SiO 2 10 0.8 25 30 43 180 80 20 14 63

aConditions:acetone5mL,solidcatalyst0.5–3.0wt%.ConversionandselectivityweredeterminedbyGC. b Waterwasadded(1vol%).

[9].RepresentativeresultsareshowninTable2.Inthepresenceof

CeCl3(0.025eq),thereactionoccurredsmoothlyresultingina

com-pleteconversionfor2–4hdependingonthereactiontemperature

(Table2,runs9and10).However,theproductdistributionwas

dif-ferentfromthatobservedintheheterogeneoussystem,inwhich

trans-pinocarveolwasdetectedonlyasaminorproduct(ca.5%).

Intheceriumcatalyzedhomogeneousreaction,trans-carveoland

trans-pinocarveolwereformedincomparableamountsinca.40%

selectivityeach,withcampholenicaldehydebeingamainminor

product(ca.15%).Thesystemissyntheticallyusefulconsidering

ahighcombinedyieldforthreeexpensivefragrancecompounds

(95%),lowcatalysttosubstrateratioandpossibilitytore-usethe

catalystsolutioninDMAaftertheextractionoftheproductswith

hydrocarbonsolvent,e.g.,hexane.Inmostofthereportedsystems,

themain product ofthe ␣-pineneoxide isomerization(usually

campholenicaldehyde)wasobtainedalongwithnumerousside

products[3,7].

The conversion of ␣-pinene oxide in the solutions of SnCl2

(0.025eq) was very fast, much faster than with CeCl3. The tin

catalyzedreactionsshowedfour timeshigher averageturnover

frequencies(TOFs)thanthosecatalyzedbycerium(Table2,runs

11and12vs.runs9and10)andgaveca.95%combinedyieldfor

campholenicaldehyde,trans-carveolandtrans-pinocarveol,with

trans-carveolaccountingforca.70%ofthemassbalance.Aimingto

improvethecatalystefficiencyintermsofturnovernumber(TON)

weincreasedthesubstrateconcentrationandthendecreasedthe

catalystamounts(Table2,runs13and14).Inrun14,TONof320

permolofSnand65%selectivitytotrans-carveolwereobtained.

Afterrun14,threefreshportionsofthesubstrate(1.6mmoleach)

wereaddedconsequently,eachoneafterthenearlycomplete

con-versionofthepreviousportion.ThetotalTONof1226permolof

Snwasobtainedinthisreaction,whichgave campholenic

alde-hyde,trans-carveolandtrans-pinocarveolinanearlyquantitative

combinedyield(Table2,run15).

Thus,intheDMAsolutions,tinand ceriumcatalystsaswell

aspuresilicapromotetheisomerizationof␣-pineneoxidegiving

mainlytrans-carveol,withonlytwominorproducts:campholenic

aldehydeandtrans-pinocarveol.

Ina furtherstudy,wehave testedthepreparedCe/SiO2 and

Sn/SiO2materialsfortheisomerizationof␣-pineneoxidein

ace-tonesolutions.RepresentativedataarecollectedinTable3.Inthis

case,muchmorepromisingresultsintermsofcatalystleaching

wereobtained,whichallowedthedevelopmentoftruly

heteroge-neousprocessesforthesynthesisofhighlyvaluabletrans-sobrerol.

Ina blank reactionwithnocatalyst added,only 5%conversion

wasobservedfor6hatroomtemperature(Table3,run1).Inthe

presenceofpuresilica,␣-pineneoxideundergoesarelativelyfast

isomerizationevenatroomtemperature(Table3,run2).At40◦C

withpuresilica,anearlycompleteconversionwasachievedfor3h

givingtrans-sobrerolinca.70%yield(Table3,run3).

WiththeCe/SiO2catalyst,thereactionshowedasimilarproduct

distribution;however,itwasmuchfasterthanthatwithpuresilica

(Table3,runs2and3vs.runs4and5).Forthecomparisonpurpose,

thesamemassamountsofSiO2 andCe/SiO2 wereusedinthese

runs.Inanattempttochangethereactionselectivity,wedecreased

thereactiontemperature;however,itdidnotaffectsignificantly

thereactionpathways(Table3,run6).Then,wehaveaddedwater

(1vol%)tothesystemtryingtoincreasetheyieldofthemain

prod-uct,trans-sobrerol,whoseformationrequireswater(Table3,run

7).However,wedidnotsucceed:thebestobtainedyieldof

trans-sobrerol wasnearly 70%. It is importantto notethat only two

minorproductshavebeenobservedindetectableamountsalong

withtrans-sobrerol,i.e.,campholenicaldehydeandtrans-carveol,

withatotalyieldforallthreevaluablecompoundsbeingalmost

quantitative.

