• Nenhum resultado encontrado

Amphiphilic niobium oxyhydroxide as a hybrid catalyst for sulfurremoval from fuel in a biphasic system.

N/A
N/A
Protected

Academic year: 2021

Share "Amphiphilic niobium oxyhydroxide as a hybrid catalyst for sulfurremoval from fuel in a biphasic system."

Copied!
6
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Applied

Catalysis

B:

Environmental

j ou rn a l h om epa g e : w w w . e l s e v i e r . c o m / l o c a t e / a p c a t b

Amphiphilic

niobium

oxyhydroxide

as

a

hybrid

catalyst

for

sulfur

removal

from

fuel

in

a

biphasic

system

Luiz

C.A.

de

Oliveira

a,∗

,

Nathália

T.

Costa

a

,

Josefredo

R.

Pliego

Jr

b

,

Adilson

C.

Silva

a

,

Patterson

P.

de

Souza

c

,

Patrícia

S.

de

O.

Patrício

c

aDepartmentofChemistry,UniversidadeFederaldeMinasGerais,Av.AntônioCarlos6627,CampusPampulha,31270-901,BeloHorizonte,MG,Brazil bDepartmentofNaturalSciences,UniversidadeFederaldeSãoJoãodel-Rey,36301-160,SãoJoaodel-Rei,MG,Brazil

cDepartmentofChemistry,CentroFederaldeEducac¸ãoTecnológicadeMinasGerais,CEFET-MG,Av.Amazonas5253,30421-169,BeloHorizonte,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5February2013

Receivedinrevisedform26July2013 Accepted6August2013

Available online 18 August 2013 Keywords: Modifiedniobia Biphasicreaction Heterogeneouscatalysis Oxidationprocess

a

b

s

t

r

a

c

t

Here,weshowthatanewniobiumoxyhydroxide,NbO2OH,canbesynthesizedandmodifiedwitha

surfactanttobeusedasaheterogeneouscatalystforoxidativedesulphurization.Thematerialwastreated withhydrogenperoxidetogenerateoxidizinggroups(peroxospecies)onthesurface.Furthermore,this materialwasconvertedtoafamilyofsolidcatalyststhatcanstabilizewater/oilemulsionsandcatalyze reactionsattheliquid/liquidinterfacebyanchoringasurfactanttothecatalyst.Thematerialwasthen abletoefficientlyremoveasulfurouscompoundundermildconditions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Desulphurizationoffueloilshasbecomeanenvironmentally urgentsubjectworldwide.Environmentalregulationshavelimited thesulfurlevelsindieselfuelstolessthan15ppmsince2006in theUnitedStates[1].However,itisverydifficultwithcurrent tech-nologytodecreasethesulfurcontentfromseveralhundredmg/L toonlyafewmg/L[2,3].Intheconventional hydrodesulphuriza-tionprocess(HDS),theuseofhightemperaturesandpressures, largeamountsofveryactivecatalysts,longresidencetimes,and largevolumereactorsareneededtoeffectivelyreducethesulfur contenttotheselowlevels.Selectivecatalyticoxidationcombined withextraction is one of the mostpromising desulphurization methods.Liquid/liquidextractionhasbeeneffectivelyutilizedto removesulfurand/ornitrogenmoleculesfrompetroleum distil-latesandsynfuels[4].However,thisprocessisrelativelyinefficient duetothesimilarchemicalcharacteristicsofbothsulfurousand nonsulfurouscompounds.Themorepolarsulphonescanbebetter extractedbypolarsolventsthansulphides;therefore,theefficiency ofdesulphurizationviaextractioncanbesignificantlyincreased byoxidizingsulphidestosulphones[5,6].Manyoxidativesystems

∗ Correspondingauthor.Tel.:+553134097550;fax:+553134095700. E-mailaddress:luizoliveira@qui.ufmg.br(L.C.A.deOliveira).

havebeencreated,however,thesesystemshavenotbeen selec-tiveenoughtooxidizeonlysulphidespresentinthefuelmixture. Furthermore,a largequantityofoxidantis required, increasing operatingcosts[7].Theamphiphiliccatalyst(Nb-amp)reported inthisworkcanselectivelyoxidizedibenzothiophenetothe cor-respondingsulphonewithstoichiometricamountsofH2O2under mildconditions.Furthermore,thesulphoneisremovedinsitufrom hexanebyacetonitrileduringthereaction,andthecatalystcanbe recycled.

