• Nenhum resultado encontrado

Lewis acid/base character and crystallisation properties ofpoly(butylene terephthalate)

N/A
N/A
Protected

Academic year: 2021

Share "Lewis acid/base character and crystallisation properties ofpoly(butylene terephthalate)"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Journal

of

Chromatography

A

j ou rn a l h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / c h r o m a

Lewis

acid/base

character

and

crystallisation

properties

of

poly(butylene

terephthalate)

José

M.R.C.A.

Santos

,

James

T.

Guthrie

DepartmentofColourandPolymerScience,SchoolofChemistry,TheUniversityofLeeds,WoodhouseLane,Leeds,WestYorkshireLS29JT,UnitedKingdom

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11September2014 Receivedinrevisedform 12December2014 Accepted15December2014 Availableonline29December2014 Keywords:

Inversegaschromatography Poly(butyleneterephthalate) Lewisacid/baseproperties Crystallisation

a

b

s

t

r

a

c

t

Twogradesofpoly(butyleneterephthalate)wereanalysedbymeansofinversegaschromatography

(IGC)andtheresultscorrelatedwiththerespectivecrystallisationproperties.Thefollowingparameters

weredeterminedbyIGC:thedispersivecomponentofthesurfacetension,theenthalpyandtheentropy

ofadsorptionofselectedpolarandapolarprobes,andtheLewisacidityandbasicityconstants,Kaand

Kbrespectively.TheinterpretationofthevaluesdeterminedforKaandKbisinagreementwiththeFTIR

spectrarelatingtothecarboxylend-groupandthehydroxylend-groupconcentrationsinthesepolymers.

Thedifferencesinthemolecularweightvaluesandintheend-grouptypeandconcentration,between

thetwogradesofPBT,donotcausedifferencesinthecrystallisationactivationenergy.Thisobservation

suggeststhatthereisaleadingcontributionoftheLewisbasicsitestothecrystallisationactivationenergy

ofthegradesofPBTthatwereanalysed.However,thelowervalueofKaandthegreatermolarmassof

oneofthePBTgradesleadtoacorrespondinglowercrystallisationdegree.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Duetotheirsemi-crystallinecharacterandhighmelting tem-peratures,poly(butylene terephthalate), PBT, and poly(ethylene terephthalate), PET, are the more widely used thermoplastic polyesters.Common applicationsof PET include fibrespinning, blowmouldingofbottles,injectionmouldingofengineeringparts andthermoformingoftrays.PETis,nevertheless,characterisedby lowcrystallisationrates.Thishaslimiteditsapplicationininjection mouldingappliances.Toovercomethisdrawback,fastcrystallising gradeshavebeendevelopedthatcontainnucleatingagents(e.g. BaSO4,ZnPO4andSb2O3)toincreasethenon-isothermal crystalli-sationtemperatureandreducethesizeofthespherulites,and/or containotherpolymers.PBT,ontheotherhand,exhibitsa signif-icantlyfastercrystallisationrate.The realisedshorter moulding cyclesandthelowerviscosityunderappropriateconditionshave resultedinawideruseofPBTthanPETformouldingapplications. PBTisactuallyoneofthefastercrystallisingpolymers[1–5].The chemicalnatureoftherepeatunitisshowninFig.1.Thehigh crys-tallisationrateisaconsequenceoftheconsiderablemobilitythat

∗ Correspondingauthor.Presentaddress:PolytechnicInstituteofBraganc¸a, Cam-pusSta.Apolónia,5300-253Braganc¸a,Portugal.Tel.:+351273330832; fax:+351273325405.

E-mailaddresses:josesantos@ipb.pt,josemrcasantos@gmail.com

(J.M.R.C.A.Santos).

isprovidedbythebutyleneunitinthechain.Usually,purePBThas acrystallinityextentthatisintherangeof30–40%.Theenthalpy offusion,Hf◦,ofthe100%crystallinePBTis142J/g[4,6–8].The meltingtemperatureTmisabout225◦Candthecrystallisation tem-perature,Tc,is approximately180◦C [9].The valueoftheglass transitiontemperature,Tg,ofthesemicrystallinestateoccursat about40◦C.ThecompletelyamorphousstateofpurePBTis diffi-culttoproduceduetothehighcrystallisationrateofthispolymer. Nevertheless,avalueof−25◦ChasbeendeterminedfortheTgof 100%amorphousPBT[7,10].

Becauseofitssemi-crystallinenature,PBToffersconsiderable chemical/solvent resistance but low dimensional stability, low ductility,low glasstransitiontemperatureand low Izodimpact strength.Consequently,core–shelltypeelastomersaremost fre-quentlyaddedtoPBTtoimproveitstoughness.Theseblendsshow lowmeltviscosityand,thus,areeasytoprocess.Moreover,the blendshavegoodmechanicalpropertiesandelectricalproperties, excellentsolventresistance,andgoodhydrolyticstability.Blends ofPBTwithelastomersandwithotherpolymershavebeenusedfor theinjectionmouldingofexteriorautomotivepartssuchasmirror housingsandbumpers,andareoftendesignedtoreplacemetalsin specificapplications.

Furthermore,inordertotakefulladvantageoftheuseful prop-erties ofPBT, and toovercomethe aforementionedlimitations, PBTisusually combinedwithpolymerssuchaspolycarbonates, PC,andPET(e.g.Xenoy®andValox®fromSABICInnovative Plas-tics,Makroblend®fromBayer,andPocan®fromLanxess,Sabre® http://dx.doi.org/10.1016/j.chroma.2014.12.042

(2)

Fig.1. RepeatingunitinPBT.

Table1

Weightaveragemolecularweight(Mw),molecularweightdistribution(D)and

number-averagemolecularweight(Mn),carboxylend-groupconcentrationand

hydroxylend-groupconcentration,forPBTAandPBTB.

Mw(gmol−1) D Mn(gmol−1) −COOH(␮eq/g)

PBTA 108,500 3.18 34,100 48

PBTB 46,000 2.70 17,000 29

1600fromDowChemicalCompany, Stapron® EfromDSM and

Ultrablend®KRfromBASF).Inthepolymerblendsthusobtained,

controloverthecrystallinepropertiesofthePBTisnecessary.

Dur-ingprocessingatelevatedtemperatures,hydrolytic,thermal,and

oxidativedegradationofPBTcanoccurwiththeformationofnew

carboxylicacidend-groups,alongwiththereductioninthe

molec-ularweightand alterationof themolecularweightdistribution.