InthepresenceoftheSn/SiO2material,thereactionwasvery

fastastheanalysisofthefirstaliquottakenafter15minshoweda

completeconversion(Table3,runs8and9).Further,theamount

ofthecatalystwasdecreased whereasthesubstrate

concentra-tionwasincreased(Table3,run10).Inthisrunwithonly0.5wt%

ofthecatalyst,trans-sobrerolwasobtainedinca.70%yield.

Con-sideringthatfortheformationoftrans-sobrerolwaterisneeded

wehaveadded 1vol%ofwater tothesystem(Table3,run11).

However,thepresenceofextraamountsofwaterresultedinno

changesintheproductdistribution,withthereactionratebeing

decreased significantly(Table3,run 11 vs.run 9).Itshouldbe

mentionedthat,generally,water wasnot addedtothereaction

system.Theamountofhydrationwaterpresentinthesolid

cata-lystsandcommercial␣-pineneoxideandacetonewassufficient

fortheformationofsobrerol.Inaddition,watercouldbepresent

inside SiO2 poresof the catalystswhich had a pore volume of

0.56–0.91cm3g−1.

TheleachingofactivecomponentsfromtheCe/SiO2andSn/SiO2

materialsunder the reaction conditions wasverified in special

experiments.Afterruns5and9(Table3),thecatalystswerefiltered

offatthereactiontemperaturetoavoidre-adsorptionofleached

metalionsontothesolidsupport.Then,thefiltrateswererecharged

withfreshsubstrateandallowedtoreactfurther.Noconversion

of␣-pineneoxidewasobservedaftercatalystremoving,

provid-ingstrongevidenceinsupportofheterogeneouscatalysis.Thus,

thereactionsolutionscontainednosignificantamountsofactive

speciesandtheactivityofbothsol–gelsilica-includedcatalysts,

Ce/SiO2andSn/SiO2,wasduetotheactivespeciesimmobilizedin

themesoporoussilicaframework.Thebehaviorofbothspent

cat-alystsrecoveredafterruns5and9(Table3)withfreshsubstrate

(5)

2 A OH OH OH B O C 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 8 9 10 7 7 2 9 5 1 10 3 4 6 8 3 5 routeC routeB +H2O O O O O 4 OH La La=Lewisacid 1 O La La -La La La -La -La -La routeA

Scheme2.SchematicrepresentationoftheLewisacid-catalyzedtransformationsof␣-pinene-oxide.

AschematicrepresentationoftheLewisacid-catalyzed

trans-formationsof1intoproducts2–5isgiven inScheme2.In this

scheme,“La”representsLewisacidactivesitesonthecatalyst

sur-face(cationicceriumandtinspecies)orinthesolution(Ce3+and

Sn2+ions).Theactivationoftheepoxidemoietybytheacidicsites

inducesepoxyringopeningandinitiallygivescarbeniumionA.The

lattercanundergoseveralcompetingprocesses.First,itcangive

directly,withoutanyisomerization,trans-pinocarveol4througha

hydrogenshiftfromtheC-10methylgrouptotheoxygenatom.

Thehydrogen abstractionand transfer couldbeassisted in our

systembythebasicsolvent,DMA.IntheCeCl3/DMAsystem,

trans-pinocarveolaccountsforca.40%ofthemassbalance.Inaddition,

carbeniumionAcanrearrangeintocarbeniumionsBorCthrough

themovementofthepairofelectronsfromthesamecarbon-carbon

␴-bondtoeitherC-7orC-6,respectively.CarbocationBgives

cam-pholenicaldehyde2throughtheC-1–C-2bondcleavage,whereas

carbocationCformstrans-carveol3throughtheprotonshiftfrom

theC-9methylgroup.Thelatterprocesscouldalsobeassistedby

thebasicsolvent(inDMA)and/orbytheoxygenatomsfromthe

SiO2supportactingasLewisbasicsites(inbothacetoneandDMA

solvents).