Thesolidstructurethatwasobtainedinthisworkpermitted thegenerationofhighlyoxidizingsurfacegroupsbyH2O2 treat-ment (Nb-hyd). These groups,peroxo-species, which have only beenreportedbeforeinhomogenoussystems,canactasan effec-tiveoxygendonorinoxidationreactions[8–10].However,some importantreactionsneedmorethananactivecatalyst.Asreported inSciencerecentlybyCole-Hamilton[11]andCrossleyetal.[12], acatalystthatcansimultaneouslystabilizeemulsionsduringthe reactionwouldbehighlyadvantageousinstreamliningprocesses suchas biomass refining. Both of theseworks and others [13]

haveusednoblemetalsastheactivecatalyst.Here,wereporta newfamilyofsolidcatalystsbasedonthemorecommonmetal niobiumthatcanstabilizewater–oilemulsionsbyincorporating a hydrophobicsurfactantonthecatalystandcancatalyze reac-tionsattheliquid/liquidinterfacein oxidativedesulphurization processes.

0926-3373/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.apcatb.2013.08.003

(2)

44 L.C.A.deOliveiraetal./AppliedCatalysisB:Environmental147 (2014) 43–48

2. Experimental

2.1. Synthesisandcharacterization

The catalyst was prepared by first treating 0.26M NH4[NbO(C2O4)2(H2O)]·(H2O)n with 1M NH4OH (14.0mL), followedbyheatingat70◦Cfor72h.Thismaterialwasusedasa precursorfor thepreparation ofhydrophilic NbO2OH (Nb-hyd), obtained by treating pure niobia (300mg) with 30% aqueous H2O2 (4mL) in H2O (80mL) for 30min. The yellowsolid was thenfiltered,washedwithdistilledwater,anddriedat60◦Cfor 12h. Then, the surfactant compound cetyltrimethylammonium bromide(CTAB,4.47mmol,Vetec)wasaddedtoasuspensionof NbO2OH(Nb-hyd)inH2O,andthemixturewasrefluxedfor4hto preparetheamphiphilichybridmaterial(Nb-amp).Theresulting catalyst (yellow powder) was filtered,washed with water and driedat60◦C.Thematerialswerecharacterizedbytransmission electron microscopy (TEM) with a JEOL transmission electron microscope(modelJEM2000EXII).

ADIGIDROP-DIgoniometer(GBXInstruments)wasusedto per-formcontactanglemeasurements.Thissystemisequippedwitha CCDcameraandanautomatedliquiddispenser.Thecontactangle wasdeterminedbyplacingH2Odroplets(10␮L)onthesurfaceof thesamplesusingasyringe.Thepurespecimenswerepressedto obtaindisks.Animagewastakenandthenanalyzedtogivean aver-ageanglebetweenthedropletandthesurface.Threeconsecutive measurementsweremadeatroomtemperatureusingtheSurface Energymodeofthesoftware,whichallowsdirectmeasurementof contactangle(indegrees).

Fouriertransforminfraredspectroscopy(FTIR)measurements ofthecatalystwerecarriedoutwithaShimadzuPrestige21 spec-trophotometerequippedwithanattenuatedtotalreflectance(ATR) accessory.Thespectraofthesampleswereobtainedintheregion from4000to240cm−1 usinga CsIcrystal witha resolution of 1cm−1and100signal-averagedscans.