Theseeffects resultin higher crystallisationratesand

crystalli-sationextents[4,5,8,11].IntheparticularcaseofPBT/PCblends,

theformation of a PC-PBT copolyester results in a decrease in themolecularweightofthePCandofthePBT,inareductionin thedegreeofcrystallinityandinthecrystallisationtemperature [2,6,7,12–14].

The growingawareness of the importanceof solid surfaces, interfacesandinterphasesindeterminingtheusefulpropertiesof polymericcompositions,hasledtothedevelopmentofinversegas chromatography(IGC)asavaluabletechniqueforevaluatingthe potentialforinteractionofdifferentcomponentsofpolymerblends andcompositesandmulticomponentpolymericsystemsin gen-eral.Duetoitsapplicabilityindeterminingthesurfaceproperties ofsolidsinvariedformssuchasfilms,fibresandpowdersofboth crystallineand amorphousstructures,IGC hasbeenextensively usedforsurfacecharacterisation.TheapplicabilityofIGCin mea-surementsofphysicochemicalpropertiesofvariousmaterialshas beenthoroughlydescribedintheliterature[15–18].Dataobtained fromIGCexperimentsmay,infavourablecases,correlatedirectly withobservedperformancecriteria,suchascolourdevelopment, gloss,rheologicalproperties,adhesionandmechanicalproperties [19–21].

Twopapershavebeenpublishedthatdealtwiththeanalysisof thethermodynamicpropertiesofPBT(surfacefreeenergy,surface LewisacidityandsurfaceLewisbasicity),onethatconcernsastudy carriedoutonaparticulargradeofPBTandasecondthatrelates tosurfacetensionstudiesonPBT,wherethedispersivecomponent ofthesurfacetensionwasquantifiedusingcontactangle measure-ments[22,23].Thespecificcomponentofthesurfacefreeenergy (withoutquantifyingthecontributionoftheLewisacidicsitesand oftheLewisbasicsites)wasdeterminedthereof.

Differencesinend-group“concentrations”alongsidewith dif-ferencesintheaveragemolecularweightofPBTpermitthetailoring of thecontributionof thePBT phase towardstheproperties of thePBT-basedblends,namelytheviscosityandthecrystallinity. Thus,theyinfluencetheprocessabilityandmechanicalproperties ofthesepolymericsystems.Forthisstudy,IGCatinfinitedilution wasusedas atool by whichtoassess thedifferences between thesurfaceLewisacidic/basicpropertiesoftwogradesofPBT, dif-ferentiatedbytheirvaryingend-group“concentration”.Someof theeffectsthatthedifferencesinend-group“concentration”and molecularweighthaveonthecrystallisationpropertieswerealso examined.

Table2

RelevantcharacteristicsofcommonlyusedIGCprobes.

Probemolecule a(d

l)

0.5 (cm2(mJcm−2)0.5)

DN(kJ/mol) AN*(kJ/mol)

n-Hexane 2.21E−16 n-Heptane 2.57E−16 – – n-Octane 2.91E−16 – – n-Nonane 3.29E−16 – – n-Decane 3.63E−16 – – Tetrahydrofuran(THF) 2.13E−16 84.42 2.10 Trichloromethane(TCM) 2.24E−16 0.00 22.68 Dichloromethane(DCM) 1.73E−16 0.00 16.38 Diethylether(DEE) 1.82E−16 80.64 5.88 Acetone(Acet) 1.65E−16 71.40 10.50 Ethylacetate(EtAcet) 1.95E−16 71.82 6.30

Another aspectof relevance to this study wasthe fact that

thespecificcomponentoftheenthalpyofadsorptionofthepolar

probes onthesurface ofPBT A and onthe surfaceof PBT Bis

endothermic.

2. Materialandmethods

2.1. Materials

Twogradesofpoly(butyleneterephthalate),PBTAandPBTB,

werekindlysupplied bySABICInnovativePlastics(formerlyGE

PlasticsEurope),BergenopZoom,TheNetherlands.Theaverage

molecularweight,Mw,molecularweightdistribution,D,

number-averagemolecularweight,Mn,carboxylend-groupconcentration

and hydroxyl end-group concentration of these poly(butylene

terephthalate)sarepresentedinTable1.Thehydroxylend-group

and carboxyl end-group concentrations were determinedusing the –OH absorbance at 3550cm−1 and the –COOHabsorbance at3290cm−1,respectively.ThevaluesindicatedinTable1were obtainedfromthesupplier.Theglasstransitiontemperatureand themeltingtemperatureofbothPBTAandPBTB,are318Kand 503K,respectively(determinedbyDSC).

For the IGC analysis, analytical grade (Sigma–Aldrich Ltd.) probeswereusedwithoutfurtherpurification.Theapolarprobes usedweren-heptane,n-octane,n-nonane,n-decane,andthepolar probestetrahydrofuran(THF,basicprobe),theamphotericprobes acetone (Acet) and diethyl ether (DEE), and the acidic probes chloroform (TCM) and dichloromethane (DCM). In Table 2 are summarisedrelevantpropertiesoftheprobemoleculesmentioned [17–21].Thechemicals usedasprobe moleculeswereobtained fromSigma–AldrichLtd.,Poole,UK.Methane(PhaseSeparations Ltd.,Deeside,UK)wasusedasanon-interactingreferenceprobe andthecarriergasusedwashelium(99.999+%purity,BOCGases Ltd.,Guildford,UK).

2.2. Inversegaschromatography 2.2.1. IGCdataprocessing

Themaindifferencebetweenconventionalgaschromatography (GC)andIGCliesinthefactthatthespeciesofprimaryinterestare notthevolatilecomponentsinjectedbutthematerialactingasthe stationaryphase,typicallyapowder,fibreorfilm.Thismaterialmay bepackeddirectlyintothecolumn,coatedontoasuitablesupport orcoatedontothewallsofthecolumn.Thisallowsthe investi-gationoftheinteractivenatureviathedegreeofinteractionwith well-characterisedvolatileliquids/vapours(“probes”). Quantifica-tionofthisinteractionmaybeachievedbythedeterminationof theretentiontime,tr,foragivenprobe.Inmostuses,thequantity ofprobevapourinjectedintothecarriergasisextremelysmall. Thus,theretentiondatarelatetothethermodynamicinteraction

(3)

thatoccursbetweenpolymerandthevapourwhenthepolymeris highlyconcentrated,asinmostpracticalsituations.Furthermore, IGCexperimentsmaybecarriedoutoverappreciabletemperature ranges,sothatthetemperature dependence ofthermodynamic interactionsisnolongerindeterminate.