Theresultsobtainedinthepresentworkshowedthatasolvent

naturecanprofoundlyaffectthereactionpathwaysandproduct

composition.Thisobservationallowedustodevelopefficient

syn-theses ofvarious compoundsfrom␣-pinene oxidethroughthe

choiceoftheappropriatesolvent.AsitcanbeseeninScheme2,

relativeamountsoftrans-pinocarveol4,theproductwithabicyclic

non-isomerizedpinaneskeleton,andmonocycliccompounds2,3

and5dependonthebalancebetweenthehydrogentransferin

cationA(routeA)anditsisomerizationincationsBandC(routes

BandC).Trans-pinocarveolwasformedinsignificantamountsin

DMAsolutionsbutnotinacetone.Both,DMAandacetonearehighly

polarsolvents;however,DMAhasmuchhigherbasicity(pKa≈−0.5

forDMAH+vs.pK

a≈−7for(CH3)2COH+[17]).Therefore,itseems

reasonablethatcarbocationAismorepromptedtoundergoa

pro-tonshift(routeA)beforeitsisomerization(routesBandC)inDMA,

whichhasrelativelystrongprotonacceptorproperties,thaninless

basicacetone.

On theother hand,theratio betweenaldehyde 2and

para-menthenic compounds 3 and 5 is influenced by the balance

betweentwo differentrearrangements ofcarbeniun ion A:into

cyclopentaniccationB(routeB)andintopara-mentheniccation

C(routeC).TertiarycarbeniunionCismorethermodynamically

stablethansecondarycarbeniumionB;therefore,theformationof

aldehyde2shouldbekineticallycontrolled.CarbeniumionCcan

givetrans-carveol3orundergoanucleophilicattackbywaterto

formtrans-sobrerol5.

Inthepreviouswork[9],wehavefoundthattheincreasein

bothsolventbasicityandpolaritystronglyprejudicesrouteBto

aldehyde 2, whereasit favors routeC topara-menthenic

prod-ucts.Forexample,incyclohexane,anon-polarnon-basicsolvent,

themainreactionproductwascampholenicaldehyde 2.Ahigh

ion-solvatingabilityofpolarsolventscouldresultinstabilization

ofcation Afavoringitsrearrangementintomorestabletertiary

carbeniumionC.Ontheotherhand,thedistributionbetween

para-menthenicproducts3and5dependsonsolventbasicityratherthan

onitspolarity.InbasicandpolarDMA,wheretheprotontransfer

inCcanbeassistedbythesolvent,theformationoftrans-carveol

3occursfasterthantheformationoftrans-sobrerol5andbecomes

thepreferablereactionpathway.

Itshouldbementionedthattheresultsobtainedwith

(6)

betweenthereactionpathwaysleadingtodifferentproductsfrom

␣-pineneoxideismostlydeterminedbythenatureofthesolvent

ratherthanbythenatureofthecatalystorotherreactionvariables.

However,furtherstudiesshouldbetargetedtowardclarifyingthe

effectofsolventpolarityandbacisityontheacidityofthe

cata-lystsurface,which shouldalsobeconsideredforunderstanding

thereactionselectivity.

4. Conclusions

Chemoselectivityof theisomerizationof␣-pineneoxidecan

becontrolledthrough thechoiceof thesolvent,whosepolarity

andbasicitydeterminethereactionpathways.Theheterogeneous

process for the synthesis of highly valuable trans-sobrerolhas

been developed using weakly basic acetone as a solvent and

silica-includedtinandceriummaterialsaseasilyrecoverable

cat-alysts. Even pure silica alone can be used as a heterogeneous

catalyst in this reaction, albeit less effective in terms of

cat-alyticactivity.On theotherhand,indimethylacetamide, which

ismuchmorebasic,thereactionisessentiallydirectedto

trans-carveol,regardlessofthecatalyst.Thesol–gelSn/SiO2andCe/SiO2

materialsshowedhighactivityand selectivityfor trans-carveol;

however,thefiltratesolutionspromotedtheisomerizationof

␣-pinene oxideafter the catalyst removal. Dueto these leaching

problems,thesynthesisoftrans-carveolwasperformedusing

dis-solvedCeCl3 orSnCl2 ashomogeneouscatalystsorpuresilicaas

aheterogeneouscatalyst.Thedevelopedmethodsareamongfew

examplesoftheselectivesynthesisofotherthancampholenic

alde-hydecompoundsfrom␣-pineneoxidethroughitsacid-catalyzed

isomerization.