Thermogravimetricanalysis(TG/DTG)wasperformedusinga DTG60SHIMADZU.Thesampleswereheatedfromroom tempera-tureto800◦Cusingaheatingrampof100◦Cmin−1underairflow (150mLmin−1).

2.2. Catalytictests

Theextraction–oxidationdesulphurizationexperimentswere conductedina20mLround-bottomflask.Forthecatalytic stud-ies500mLofasolutioncontaining1000mg/Lofdibenzothiophene dissolvedinn-hexane(modelcompoundofafuel)wasprepared.Of thissolution,10mLwasusedtopreparethemixturewith acetoni-trile(extractionliquid)andthecatalyst.Themixture,1mLH2O2 (30%,v/v)and2mLofacetonitrilewasstirredvigorouslyat25◦Cin thepresenceof10mgofcatalyst.Afterthereaction,theresulting mixturewasplacedinastaticstatetoformtwolayers.Theupper apolar phase (hexane) wasseparated easily from thenonpolar phase(acetonitrile)bydecantationanditssulfurcontentanalyzed bygaschromatography.Reuseofthecatalysttests:After300min ofreaction,thecatalystwasrecoveredbyfiltrationofthemodified mixture,followedbywashing3timestoremovethesolvents.The materialwasthendriedinanovenfor12hat70◦C.

ThereactionproductswereanalyzedbyGC–MS(Agilent).The percentageofdibenzothiopheneconversionwasquantifiedby inte-gratingthedibenzothiophenepeaktothetotalioncontentobtained beforeandafterthereactionwiththecatalyst.GC–MSanalysiswas carriedoutwithaninjector temperatureof250◦C,aninjection volumeof0.2mL,andaflowrateof1.4mLmin−1withanHP-5 column(5%polymethylphenylsiloxane).Eachrunusedaheating curveof110◦Cfor5minthenincreasingby3◦Cmin−1to250◦C. TheconcentrationinpercentageofremainingDBTwasmonitored

usingacalibrationcurve(5points)constructedwithvarious con-centrationsofthiscompound.Thecalibrationcurvewasperformed inthetwosolvents,acetonitrileandhexanewithagoodlinearity (R2>0.99).

3. Resultsanddiscussion

3.1. Synthesisandcharacterization

Fig.1(A)showsimagesofH2OdropletsontheNb-ampand Nb-hydsurfaces.TheNb-hydsurfacewascompletelywettedbyH2O, andthecontactanglewasmeasuredasapproximately0◦. How-ever,thecontactanglemeasuredforNb-ampwas76◦,showing thatthesurfactant-containingcatalysthadasignificantlydifferent surfacecompositioncomparedtothecatalystwithoutthe surfac-tant.Theseresultsemphasizedthattheadditionofasurfactant increasedthehydrophobiccharacterofthecatalyst,suggestingthat thesurfacegroupsarelessavailabletomakeinteractionswiththe droplet.Thiscan,inturn,stabilizeemulsionsattheliquid–liquid interface,asconfirmedbyopticalmicroscopy(Fig.1(B)).This indi-catesthatthesizeandtypeofquaternaryammoniumcationsplay avitalroleintheformationofametastableemulsiondroplet.We foundthatthesemetastabledropletsarereadilyformedwhenthe modifiedNbO2OHisstirredwithacetonitrileandhexane.These emulsiondropletscanbeeasilyseparatedbycentrifugation,and thecatalystcanthenberecycled.Furthermore,itisseenthat Nb-amppreferentiallymigratestothebiphasicinterfaceofthissolvent system(Fig.1(D)),whileNb-hydshowsnosuchpropensity.The materialwithoutthepresenceof surfactantisnot stableatthe polar/nonpolarinterfaceofthesolvents.