IGC data processing was carried out according to methods describedintheliterature[15,24,28,32].Theretentiontimesof apo-larprobemoleculesandofpolarprobemoleculesweredetermined atspecifictemperatures,andthevaluesoftheretentionvolume,the energyofadsorption,theenthalpyandentropyofadsorption (dis-persiveandspecificcomponents)oftheprobes,andofthesurface Lewisacidityandbasicityconstants,KaandKb,respectively,were computed.

InIGC,aninertcarriergaselutesaminutequantityofaprobe moleculethroughacolumnthatispackedwiththematerialunder study.Duetotheinteractionsbetweenthetwophases,theprobe moleculesareretainedforacertaintime,tr,whichisusedto cal-culatethenetretentionvolume,Vn,accordingtoEq.(1):

Vn=(tr−t0)F·C·J (1)

Here,Vnistheretentionvolume,t0isthedeadretentiontimeofthe markerprobe,Fisthecarriergasflowrate,Cisacorrectionfactor, allowingforthevapourpressureofthewateratthetemperatureof thebubbleflowmetreusedtodeterminetheflowrate,andJisthe correctionfactorforgascompressibility.Theretentiontimewas determinedusingthegeometrictechniqueoutlinedbyConderand Young[29,30].

Assumingthatexperimentstakeplaceatinfinitedilution,the freeenergyofadsorptionoftheprobeonthestationaryphase sur-facepermole,G,canbedeterminedfromtheretentionvolume, Vn,accordingto:

G=−RTln(Vn)+C1 (2)

Here,Ristheidealgasconstant,Tistheabsolutecolumn tempera-tureandC1isaconstant,whichdependsuponthechromatographic columnandthereferencestate[27].ThroughouttheIGCstudies, thestandarddeviationoftheenergyofadsorptionvaluesofthe probemoleculeswascalculatedasbeingtypicallybelow5%.

Considering that the dispersive and specific components, respectivelyGdandGs,areadditive,assuggestedbyFowkes [31],Eq.(2)canberewrittenas:

Gd+Gs=−RTln(Vn)+C1 (3)

Thefreeenergyofadsorptioncanberelatedtoadhesionwork, Wa,accordingto[27]:

−G=N·a·Wa (4)

Here,NisAvogadro’snumberand“a”thecross-sectionalareaof theprobetobetested(Table2).

Ifnonpolarcomponents(suchasn-alkanes)areused,only dis-persiveinteractionsoccurandtheadhesionworkisgivenby: Wa=2(sdld)

1/2

(5) Here,d

s and ld are,respectively,thedispersivecomponentsof surfacetensionofthesolid(stationaryphase)andofthe probe-molecule.

ReplacingEqs.(4)and(5)inEq.(2)leadsto: 2N(sd)

1/2

a(ld)1/2+C1=RT ln(Vn) (6)

Theslopeofthestraightline,referredtoasthereferenceline, obtainedbyplottingRTln(Vn)versus2aN(ld)1/2,forahomologous n-alkaneseries(Fig.4),leadstothedeterminationofd

sforagiven temperature.

Acid–base characteristics of surfaces were determined by analysingtheinteractionofthepolarprobeswiththesolid sur-faceandquantifyingthedeviationfromthereferenceline,leading totheestimationofthespecificfreeenergy,Gs,as:

−Gs=RTln(V

n)−RTln(Vnref) (7)

Here,Vnref istheretentionvolumeestablishedbythen-alkanes referenceline(Eq.(1)),Vnbeingnowtheretentionvolumeofthe polarprobes.ThiscalculationisalsoillustratedinFig.4.

Theadhesionworkbetweenthepolarprobestestedandthe solidsurface,Ws

a,canbeevaluatedfromthespecificfreeenergy, givenbyEq.(7),as Was= NRT·aln



Vn Vnref



(8) Bycarryingoutexperimentsatdifferenttemperatures,itwas possibletodeterminetheenthalpyofadsorptionandtheentropy ofadsorption,respectivelyHandS,fromplotsofG/Tversus 1/T,(Fig.6),accordingtothefollowingequation:

G T =

H

T −S (9)

Theacidicandbasicconstants,respectivelyKaandKb,were cal-culatedfromtheplotof−Hs/AN*versusDN/AN*,accordingtoEq. (10)[26](Fig.8).

(−Hs) AN∗ =Ka

DN

AN∗+Kb (10)

Here, AN*and DN are,respectively, theGutmann’s modified acceptoranddonornumbersoftheprobestested[25,29](Table2). 2.2.2. IGCexperimentalset-up

InexperimentalworkinvolvingIGC,conventional GC equip-mentisgenerallyused,withsomeadaptations[15].

TheinstrumentusedwasaFisonsGC9100unit(FisonsScientific EquipmentLtd.,Loughborough,UK),equippedwithaFIDdetector. Themarkerprobeusedwasmethane.Typically,thesyringewas filledwith0.1␮lofeachprobe,flushed10times,inordertoensure thecreationofaHenry’sinfinitedilutionregion,andinjected man-ually.Theinjector washeatedto150◦Cand theFIDdetectorto 180◦C.Theattenuationwassetto1.Theflowratewascontrolled usinganeedlevalvepressureregulatoranddeterminedusinga bubbleflowmetrethatwasequippedwithaheliumtrap[33]and thermometer.Theinletpressure,Pi,wasmeasuredusingapressure gaugeandtheatmosphericpressure,Po,wasobtainedthroughthe BritishAtmosphericDataCentre(www.badc.rl.ac.uk).TheIGCunit waskeptoncontinuouslyduringtheentirecourseofthework.The temperaturewasincreasedincrementally.

Duetothelackofanappropriatesolvent,insteadofcoatinga supportmaterial,thepolymerwasusedasreceived,after grind-ingandsievingtoachieveanappropriateparticlesize.Tothisend, thepolymerparticleswereprocessedinacryogenicgrinderwhile beingcooledwithliquidnitrogen,followedbysievingthematerial through125␮mand250␮mfiltergauzesandthecolumnfilled. Thesievingoperationexcludedfineparticlesthatwouldincrease undesirablythepressuredropinthecolumn.