Acknowledgments

FinancialsupportfromtheCNPq,CAPES,FAPEMIGand

INCT-Catálise(Brazil)isgratefullyacknowledged.

References

[1] H.Mimoun,Chimia50(1996)620–625.

[2]C.Chapuis,D.Jacoby,Appl.Catal.A221(2001)93–117.

[3]W.F.Hölderich,J.Röseler,G.Heitmann,A.T.Liebens,Catal.Today37(1997) 353–366.

[4]G.Orloff,B.Winter,C.Fehr,in:P.M.Muller,D.Lamparsky(Eds.),Perfumes,Art, Science&Technology,Elsevier,NewYork,1991,p.287.

[5] P.J.Kunkeler,J.C.vanderWaal,J.Bremmer,B.J.Zuurdeeg,R.S.Downing,H.van Bekkum,Catal.Lett.53(1998)135–138.

[6] L.Alaerts,E.Séguin,H.Poelman,F.Thibault-Starzyk,P.A.Jacobs,D.E.DeVos, Chem.Eur.J.12(2006)7353–7363.

[7] N.Ravasio, F.Zaccheria, A.Gervasini,C. Messi,Catal.Commun. 9(2008) 1125–1127.

[8]K.A.daSilvaRocha,I.V.Kozhevnikov,E.V.Gusevskaya,Appl.Catal.A294(2005) 106–110.

[9]K.A.daSilvaRocha,J.L.Hoehne,E.V.Gusevskaya,Chem.Eur.J. 14(2008) 6166–6172.

[10]W.B. Motherwell,M.J. Bingham,J. Pothier,Y. Six,Tetrahedron60 (2004) 3231–3241.

[11]Q.Wang,Y.Li,Q.Chen,Synth.Commun.33(2003)2125–2134.

[12] J.Kaminska,M.A.Schwegler,A.Hoefnagel,H.vanBekkum,Recl.Trav.Chim. Pays-Bas111(1992)432–437.

[13]L.A.Parreira,L.Menini,J.C.daCruzSantos,E.V.Gusevskaya,Adv.Synth.Catal. 352(2010)1533–1538.

[14] K.A.daSilvaRocha,N.V.S.Rodrigues,I.V.Kozhevnikov,E.V.Gusevskaya,Appl. Catal.A374(2010)87–94.

[15]M.G. Speziali, V.V. Costa, P.A. Robles-Dutenhefner, E.V. Gusevskaya, Organometallics28(2009)3186–3192.

[16]P.A.Robles-Dutenhefner,K.A.daSilvaRocha,E.M.B.Sousa,E.V.Gusevskaya,J. Catal.265(2009)72–79.

[17]J.March,AdvancedOrganicChemistry:Reactions,MechanismsandStructures, fourthed.,Wiley,NewYork,1992,p.250.

Referências

Documentos relacionados

Haratym, Dok ł adno ć wymiarowa odlewów wykona- nych w procesie Replicast CS, Archiwum Odlewnictwa rocznik 3, nr 9, Katowice 2003.. Arendarski, Niepewno ć pomiarów, Oficyna

The spatial distribution of precipitation in Madeira Island is strongly affected by its highly rugged topography and an aim in this study was to analyse spatial extremes of

Este artigo discute o filme Voar é com os pássaros (1971) do diretor norte-americano Robert Altman fazendo uma reflexão sobre as confluências entre as inovações da geração de

Os modelos desenvolvidos por Kable & Jeffcry (19RO), Skilakakis (1981) c Milgroom & Fry (19RR), ('onfirmam o resultado obtido, visto que, quanto maior a cfiráda do

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

The choice of type of birth, signed by some women in the study, covers the manifestation of resistance to questioning of the current biomedical model

Of course, this different solvent stabilization energies obtained by these two methods, will be reflected on the relative stability of the Cis and Trans isomer in solution, ∆ G 0sol

Considering that the highest surface area value of the silica xerogels was obtained for sample E, where acetone was used as solvent and acetic and hydrochloric acids as catalysts,