Toobservepossiblemorphologicalchangesinthematerialdue totheuseofthesurfactant,thesampleswereanalyzedby transmis-sionelectronmicroscopy,withimagesshowninFig.1(C)and(D). AsshowninFig.1(C),thematerial(Nb-hyd)presentstheregular morphologyofagglomeratedparticles.Fig.1(D)(Nb-amp)shows poorimagecontrast,whichistypicalofnanoparticlesdispersedin thepresenceofsurfactant.Thiseffectofasurfactantonthesurface ofcatalystshasbeendescribedintheliterature[14].

Thepresenceofthesurfactantmoleculeoverthecatalystwas identifiedbyinfraredspectroscopy(Fig.2).Themoreintensebands intheCTABspectrumarelocatedintheregionbetween3050and 2700cm−1.Thebandsatapproximately2916and2848cm−1are associatedtothesymmetric(␯s)andasymmetric(␯a)stretching modesofCH2,respectively.Thesebandsappearinthespectrum ofNb-ampsample,indicatingthepresenceofthesurfactantinthe catalyststructure.Toidentifythepossiblebondingbetweenthe surfactantandthecatalyst,specificregionsoftheNb-hydand Nb-ampFTIRspectrawereevaluated.Thetwomainspectralregions of interestare at 3600–3000cm−1 and 950–500cm−1. Thefirst isthesumcontributionofdifferenthydroxylgroupabsorptions atthehybridcatalystsurface.Thebandsatabout3412cm−1and 3140cm−1areassignedtotheO Hstretchingvibrationlocalized at thesurface and in the bulk structure, respectively [16]. The extentofO Hbulkorsurfacegroupscanbeevaluatedbasedonthe ratiobetweentheareabeloweachhydroxylbandandtotalarea ofthebands(AOHsurface+AO Hbulk).AfractionofO Hbulkgroups (AO Hbulk/Atotal=0.67)issignificantlylargerthantheO Hsurface groups (AO Hsurface/Atotal=0.32) to Nb-hyd. The ratio between thesefractionsisapproximately2.Aftertheadditionofsurfactant tothecatalyst,theinversionofrelative intensityofthesebands followed, for Nb-amp the high frequency band at 3186cm−1, became more intense. Moreover, two new bands centred at 3541cm−1and3323cm−1besidesthosepresentwererevealedby thedeconvolutionoftheO HstretchingregionrelatedtoNb-amp (Fig.2).Thesebandsinhighfrequencies,whencomparedtothe

(3)

Fig.1.(A)ContactanglemeasurementsofH2OdropletsontheNb-ampandNb-hydsurfaces.(B)Opticalmicroscopyimageofacetonitrile-in-hexaneemulsionformedby

sonicating.(C)TEMimageofcatalyst(Nb-hyd).(D)TEMimageofcatalyst(Nb-amp).Itisdetailedin(C)and(D)thecatalystinhexane/acetonitrilemixture.Itisseenthatthe amphiphiliccatalystpreferentiallymigratestotheinterface.

Fig.2.ATR-FTIRspectraofthesurfactantCTAB,amphiphilic(Nb-amp),andhydrophilic(Nb-hyd)catalysts.Theinsetpresentsaclose-upoftheNb-ampandNb-hydspectra, showingdeconvolutedFTIRspectrumofsamples:carbonylstretchingregion.

(4)

46 L.C.A.deOliveiraetal./AppliedCatalysisB:Environmental147 (2014) 43–48

Fig.3.TGAanalysesofthecatalystsNb-hydandNb-amp.