2.3. Differentialscanningcalorimetry

Theinstrumentusedwasa DSC2010DSCalorimeter. Allthe studieswerecarriedoutunderanitrogenflowrateof200cm3/min. Thetypicalsamplemasswas3–9mg.Fortheheatingmode anal-ysis,thesampleswereheatedatarateof10◦C/min,from50◦C to440◦C.Thenon-isothermal crystallisationbehaviourof tape-extruded blends was studied using the following temperature programme, (i) heating thesample from roomtemperature to

(4)

0 5 10 15 20 25 30 35 40 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

303 K

313 K

G

a

(

kJ

/m

ol)

Carrier

ga

s flo

w ra

te (cm

3

/min)

Fig.2.Influenceofthecarriergasflowrateontheenergyofadsorptionofn-decane onthesurfaceofPBTB.

250◦Cat200◦C/min,(ii)keepingthesampleatthistemperature foroneminute,toreleaseallthestresseswithinthematerialand toerasethethermalhistoryand(iii)coolingthesamplefrom250◦C ataconstantrate(8◦C/min)to162◦C.Inpractice,thesamplewas heldat250◦Cfor2minand40s,duetothetemperature equilibra-tionstagethatwaspriortotheisothermalstep.Thenon-isothermal crystallisationpropertiesthatweredeterminedwerethe crystalli-sationtemperature,Tc,andtheenthalpyofcrystallisation,−Hc.

3. Resultsanddiscussion

3.1. Inversegaschromatography

Carriergasflowrates,rangingfrom3cm3/minto35cm3/min, wereusedtoassesstheinfluenceoftheflowrateonthe reten-tiontimesofn-decane,at303Kand313K,onthesurfaceofPBTB. Thispreliminarystudyisanessentialpre-requisiteinsurface ther-modynamiccharacterisationbyIGC,inordertoensurethatsurface adsorption,andnotbulkabsorption,isthedominantphenomenon. TheresultsarepresentedinFig.2.

Fig.2indicatesthatthecarriergasflowratedoesnotinfluence theadsorptionenergyofn-decanetoasignificantextent.Thus,it canbeconcludedthatsurfaceadsorptionisthedominant mecha-nism,andabsorptionoftheprobemoleculesintothebulkofthe polymercanbeneglected,iftemperatureslowerthantheTgare used,fortheflowraterangestudied.Thus,themeasurement tem-peratureusedinthestudyofthesurfacePBTwasvariedbetween 298Kand318K,inincrementsof5K,underacarriergasflowrate of10cm3/min.

Inordertofurtherconfirmthatsurfaceadsorptionisthe gov-erningmechanismofinteractionsbetweenthepolymerandthe probes,andthattheexperimentalconditionschoseninthisstudy (flowrateandtemperature)aresuitableforsurface characterisa-tion,aretentiondiagramwasdeveloped(Fig.3)byplottingLn(Vg) asafunctionof1/T[34].

InFig.3,nothermalchanges,duetothechangeinthe morphol-ogyofthesemi-crystallinepolymerastemperatureincreases,are observed.Thelinearrelationshipsobservedareanindicationofthe establishmentoftheequilibriumbetweentheprobesandthe sur-faceofPBTduetothehomogeneityofthesurface.Itcanthusbe concludedthatsurfaceadsorptionisthegoverningphenomenon.

Fig.3.RetentiondiagramfortheapolarprobesonthesurfaceofPBTB.

1.50E-016 2.00E-016 2.50E-016 3.00E-016 3.50E-016 4.00E-016

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 C7 C8 C9 C10 TCM DCM Acet THF EtAcet Y = -22.56 + 7.98E16X R = 1.00

-ΔG

as

RT

Ln(V

g

) [kJ

/m

ol]

a

√(γ

l d

) [

cm

2

(mJ/cm

2

)

0.5

]

Fig.4.Surfacefreeenergyofadsorptionversusa



d

l,forthesurfaceadsorption

ofn-alkanes,andpolarprobes,onPBTA,at295K.

3.1.1. DispersivecomponentofthesurfacefreeenergyofPBTA andofPBTB

Fig.4illustrates thedeterminationof thedispersive compo-nentofthesurfacetensionofPBTA,at295K,accordingtoFowkes’ approach.

Table3summarisesthevaluesdeterminedforthedispersive component of thesurface tension of PBT A and of PBT B. The valuespresentedindicatethatthedispersivecomponentofthe sur-facetensionremainsconstant,withinexperimentalerror,forthe Table3

ValuesofthedispersivecomponentofthesurfacetensionofPBTAandofPBTB.

PBTA PBTB T(K) d s(mJ/m2) R2 sd(mJ/m2) R2 295 43.9±2.1 1.00 42.4±1.0 1.00 303 40.7±1.9 0.98 42.5±2.8 0.99 308 42.8±2.4 1.00 41.4±2.6 1.00 313 40.0±0.6 1.00 40.7±1.3 1.00 318 40.7±2.1 1.00 44.7±9.9 0.92

(5)

TCM DCM Acet THF EtAcet 0 2 4 6 8 10 12

RT

L

n

(V

s

) (kJ/m

g

ol)

Probe

PBT

A

PBT B

Fig.5.Comparisonofthespecificcomponentvaluesoftheenergyofadsorptionof thepolarprobesonthesurfaceofPBTAwiththoserelatingtothesurfaceofPBTB, at295K.

temperaturerangestudied,andequalisto41.6±1.7mJ/m2 and

42.3±1.5mJ/m2,forPBTAandPBTB,respectively.Thevaluesof

d

s forPBTAandforPBTBarepracticallyidentical.Thisleadsto

theconclusionthatthedifferentend-groupcomposition(Table1)

doesnotinfluencetoanoticeableextent,thedispersivecomponent ofthesurfacetension.Bearinginmindthatthemajordifference betweenPBTAandPBTBisintheOHend-groupconcentration, thevaluefoundford

s confirmstheobservationsfoundin litera-ture[35]withregard tothefactthatthisfunctionalgroup,asa high-energysite,contributesmainlytotheformationofspecific intermolecularinteractions.Thevaluesfoundareinaccordwith surfacetensionstudiesonPBTbasedoncontactangle measure-ments[23].

3.1.2. AdsorptionofpolarprobesonPBTAandonPBTB InFig.5arecomparedthevaluesof−Gs

aforthepolarprobes onthesurfaceofPBTAwiththoseconcerningthesurfaceofPBTB, at295K.TheretentiontimesforDEEonthesurfaceofPBTAwere verylowand,therefore,pronetolargeexperimentalerrors. Con-sequently,thedeterminationoftheenergyofadsorption,andof thespecificcomponentoftheenthalpyofadsorptionofDEE,was notpossible.Thislowretentiontimeprobablyresultsfromsteric hindrance,thatis,structuralrestrictions,fromboththeadsorbate andtheadsorbent,hinderingthesemoleculesfromspatial con-formationsbecomingeffectiveintermsofspecificintermolecular interactions.Theoxygenatom(Lewisbasiccentre)ofdiethylether (DEE)ismoresusceptibletoshieldingbytheneighbouring hydro-genatoms[36]thanisthatof,e.g.acetone(Acet),whichisreadily accessibleforinteraction.Similarresultshavebeenobservedwhen CCl4wasusedasaprobe[37].

ForbothPBTAandPBT B,theadsorptionoftheLewisacidic probesisasstrongas,orstrongerthan,theadsorptionofLewis basic/Lewisamphotericprobes.Bearinginmindtherelativelylow acidityoftheacidicprobes,whencomparedtothebasicityofthe basicprobes(e.g.THF),itcanbeconcludedthatthesurfacesofboth PBTAandPBTBareamphoteric,beingstronglyLewisbasic.Fig.5 alsoshowsthatthesurfaceofPBTAiscomparabletothatofPBTBin termsofLewisacidity/basicity.Ananalysisofthespecific compo-nentoftheenthalpyofadsorptionwillprovideabetterinsightinto thedifferencesbetweentheLewisacidic/basicpropertiesofthe twoPBTs.Thevaluesoftheenthalpy,andentropy,ofadsorption ofthepolarprobes,alongwiththecorrespondingdispersiveand

Table4

Dispersivecomponentsoftheenthalpyofadsorptionandoftheentropyof adsorp-tion,Hda,andSda,respectively,ofthepolarprobes,onthesurfaceofPBTA.

Probemolecule −Hd a(kJ/mol) Sda(J/molK) R2 TCM 33.0 −127.0 0.91 DCM 26.2 −120.0 0.81 Acet 27.1 −121.0 0.83 THF 31.8 −126.0 0.89 EtAcet 29.7 −124.0 0.87 Table5

Specificcomponentsoftheenthalpyofadsorptionandoftheentropyofadsorption, Hs

aandSda,Ssa,respectively,ofthepolarprobes,onthesurfaceofPBTA. Probemolecule −Hsa(kJ/mol) Ssa(J/molK) R2

TCM −38.4 147.0 0.94

DCM −23.1 138.0 0.82

Acet −20.9 101.0 0.89

THF −23.0 93.7 0.81

EtAcet −17.2 85.8 0.92

specificcomponents,aresummarisedinTables4and5forPBTA,

andtheirdeterminationisillustratedinFig.6forthispolymer.The valuesrelatingtoPBTBhavealreadybeenreportedinaprevious publication[22].

The specific component of the enthalpy of adsorption of polarprobesonthesurfaceof PBT Ais endothermic. This con-firms the reported thermodynamic analysisof the surface and bulk PBT B [22]. Endothermic values of energy of adsorption have alsobeen reported in theliterature for theadsorption of polar probe molecules on titanium dioxide pigments [37,38], on a vinyl acetate-vinyl alcohol copolymer [39], and on 2-(N-morpholino)ethylmethacrylate [40]. A rearrangement of the surfaceuponthechemisorptionofpolarmoleculesisthoughtto occur,thusinitiatinganincreaseintheentropyofthesystem.This rationaleisconfirmedbythepositivevaluesofSs

a,andsupported bytheexperimentallyverifiedphenomenonoftherearrangement ofthesurfacelayersduetochemisorption[41].

The enthalpy of formation of individual hydrogen bonds is alwaysnegative.However,thetotalenthalpy(andentropy)related totheformation of hydrogenbondsis theresult of three con-tributions[42]:apositivecontributionthatresultsfrombreaking hydrogenbondsintheself-associatingpolymer,anegative con-tributionthatresultsfromforminghydrogenbondsbetweenthe self-associatingpolymerandtheadsorbentmolecule,and contrib-utionsfromvanderWaalsanddipoleforces.Whenpolarmolecules

0.0031 0.0032 0.0033 0.0034 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 DCM TCM Acet THF EtAcet -Δ Ga s /T [kJ /(m ol .K)] 1/T [K-1]

Fig.6. Determinationofthespecificcomponentoftheenthalpyandoftheentropy ofadsorption,ofpolarprobesonthesurfaceofPBTA.

(6)

TCM DCM Acet THF EtAcet 0 5 10 15 20 25 30 35 40 45 50 55 60

H

s

(kJ/mol)

a

Probe

PBT A

PBT B

Δ

Fig.7. Comparisonofthespecificcomponentvaluesoftheenthalpyofadsorption ofthepolarprobesonthesurfaceofPBTAwiththoserelatingtothesurfaceofPBT B.

Table6

ValuesofKaandKbdeterminedforthesurfacesofPBTAandPBTB.

Ka Kb R2

PBTA −0.24 −0.97 0.97

PBTB −0.49 −0.96 0.96

adsorbonPBT,thedominantfactoristhepositivecontribution

aris-ingfromthebreakingofhydrogenbondsintheself-associating

polymer.Thisresultsinanendothermicenthalpyofadsorptionand

anincreaseintheentropyofthesystem[22].

Itshouldbenoticed(Tables4and5)thatthedispersive compo-nentoftheenthalpyofadsorption,Hd

a,isexothermic,thatthe correspondingchangeinentropy,Sd

a,negative,andthatthe val-uesaresimilarformostofthepolarprobes.Furthermore,thevalue of−Hd

aincreaseswithincreasinga×



d l.

InthecaseofPBTA,ananalysisofthespecificcomponentof theenthalpyof adsorption, leadstothefollowing ranking (the more negative, the stronger the interaction, as it is endother-mic):TCM>DCM=THF>Acet>EtAcet.ThisindicatesthatPBTAis amphotericandKboughttobehigh,inlinetheanalysisofthe spe-cificcomponentoftheenergyofadsorptionofthepolarprobes. Thechangeinentropyuponadsorptionisgreaterforthoseprobes whoseadsorptionischaracterisedbythegreaterspecific compo-nentoftheenthalpyofadsorption.Theanalysisof−Hs

aforPBT Aisalsoinlinewiththeanalysisoftheenergyofadsorption,and withtheresultsrelatingtothesurfaceandbulkPBTB[22].