Nb-hyd,wereassociatedwithnewlinkageinvolvedintheO H surface(at3541cm−1)andbulk(at3323cm−1)groupsofniobium oxyhydroxide and surfactant. The deconvolution mathematical procedureovercameanoverlappinginabsorptionofthehydroxyl bandfrombulkandsurfacelinkageandnolinkwiththesurfactant. Thefollowing ratio of areas,AOHsurfacelinkageCTAB/AOHsurface and AO Hbulk-linkageCTAB/AOHbulkwasusedtoinvestigatetheextentof O Hgrouplinkagetothesurfactant.Theratioincreaseof0.24–0.75 indicatedthattheCTABlinkageisinvolvedpreferentiallytothe O Hgroupbulk.Furthermore,theratioofthefractionsofO Hbulk (AOHbulk-linkageCTAB+AOHbulk)/(AO HsurfacelinkageCTAB+AOHsurface) andO Hsurfacedecreasedbyapproximately1,whencompared tothevalueofNb-hyd.Thisresultcanbeexplaineddue tothe substitutionoftheO Hgroupsofthebulkbythesurfactantthat promotesstronginteractionsbetweenthehydroxyloftheniobium oxyhydroxideandthesurfactantgroups.

Inaddition,thepossibilityofinteractionsbetweenCTABandthe Nb O,Nb OorNb(O O)groupstoalesserextentcanexplainthe slightchangesobservedinthesecondregionofthetwospectra.The bandsthatappearbetween950and500cm−1areassignedtothe Nb OandO Ostretchingvibrations[15,17–19].TheNb-amp spec-trumshowsalargernumberofshouldersinthisregion,indicating thatthenewinteractionsbetweenthesurfactantandcatalyst inter-ferewiththevibrationalmodesofthesecatalystgroups.

ThethermogravimetricanalysisisshowninFig.3.Both materi-alswithandwithoutsurfactantincorporated,haveaverysimilar weightlossprofileuptoabout250◦C.Thatmasschangemustbe duetothelossofwaterandalsohydroxylgroups.However,above thistemperaturethematerialcontaininghydrophobicgroups (Nb-amp)loses18%ofmass,whilethecatalystNb-hydhasnomassloss. Thus,webelievethatthecatalystNb-amphasacontentof18%by weightofsurfactantsgroupsonitssurface.

3.2. Theoreticalstudies

3.2.1. AbinitiostudyoftheNbO2OHstructure

To understand the structure of this niobium oxyhydroxide materialandhowitssurfaceinteractswiththesurfactant,wehave performedsome theoreticalcalculations using a cluster model. BasedontheNbO2OHstoichiometry,itwasconsideredtoexist asa clusterof 18 Nb atoms withterminal oxygenatoms each attachedtoahydrogenatom.Inaddition,weconsideredthe sur-facetobecoveredbyhydroxylgroups.Themodelhastheformula Nb18O75H62.Becauseitisalargesystem,geometryoptimization wasconductedattheHartree–FocklevelwiththeSBKJCEffective

Fig.4. StructureoftheNb(OH)5H2Omodelspeciesatdifferentlevelsoftheoryand

theNb18O75H62cluster(withoutterminalhydrogenatomsatnon-surfaceedges)

obtainedattheHF/SBKJClevel.Onlysingletstateswereconsidered.

CorePotential(ECP)andtherespectiveSBKJCbasisset.However, wehavetestedthereliabilityofthisleveloftheorybyoptimizing thestructureofNb(OH)5H2OmodelattheHFlevelwiththeSBKJC basissetandalsobyaddingdpolarizationfunctionsontheNbandO atoms(SBKJC+P(d)basisset).Densityfunctionaltheorycalculations withtheX3LYPfunctionalandtheSBKJC+P(d)basissetwerealso performed(Fig.4).Fromthecalculations,wenoticedadistorted octahedralstructure aroundtheNbatoms.TheNb OHdistance wasslightlychangedbytheleveloftheory,whilethedifferencein bondlengthwaslargerforNb-OH2.

Consideringthelongcomputationaltimerequiredforthe opti-mization of this large Nb18O75H62 cluster, we believe that the HF/SBKJCcalculationsareareasonableapproach.Theoctahedral geometryaroundtheNbatomisevenmoredistortedduetothe hydrogen bondsbetween the hydrogen atoms of the hydroxyl groupsandthevicinaloxygenatoms.TheNb Odistancesarein therangeof1.8–2.2 ˚A,whereasmanyhydrogenbondsare approx-imately1.8 ˚A.