Fig.7givesa comparisonof thevaluesofHs

a of thepolar probesonthesurfaceofPBTAwiththoseconcerningthesurface ofPBTB.

Fig.7suggeststhatthesurfaceofPBTAshouldbelessLewis acidicandlessLewisbasic,thanthatofPBTB.Thedetermination ofKaandofKbprovidesamorecompletedescriptionofthesurface Lewisacidity/basicity.

3.1.3. DeterminationofKaandKbforthesurfaceofPBTAandfor thesurfaceofPBTB

ThedeterminationofthesurfaceLewisacidityconstant,Ka,and ofthesurfaceLewisbasicityconstant,Kb,isillustratedinFig.8for PBTA.ThevaluesobtainedforbothPBTAandPBTBaresummarised inTable6. -30 -25 -20 -15 -10 -5 0 0 5 10 15 20 25 30 35 40 45 50 DCM THF Acet EtAcet TCM TCM

DN/AN*

Y = -0.97 - 0.24X R2 = 0.97

H

a s

/AN

*

Fig.8.DeterminationoftheKaandoftheKbofthesurfaceofPBTA.

ItshouldbenotedthattheKaandKbvaluesarenegativedueto theendothermicadsorptionoftheprobemolecules.Thesurfacesof PBTAandPBTBareconcludedtobeLewisamphotericandstrongly Lewisbasic,inlinewiththeanalysisoftheenergyandenthalpyof adsorptionofpolarprobes.ThevaluesdeterminedforKaandKb areconsistentwiththeanalysisofthestructureofthismolecule (Fig.1).Thus,theLewisacidicsiteshavetheirorigininthehydrogen atomsofthe–O–CH2–segments,andinthehydrogenatomsofthe hydroxylend-groupand ofthecarboxylicend-group.TheLewis basicsiteshavetheiroriginsintheestermoiety,andintheoxygen atomsofthecarboxylicend-groupandofthehydroxylend-group [43].

The poly(butyleneterephthalate), PBT A, is significantly less LewisacidicthanPBTBandasLewisbasicasPBTB.Thiscanbe rationalisedonthebasisofananalysisofthecarboxylend-group andhydroxylend-groupconcentrationsinbothPBTAandPBTB, asdeterminedbyFTIR(Table1).Thehydroxylend-group concen-trationofPBTAislowerthanthatofPBTB,whichisreflectedin theloweracidiccharacterofPBTA.Thecarboxylend-group con-centrationdifferencesbetweenPBTAandPBTBdonotinfluence significantlytheLewisbasicity,asquantifiedbyKb.Thisobservation arisesfromthedominantcontributionoftheesterfunctionalityto thesurfacebasicity,alongsidewiththecontributionofthebasic oxygenatominthehydroxylgroups.ThefactthattheKbvaluefor thetwoPBTsdoesnotfullycorrelatewiththevalueofthespecific componentoftheenthalpyofadsorptionofDCMandofTCMmay berelatedtotherelativelylowvalueofAN*forDCMandTCM,when comparedtothevalueofDNfortheremainingpolarprobes.This resultstresses(i)theimportanceofusingasmanypolarprobesas possibleinthedeterminationofKaandKb,and(ii)theneedfora systematicandholisticanalysisofGs

a,−Hsa,KaandKb,in con-trasttoanindividualanalysisofthesethermodynamicparameters (asisusuallythecaseintheIGCliterature).

3.2. StudyofthecrystallisationpropertiesofPBTAandPBTB ThevaluesofKaandKbforbothPBTAandPBTBindicatethat theintramolecularinteractionsandtheintermolecularinteractions betweenPBTmoleculesarestrong.Thismoleculeischaracterised bythenon-existenceofbulkyside-groups,bythechemically regu-larstructure,andbyhighmobility(duetothebutyleneunitinthe chain).Thus,boththethermodynamicandthestructural require-mentsforcrystallinityexistinthecaseofPBTmolecules.

(7)

0 20 40 60 80 100 450 455 460 465 470 475 480

T

c

(K)

Weight fraction of PBT A (%)

Fig.9.Non-isothermalcrystallisationtemperatureversusPBTAloadinginsamples ofPBTgranulate.

Toassesstheinfluenceoftheend-grouptypeand concentra-tion,and of molecularweightdifferences onthecrystallisation propertiesof PBT, a seriesof PBT A plusPBT Bgranulate sam-pleswaspreparedwithincreasingamountsofPBTA.Thevalues determinedforthecoldcrystallisationtemperature,Tc,andforthe enthalpyofcrystallisation,−Hc,ofthesesamplesarepresented inFigs.9and10,respectively.

ThecrystallinitydegreeofPBTAiscalculatedas56%andthat ofPBTBas65%(consideringthevalueof142J/gforthe−Hcof 100%crystallinePBT).Theextentofcrystallisationdecreases lin-earlywithincreasingamountofPBTAinthePBTgranulatesample. ThegreaterextentofcrystallinityofPBTBisinterpreted,inview ofthevalues determinedforKaand Kb,tobea consequenceof greaterstrengthofspecificLewisacid/baseintermolecular inter-actionsthan in PBT A. Thisis in accordance withthe fact that highenergy sitesin polymericmaterials(asassessedby IGCat infinitedilution)arewellknowntoactasnucleating spotsthat initiatethecrystallisationprocess[44,45].Thedifferencesinthe averagemolecularweightofPBTAandPBTBalsoplayaroleinthe crystallisationpropertiesofthispolymer.Lowermolecularweight valueswouldbeexpectedtoleadtogreatervaluesofcrystallinity degree.However,inthisstudyitwasnotpossibletodistinguishthe

0 20 40 60 80 100 76 78 80 82 84 86 88 90 92 94

-H

c

(J/g)

Weight fraction of PBT A (%)

Δ

Fig.10.EnthalpyofcrystallisationversusPBTAloadinginsamplesofPBTgranulate.

relativecontributionofmolecularweightdifferencesandof end-grouptypeandconcentrationdifferences.Thisisduetothefact thatthegreater–OHend-groupconcentrationisdirectlyrelated withtheloweraveragemolecularweightofthispolymer.