3.2.2. StructureofthemodifiedNbO2OHsurface

Thepresentexperimentaldataindicatethatthesurfactantis bound tothe NbO2OH surface according to infrared spectrum. Thus,weneedamodelabletoexplainthestructureofthecatalyst. ConsideringthatthenormalNbO2OHsurfaceisfullycoveredby OH groups, the formation of the peroxo group and adsorption of the surfactant onthe surface can be viewedas the process presentedinFig.5.Thequaternaryammoniumionis boundby anelectrostaticinteractionandwecannoticetheperoxogroups becomeinteractionsites.Toverifythestabilityofthisstructure, wehaveperformedabinitiocalculationsusingasmallercluster, Nb8O37H31, interacting withthe N(CH3)4+ ion. Geometry opti-mizationwasperformedattheHF/SBKJCleveloftheory,andthe obtainedstructureispresentedinFig.5.Itcanbeobservedthat thestructureproposedisstable,andthesurfactantstayscloseto boththeoxoandtheperoxogroups.Thestructureofthesurface peroxogroupsuggeststhattheoxidationprocessisasingleoxygen transfer fromthe surfaceto thesubstrate. The closeproximity betweenthesurfactantandthesurfaceperoxogroupallowsthe oxidationoflowpolaritysubstrates.Infact,thefloppynatureof

(5)

Fig.5.FormalprocessfortheamphiphilicNbO2OHsurfaceformationandstructure

oftheNb-ampcatalystmodelledastheinteractionoftheNb8O36H32Br−cluster

(withoutterminalhydrogenatomsatnon-surfaceedges)withtheN(CH3)4+ion

obtainedattheHF/SBKJClevel.

theminimumenergystructurebetweenthesurfactantcationand thesurface allows itseasy mobility. Asconsequence, no steric repulsionshouldbeobservedbetweenthesurfactantcationand thesulphidereactantduringtheoxidationreaction.Thepresent proposaliscompatiblewiththeexperimentallyobservedreaction. 3.3. Catalytictests

To illustrate the application of the hybrid catalyst in a liq-uid/liquid reaction system,we chosethe selective oxidation of dibenzothiophene(DBT)asamodelreaction.DBTwasusedasa modelmoleculebecauseitisrepresentativeofthemoststable sul-furousmoleculesinoilandconstitutesthemajorityofthesulfurous moleculesremainingindieselafterHDStreatment[8].Fig.6shows theconversionofDBTovertimeatroomtemperatureusingthe Nb-ampcatalyst.

These results demonstrate that DBT is almost completely oxidizedintothecorrespondingsulphoneby90minat25◦C.Only stoichiometricH2O2isconsumed,andtheturnovernumber(TON) isestimatedtobehigherthan218.Theseresultsindicatethatthe Nb-ampcatalystintheemulsionisveryactiveandselectivefor theoxidationofDBTtothesulphoneevenatroomtemperature. The catalystwithout surfactant incorporation (Nb-hyd) didnot presentahighoxidationcapacity(ca.19%after60min)because itremainedinthepolarphase,disallowingthereactionwithDBT dissolvedinthenonpolarphase.Sincetheperoxogroupsreplace the acidgroup onthe surface [20] it is possible to obtainthe peroxogroupamountconsideringthedecreasingintheacidsites after theH2O2 treatment (asdescribed in Section2)to obtain theNb-ampcatalyst.ThetitrationofNaOH(0.0097mol/L)excess withHCl (0.0084mol/L)showedthattheacidsitesamountwas 7.11×1019and5.47×1019H+sites/gforNb-ampbeforeandafter

Fig.6.ProfileofDBTremovalanddetailsofamphiphilicniobiumoxyhydroxide particlesattheinterfaceofbiphasicsystem.

H2O2 treatment,respectively.Theperoxogroupamountscanbe obtainedbythedifferencebetweenthesevalues,i.e.,1.64×1019 peroxosites/g.Consideringthat10mgofcatalystinthereactions wasused,thenumberandperoxositesare1.64×1017.Whereas thenumberofmoleculesconvertedafter300minofreactionwas 3.27×1019,thevalueofTONisapproximately218.

Fig.7showsthesulfur-specificgaschromatography(GC–MS) analysesofDBTinhexanebeforeandafterthecatalyticoxidationat 60min.Itisworthwhiletonoteallofthesulfurousmoleculeswere almostcompletelyoxidizedintosulphones,which consequently werecompletelyextractedinsitubythepolarextractant.Theused catalystwaseasilyseparatedfromthereactionsystembyfiltration. Afterfourcycles,thecatalystshowedalmostthesamecatalytic performanceasunusedmaterial,indicatingthatthecatalystcan berecycledandreusedforthisreaction.

Theadvantageofoperatinginabiphasicsystemwiththe cat-alystattheliquid/liquidinterfaceisthepossibilityofconducting theprocessinasinglestepinsteadoftwobyskippingthe sepa-ration.Theoxidizedmoleculeswithhigherpolaritymigratetothe polarphaseafterreactionwiththeperoxospeciesonthecatalyst (Fig.6detail),facilitatingtheirseparation fromthehydrocarbon molecules. It is important to note that surface modification of

Fig.7. ChromatogramsofstandardDBTinhexanebeforereaction,acetonitrilephase afterreaction,andhexanephaseafterreaction.

(6)

48 L.C.A.deOliveiraetal./AppliedCatalysisB:Environmental147 (2014) 43–48 niobiumhasonlybeenshownwiththesyntheticroutepresentedin

thiswork.Thismeansthattheformationofniobiumoxyhydroxide insteadofniobium oxidepermitsthegenerationofthe peroxo-species(oxidizingagent)whilealsofacilitatingtheanchoringofthe surfactantmolecule(hydrophobizationofthecatalyst).Ourresults highlighttheapplicationsofsolidcatalystsbasedonmodified nio-biumcompoundslocalizedattheinterfaceoftwoliquidphases. Finally,theresultspresentedinthisworkopenanewfieldofstudy usingnewcompoundsofniobium.Theseversatilecompoundsmay bemodifiedthroughgenerationofoxidizinggroupsasshownhere orimpregnatedwithothermetalsaimingtowardstheirapplication indifferenttypesofcatalyticreactions.

4. Conclusion

Anewniobiumoxyhydroxidehasbeenmodifiedandstudied asaheterogeneouscatalystforoxidativedesulphurizationdueto theproductionofoxidizinggroupsonthecatalyst.Furthermore, thismaterialwasconvertedtoafamilyofsolidcatalyststhatcan stabilizeinwater/oilemulsionsandcatalyzereactionsatthe liq-uid/liquidinterfacebyanchoringasurfactant.Thematerialwas thenabletoefficientlyremoveasulfurouscompoundundermild andbiphasicconditions.TheoreticalcalculationsandFTIRanalyses showedthattheperoxidegroupandsurfactantspeciesare anchor-ing,replacing–OHonthecatalyst.Furthermore,unexpecteddata showedthattheperoxidegroupisnotaradical,asreportedbysome authors.Thisresultsuggeststhattheoxidationprocessisasingle oxygentransferencefromthesurfacetothesubstratewithno rad-icalinvolvement.Finally,theresultspresentedinthisworkopena newfieldofstudyusingnewcompoundsofniobium.These versa-tilecompoundsmaybemodifiedthroughgenerationofoxidizing groupsasshownhereorimpregnatedwithothermetalsaiming towardstheirapplicationindifferenttypesofcatalyticreactions.