Fig.9alsoshows,veryinterestingly,thatthenon-isothermal crystallisationtemperatureisnotsignificantlyinfluencedbythe weightfractionofPBT Ainthesample.Thus,differencesinthe end-grouptypeandconcentrationandintheaveragemolecular weightofthesePBTsdonotcausechangesinthecrystallisation activationenergy.InviewofthevaluesfoundforKaandKb,one canarguethatthecrystallisationactivationenergyis,inthiscase, dominantlydefined bytheenergyof theLewisbasicsites.This observationderivesfromthesignificantlygreatervalueofKbwhen comparedtothevalueofKa,forbothPBTAandPBTB,andfromthe similarvalueofKbforthesegradesofPBT.

4. Conclusions

TheabilityofPBTtointeractthroughdispersiveintermolecular forcesisnotinfluencedbytheend-grouptypeandconcentration orbythemolecularweight.Theenthalpyofadsorptionofpolar moleculesonPBTwasconfirmedtobeendothermic. Thisresult wasinterpretedasthedominantcontributiontotheenthalpyand entropyof adsorptionof breakinghydrogenbondsin the poly-mer,comparedwiththecontributionofforminghydrogenbonds betweenthepolarprobemoleculesandthePBTmolecules.

IGC characterisation of the surface Lewis acidic/basic prop-erties ofPBT A and of PBT Bcorrelateswell withthecarboxyl end-groupconcentrationandhydroxylend-groupconcentration, asdeterminedbyFTIR.Furthermore,theanalysisofthesurface LewisacidityandsurfaceLewisbasicity,asquantifiedbyKaand KbanddeterminedbyIGC,alongsidewiththeanalysisofthe phys-icalstructureofthesepolymers,isusefulintheinterpretationof thecrystallinityand,thus,oftheexcellentsolventresistanceand thermalstabilityofPBT.

Thedifferencesintheend-grouptypeandconcentration,and intheaveragemolecularweight,betweenPBTAandPBTB,donot causedifferencesinthecrystallisationactivationenergy,andthus, inthecrystallisationtemperature.Thisevidenceisinterpretedin termsofdominantcontributionoftheLewisbasicsitestothe crys-tallisationactivationenergy.Theextentofcrystallisationislower forPBTAthanitisforPBTB.ThisisaconsequenceofweakerLewis acid/baseintramolecularandintermolecular interactionsand of greatermolecularweightinthecaseofPBTA.

Acknowledgements

Theauthorswishtoacknowledgethesupportandthe collabora-tionofSABICInnovativePlastics,BergenopZoom,TheNetherlands, inthisproject.

References

[1]V.M.Nadkarni,J.P.Jog,Crystallizationbehaviourinpolymerblends,in:L.A. Utracki (Ed.),Two-Phase Polymer Systems, Munich, Germany, 1991, pp. 213–239.

[2]C.C. Huang,F.-C. Chang,Reactivecompatibilizationofpolymerblends of poly(butyleneterephthalate)(PBT)andpolyamide-6,6(PA66):1.Rheological andthermalproperties,Polymer38(1997)2135–2141.

[3]S.P.Mishra,P.Venkidusamy,StructuralandthermalbehaviorofPC/PBTblends, J.Appl.Polym.Sci.58(1995)2229–2234.

[4]Y.-Y.Cheng,M.Brillhart,P.Cebe,M.Capel,X-rayscatteringandthermal anal-ysisstudyoftheeffectsofmolecularweightonphasestructureinblendsof poly(butyleneterephthalate)withpolycarbonate,J.Polym.Sci.B:Polym.Phys. 34(1996)2953–2965.

[5]I. Pillin, S. Pimbert, J.F. Feller, G. Levesque, Crystallization kinetics of poly(butyleneterephthalate)(PBT):influenceofadditivesandfreecarboxylic acidchainends,Polym.Eng.Sci.41(2001)178–191.

(8)

[6]G.Pompe,L.Haubler,W.Winter,Investigationsoftheequilibriummelting temperatureinPBTandPC/PBTblends,J.Polym.Sci.B:Polym.Phys.34(1996) 211–219.

[7]G.Pompe,InfluenceoftransesterificationonthethermalpropertiesofPC/PBT blend-miscibilityofPCandPBT,RecentRes.Dev.Polym.Sci.1(1997)109–147.

[8]G.Pompe,E.Meyer,H.Komber,H.Hamann,InfluenceofPBTcrystallizationon miscibilitydegreeofamorphousphaseinPC/PBTmeltblends,Thermochim. Acta187(1991)185–200.

[9]M.E.J.Dekkers,S.Y.Hobbs,I.Bruker,V.H.Watkins,Migrationofpolymerblend componentsduringmeltcompounding,Polym.Eng.Sci.30(1990)1628–1632.

[10]M.Ratzsch,G.Haudel,G.Pompe,E.Meyer,Interactionbetweenpolymers,J. Macromol.Sci.AChem.A27(1990)1631–1655.

[11]H.Bertilsson,B.Franzen,J.Kubat,AgeingofPC/PBTblends.II:Phaseseparation effects,PlasticsRubberProcessAppl.10(1988)145–153.

[12]A.N.Wilkinson,S.B.Tattum,A.J.Ryan,Melting,reactionandrecrystallizationin areactivePC-PBTblend,Polymer38(1997)1923–1928.

[13]G.Pompe,L.Haubler,InvestigationsoftransesterificationinPC/PBTmeltblends andtheproofofimmiscibilityofPCandPBTatcompletelysuppressed trans-esterification,J.Polym.Sci.BPolym.Phys.35(1997)2161–2168.

[14]D.G. Hamilton, R.R. Gallucci, The effects of molecular weight on polycarbonate–polybutylene terephthalate blends, J. Appl.Polym. Sci. 48 (1993)2249–2252.

[15]J.M.R.C.A.Santos,J.T.Guthrie,Analysisofinteractionsinmulticomponent poly-mericsystems:thekey-roleofinversegaschromatography,Mater.Sci.Eng.R: Rep.50(2005)79–107.

[16]A.Voelkel,Physicochemicalmeasurements(inversegaschromatography),in: C.Poole(Ed.),GasChromatography,Elsevier,Amsterdam(TheNetherlands), 2012,pp.477–494.

[17]A. Voelkel,B. Strzemiecka,K.Adamska, K.Milczewska, Inversegas chro-matographyasasourceofphysiochemicaldata,J.Chromatogr.A1216(2009) 1551–1566.

[18]A.Voelkel,K.Adamska,Propertiesofmaterialsasdeterminedbyinversegas chromatography,Ann.UMCSChem.64(2009)169–183.