Inaddition,thepossibilityoftransformationintoanamphiphilic materialenablesitswiderusetobeemployedinvariousindustrial processes.

Acknowledgments

ThisworkwassupportedbytheCNPq,FAPEMIG,CAPESand Pro-ReitoriadePesquisa-UFMG.

References

[1]U.E.P.A.,Heavy-dutyengineandvehiclestandardsandhighwaydieselfuel sulfurcontrolrequirements,2000,pp.1.

[2]C.Li,Z.Jiang,J.Gao,Y.Yang,S.Wang,F.Tian,F.Sun,X.Sun,P.Ying,C.Han, Chem.–Eur.J.10(2004)2277.

[3]J.Torres-Nieto,W.W.Brennessel,W.D.Jones,J.J.García,J.Am.Chem.Soc.131 (2009)4120.

[4]P.S.Tam,J.R.Kittrell,J.W.Eldridge,Ind.Eng.Chem.Res.29(1990)321. [5]C.S.Castro,M.C.Guerreiro,L.C.A.Oliveira,M.Goncalves,A.S.Anastacio,M.

Nazzarro,Appl.Catal.A:Gen.367(2009)53.

[6]W.Ferraz,L.C.A.Oliveira,R.Dallago,L.D.Conceic¸ão,Catal.Commun.8(2007) 131.

[7]S.Murata,K.Murata,K.Kidena,M.A.Nomura,EnergyFuels18(2004)116. [8]C.Bolm,F.Bienewald,Angew.Chem.Int.Ed.Engl.34(1996)2640. [9]D.Bayot,M.Devillers,Coord.Chem.Rev.250(2006)2610. [10]M.Anilkumar,W.F.Hoelderich,J.Catal.293(2012)76. [11]D.J.Cole-Hamilton,Science327(2009)41.

[12]S.Crossley,J.Faria,M.Shen,D.E.Resasco,Science327(2009)68. [13]D.M.Andala,S.H.R.Shin,H.-Y.Lee,K.J.M.Bishop,ACSNano6(2012)1044. [14]R.Khurana,S.Vaidya,M.M.Devi,A.K.Ganguli,J.ColloidInterfaceSci.352(2010)

470.

[15]Y.Jun,X.Y.Zhu,J.Am.Chem.Soc.126(2004)13224. [16]M.Risti ´c,S.Popovi ´c,S.Musi ´c,Mater.Lett.58(2004)2658.

[17]J.J.Boruah,D.Kalita,S.P.Das,S.Paul,N.S.Islam,Inorg.Chem.50(2011)8046. [18]A.P.L.Batista,H.W.P.Carvalho,G.H.P.Luz,P.F.Q.Martins,M.Goncalves,L.C.A.

Oliveira,Environ.Chem.Lett.8(2010)63.

[19]A.Esteves,L.C.A.Oliveira,T.C.Ramalho,M.Goncalves,A.S.Anastacio,H.W.P. Carvalho,Catal.Commun.10(2008)330.

[20]A.C.Silva,D.Q.L.Oliveira,L.C.A.Oliveira,A.S.Anastácio,T.C.Ramalho,J.H.Lopes, H.W.P.Carvalho,C.E.R.Torres,Appl.Catal.A:Gen.357(2009)79.

Referências

Documentos relacionados

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

The fourth generation of sinkholes is connected with the older Đulin ponor-Medvedica cave system and collects the water which appears deeper in the cave as permanent

The irregular pisoids from Perlova cave have rough outer surface, no nuclei, subtle and irregular lamination and no corrosional surfaces in their internal structure (Figure

• The presence of niobium carbide and niobium oxides on the surface is associated with the carbon content of the polymer; • The use of a polymer with higher carbon content

Neste contexto, o objetivo geral desse trabalho é avaliar a qualidade ecológica dos reservatórios do semiárido utilizando as larvas de Chironomidae Diptera como indicadores