[19]L.H.Lee,Relevanceofthedensity-functionaltheorytoacid-baseinteractions andadhesioninsolids,in:K.L.Mittal,J.Anderson(Eds.),Acid–BaseInteractions: RelevancetoAdhesionScienceandTechnology,VSP,Utrecht,TheNetherlands, 1991,pp.25–46.

[20]P.Mukhopadhyay,H.P.Schreiber,Inversegaschromatographyforpolymer surface characterization above andbelow Tg, Macromolecules 26(1993) 6391–6396.

[21]J. Schultz,L.Lavielle,Interfacialpropertiesofcarbonfiber-epoxy, in:D.R. Lloyd,T.C.Ward,H.P.Schreiber(Eds.),InverseGasChromatography, Char-acterization of Polymers and Other Materials, A.C.S., Washington, 1989, pp.185–202.

[22]J.M.R.C.A.Santos,K.Fagelman,J.T.Guthrie,CharacterisationofthesurfaceLewis acid–basepropertiesofpoly(butyleneterephthalate)byinversegas chro-matography,J.Chromatogr.A969(2002)111–118.

[23]S.Y.Hobbs,M.E.J.Dekkers,V.H.Watkins,Effectofinterfacialforcesonpolymer blendmorphologies,Polymer29(1988)1598–1602.

[24]S.Mohammadi-Jam,K.E.Waters,Inversegaschromatographyapplications:a review,Adv.ColloidInterfaceSci.212(2014)21–44.

[25]D.P.Kamdem,S.K.Bose,P.Luner,Inversegaschromatographycharacterization ofbirchwoodmeal,Langmuir9(1993)3039–3044.

[26]H. Chtourou, B. Riedl, B.V. Kokta, Surface characterizations of modified polyethylenepulpandwoodpulpsfibersusingXPSandinversegas chromatog-raphy,J.AdhesionSci.Technol.9(1995)551–574.

[27]J.M.R.C.A.Santos,M.H.Gil,A.Portugal,J.T.Guthrie,Characterisationofthe sur-faceofacellulosicmulti-purposeofficepaperbyinversegaschromatography, Cellulose8(2001)217–224.

[28]J.M.R.C.A.Santos,K.Fagelman,J.T.Guthrie,Characterisationofthesurface Lewisacid–basepropertiesofthecomponentsofpigmented,impact-modified, bisphenolApolycarbonate–poly(butyleneterephthalate)blendsbyinversegas chromatography–phaseseparationandphasepreferences,J.Chromatogr.A 969(2002)119–132.

[29]D.P.Kamdem,B.Riedl,Inversegaschromatographyoflignocellulosicfibers coatedwithathermosettingpolymer:useofpeakmaximumandconderand youngmethods,J.ColloidInterfaceSci.150(1992)507–516.

[30]P.L.Jackson,M.B.Huglin,A.Cervenka,Useofinversegaschromatography toquantifyinteractionsinaminecuredepoxyresins,Polym.Int.35(1994) 119–133.

[31]F.M.Fowkes,J.A.Manson,T.B.Lloyd,D.O.Tischler,B.A.Shah,Inversegas chro-matographyin:D.M.Mattox(Ed.),Mater.Res.Soc.Symp.,vol.119,1988,pp. 223–234.

[32]J.Riddle,F.M.Fowkes,Spectralshiftsinacid–base chemistry.1.Vander Waalscontributions toacceptor numbers, J. Am.Chem. Soc.112 (1990) 3259–3264.

[33]A.E.Bolvari,etal.,ExperimentaltechniquesinIGC,in:D.R.Lloyd,T.C.Ward,H.P. Schreiber(Eds.),InverseGasChromatography,CharacterizationofPolymers andOtherMaterials,A.C.S.,Washington,1989,pp.12–19.

[34]M.Kunaver,etal.,Inversegaschromatography—adifferentapproachto char-acterizationofsolidsandliquids,ActaChim.Slov.51(2004)373–394.

[35]W.Zhang,A.I.Leonov,IGCstudyoffiller–fillerandfiller–rubberinteractionsin silica-filledcompounds,J.Appl.Polym.Sci.81(2000)2517–2530.

[36]A.C.Tiburcio,J.A.Manson,Acid–baseinteractionsinfillercharacterizationby inversegaschromatography,J.Appl.Polym.Sci.42(1991)427–438.

[37]C.R.Hegedus, I.L.Kamel, Thermodynamic analysis ofpigmentand poly-mersurfacesusinginversegaschromatography,J.Coat.Technol.65(1993) 31–43.

[38]Y.J.Lee,I.Manas-Zloczower,D.L.Feke,Characterizationofsolventinteractions withtreatedtitaniumdioxidepowders,PowderTechnol.73(1992)139–146.

[39]F. Chen, Study of acceptor–donor interactions at the polymer interface byinverse gaschromatography dataanalysis,Macromolecules 21(1988) 1640–1643.

[40]A.Askın,D.T.Yazıcı,Astudyofthesurfaceanalysisofsomewater-soluble polymersbyinverse gaschromatography,Surf.InterfaceAnal.40 (2008) 1237–1241.

[41]V.Ponec,Z.Knor,S.Cerny,AdsorptiononSolids,Butterworths,London,1974.

[42]M.M.Coleman,J.F.Graf,P.C.Painter,SpecificInteractionsandtheMiscibilityof PolymerBlends,TechnomicPub.Co.,Lancaster,PA,U.S.A.,1991.

[43]P.L.Huyskens,W.A.P.Luck,T.Zeegers-Huyskens,IntermolecularForces,An IntroductiontoModernMethodsandResults,Springer-Verlag,London,1991.

[44]M.Soleimani,L.Tabil,S.Panigrahi,I.Oguocha,Crystallizationandthermal propertiesofbiofiber-polypropylenecomposites,in:El-SonbatiAdel(Ed.), Thermoplastic—CompositeMaterials,InTech,Croatia,2012,pp.131–146.

[45]D.Page,T.Gopakumar,Propertiesandcrystallizationofmaleated polypropy-lene/graphiteflakenanocomposites,Polym.J.38(2006)920–929.

Referências

Documentos relacionados

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 205 215 225 235 245 255

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

A presente tese envolveu quatro objetivos específicos: i Construção de uma vacina de DNA que codifique a proteína gD do HSV-1 geneticamente fusionada à proteína p24 do HIV

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Este modelo permite avaliar a empresa como um todo e não apenas o seu valor para o acionista, considerando todos os cash flows gerados pela empresa e procedendo ao seu desconto,

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito