• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número6"

Copied!
4
0
0

Texto

(1)

RevistaBrasileiradeFarmacognosia25(2015)588–591

w w w. s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Is

phototridachiahydropyrone

a

true

natural

product?

Margherita

Gavagnin

,

Ernesto

Mollo,

Guido

Cimino

ConsiglioNazionaledelleRicerche,IstitutodiChimicaBiomolecolare,Pozzuoli,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29April2015 Accepted9July2015

Availableonline1October2015

Keywords:

Marinenaturalproducts Polypropionates Sacoglossans Tridachiahydropyrones

a

b

s

t

r

a

c

t

Theoccurrenceof(−)-phototridachiahydropyrone(5)innaturehasbeenproven.Thiscompoundhas beennowidentifiedasminorcomponentoftheextractofmarinesacoglossanmolluskElysiacrispata fromwhichthemain(−)-tridachiahydropyrone(4)waspreviouslydescribed.Synthetic(±)-5was for-merlyobtainedbyMoses’groupbybiomimeticphotochemicalconversionof(±)-tridachiahydropyrone (4).Thesameauthorssuggestedthatcompound5hadtobeanaturalproductderivedfromprecursor 4“yettobediscovered”.ComparisonofCDprofilesofnatural(−)-4and(−)-5indicatedthesame abso-luteconfigurationforbothcompounds.Thisevidenceisinagreementwiththeconcertedmechanism proposedforthephotochemicalconversion.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

The solar radiation by penetrating the sea surface strongly influencesthephysical,biologicalandchemicalprocessesofsea flora and fauna, forcing marine organisms to adopt strategies for defendingthemselvesto harmfulUV radiation (Ireland and Scheuer,1979).Thisoccursparticularlyinshallowwaterswhere theexpositiontosunlightis intense.Amongtheorganisms liv-inginhighlyphotophilichabitats,agroupofherbivorousmarine opisthobranchgastropodsbelongingtothefamilyPlakobranchidae (Mollusca:Gastropoda:Sacoglossa)areknownas“solar-powered mollusks”(Rudman,1998;Rumphoetal.,2000).Actually,these animalsassimilatechloroplastsfromsiphonaceousmarinealgae and maintainthe active organelles for several monthsin their own tissues where they carry out the photosynthesis (Jensen, 1997; Rumphoet al., 2000,2008; Evertsenet al., 2007). Natu-ralproductsfromplakobranchidsincludephoto-active␥-pyrone

polypropionate-derivedcompoundsthathavebeensuggestedto serveassunscreens toprotectthemollusks fromdamagingUV radiation (Ireland and Scheuer, 1979). The molecular network of these polypropionatesdisplays complex cyclic structures all includinga distinctive ␥-pyronemoiety bearing an ␣-methoxy

group. Starting from the first report of tridachione in the late 1970s from the Pacific Elysia (=Tridachiella) diomedea (Ireland etal.,1978;IrelandandFaulkner,1981),acertainnumberofsuch

DedicatedtoProf.RosângelaDeAlmeidaEpifanio’smemory.Shespentone

yearinourinstitutegiving,withherenthusiasm,culture,will,andrigorouswork, relevantcontributionstomarinechemistry.

∗ Correspondingauthor.

E-mail:mgavagnin@icb.cnr.it(M.Gavagnin).

␥-pyronepolypropionateshavebeen describedsofar from

dif-ferentplakobranchideanspeciescollectedindistinctgeographical areas(reviewedbyCiminoetal.,1999;CiminoandGhiselin,2009; recentreportsbyDíaz-Marreroetal.,2008;Carboneetal.,2013). Thisisinagreementwiththesuggestionthatthesemetabolites aresynthesizeddenovoratherthansimplyderivingfromdietary sources(IrelandandScheuer,1979;IrelandandFaulkner,1981; Gavagninetal.,1994b;Díaz-Marreroetal.,2008).The biosynthe-sisofpolypropionatesinplakobranchideansacoglossanshasbeen rigorouslyproveninsomespeciesbyinvivofeedingexperiments (IrelandandScheuer,1979;Gavagninetal.,1994a;Cutignanoetal., 2009).

Fourdistinctstructuralarchitecturescanberecognizedin plako-branchideanpolypropionates:1,3-cyclohexadienederivatives,e.g. 9,10-deoxytridachione (1) (Ireland and Faulkner, 1981); bicy-clo[3.1.0]hexanes, e.g. photodeoxytridachione (2) (Ireland and Scheuer, 1979); bicyclo[4.2.0] hexanes, e.g. ocellapyrone A (3) (Manzoetal.,2005;MillerandTrauner,2005);andfused pyrone-containingbicyclicringderivatives,e.g.tridachiahydropyrone(4) (Gavagninetal.,1996;Jefferyetal.,2005;Sharmaetal.,2008).

The photochemical relationship between cyclohexadiene-containingandbicyclohexene-containingsacoglossan polypropi-onateswasdemonstratedbyphotoconversionof1into2inboth

invitro(IrelandandFaulkner,1981;Zuidemaetal.,2005)andinvivo

(IrelandandScheuer,1979).Theinvitroexperimentsdemonstrated thattheconversionof1into2occurswithretentionofoptical activ-ityaccordingtothe[2a+2a]rearrangementmechanismproposed

byIrelandandFaulkner(1981).Thealternativebiradicalpathway

viaatripletexcitedstateprocesshasbeenalsosuggested(Zuidema etal.,2005).Theinvivoexperimentsledtotheobservationthat thenaturallight-dependentprocessmaynotbeenzymaticandis promptedwhentheUVradiationpenetratingthedorsalsurfaceof

http://dx.doi.org/10.1016/j.bjp.2015.07.028

(2)

M.Gavagninetal./RevistaBrasileiradeFarmacognosia25(2015)588–591 589

themolluskexceedstheabsorptionlimitsofthe␥-pyronemoiety,

consistentwiththesunscreenprotectiverolesuggestedforthese polypropionates(IrelandandScheuer,1979).Thephotochemistry ofplakobranchideanpolypropionateshasbeenextensivelystudied inthelasttenyearsandseveralsynthesesincludingbiomimetic synthesis have been appeared in the literature (reviewed by:

Beaudry et al., 2005; Miller and Trauner, 2006; Sharma et al., 2011).Based onthesestudies, ithasbeenproposedthat many complexpolypropionatemetabolitesmaybederived biosynthet-icallyfromlinearpolyeneswithallE-configuration(Mosesetal., 2003;Rodriguezetal.,2007).Allthecorecyclicstructuresshould be formedthough mechanisms involving theE–Z double bond isomerizationfollowedbythermaland/orphotochemical electro-cyclizationwith[4+2]cycloadditionreactionsor[2+2]concerted rearrangements.Supportingthishypothesis,anumberofdiverse polypropionatesfromplakobranchidshavebeensynthesized start-ing froma linear tetraene-pyroneprecursor (Eade etal., 2008; Sharmaetal.,2009).

Inthisgroupofcomplexmolecules,tridachiahydropyronesare uniquemembersexhibitingthemostinterestingandunusual struc-turalmotifswiththe␥-pyroneformingpartofthecoreframework

andtherearrangementofC-12methylgroupshiftedtotheC-13 position.Theprototype(−)-tridachiahydropyrone(4)wasisolated severalyears ago by us froma Venezuelancollection of Elysia crispata(Gavagninetal.,1996)andtheoriginallyproposed struc-ture(4a)waslaterreassignedas4bysynthesis(Jefferyetal.,2005; Sharmaetal.,2008,2009).Relatedoxidizedderivativeswerealso described fromPlacobranchus ocellatus (Fu etal., 2000; Sharma etal.,2009).

Surprisingly, biomimetic photochemical synthesis of (± )-tridachiahydropyrone (4)performedby Moses’s group(Sharma etal.,2009,2011)ledtotheadditionalunprecedented polypro-pionate(±)-5,whichwasobtainedbyphotochemicalconversion of4andnamedphototridachiahydropyrone.Theauthorssuggested thatcompound5,thestructureofwhichwassecuredbyX-ray anal-ysis,couldbeanaturalproduct“yettobediscovered”(Sharmaetal., 2009;SharmaandMoses,2010).

Now,wehavere-examinedtheextractofE.crispata,thesame as previously investigated (Gavagnin et al., 1996, 1997, 2000), withtheaim toverifythis hypothesis. A minormetabolite co-occurringwith(−)-tridachiahydropyrone(4)hadbeen detected at that time but thestructure was not determined. We report herethecharacterizationofthiscompound,justidentifiedas(− )-phototridachiahydropyrone(5).

O

OCH3 O

O

OCH3

OCH3

OCH3 OCH3

OCH3 O

1 2

3 O

O H

O O

4

O O

4a

O O

5 3

1 5 4 17

20 9

7 18

10

16 19 12

15

14

Materialsandmethods

Generalprocedures

Si-gel chromatography was performed by using precoated MerckF254platesandMerckKieselgel60powder.Optical rota-tionsweremeasuredonaJascoDIP370digital polarimeter.The UVspectraandCDcurveswererecordedonaAgilent8453 spec-trophotometer and JASCO 710spectropolarimeter, respectively. TheIRspectraweretakenonaBio-RadFTS7spectrophotometer.

1Hand13CNMRspectrawererecordedonaBrukerWM500MHz

andaBrukerAM400MHzspectrometersinCDCl3;chemicalshifts

arereportedinpartspermillionreferencedtoCHCl3 asinternal

standard(ı 7.26forprotonandı 77.00forcarbon).EI-MSspectra weremeasuredonaTRIO2000VGCarloErbaspectrometer.

Biologicalmaterial

Elysiacrispataindividuals(25animals,averagesize8cm)were collectedbySCUBAdiversoffMochima(Venezuela)atadepthof 3–10m,in November1993,asithasbeenpreviouslydescribed (Gavagninetal.,1996,1997).ThemolluskswereidentifiedbyProf. J.Ortea(UniversidaddeOviedo),immediatelyfrozenand subse-quentlytransferredtoIstitutodiChimicaBiomolecolarelaboratory, inItaly.

Purificationofphototridachiahydropyrone(5)andacquisitionof spectroscopicdata

Asithasbeenalreadyreportedinthepreviouspapers(Gavagnin etal.,1996,1997),thefrozenmaterialwasexhaustivelyextracted withacetone.Thediethylether-solubleportion(1.16g)ofthe ace-toneextractwasanalyzedbyTLCandthenfractionatedbySi-gel columnchromatography(lightpetroleumether/diethylether gra-dient)togiveaseriesofpolypropionates(Gavagninetal.,1996, 1997),including(−)-tridachiahydropyrone(4),whichwasthemain component (15.8mg)ofthefractionseluted bylightpetroleum ether/diethylether,9:1.Additionallesspolarfractionsthatwere atthattimecollectedhavebeennowcombined(10.7mg)and sub-mittedtoSi-gelchromatography(lightpetroleumether/CHCl3,6:4)

togivepurecompound5(3.5mg).

(−)-Phototridachiahydropyrone (5): oil; [␣]D −46.0◦ (CHCl3,

c=0.35);CD(n-hexane,c=3.9×10−5)

max[]:307(−7353),270

(3)

590 M.Gavagninetal./RevistaBrasileiradeFarmacognosia25(2015)588–591

O O

OMe

phototridachiahydropyrone

(5)

O O

OMe

polyene

6

O O

OMe

tridachiahydropyrone

(4)

hν

MeOH, rt MeOH, rt

+

9

4

7

Scheme1.Biomimeticconversionofpolyene6into4and5.

FromSharmaetal.(2009).

Table1

NMRdataaofphototridachiahydropyrone(5).

Carbon ıH(mult,J) ıC m HMBC(C→H)

1 – 165.7 s H3-20; OMe

2 – 87.9 s H3-20

3 – 194.8 s H-9;H3-17;H3-20

4 – 44.6 s H-7;H-9;H3-17

5 – 145.0 s H-7;H-9;H3-17;H3-19

6 – 117.4 s H-7;H3-19

7 3.08(s) 57.5 d H-9;H-11;H3-18;H3-19

8 – 131.8 s H-7;H3-18

9 5.95(s) 12.8 d H-7,H3-17;H3-18

10 – 133.4 s H-7;H2-12;H3-16

11 5.41(bt,7.1) 129.2 d H-7;H2-12;H3-16

12 1.96(dd,7.1,6.9) 37.4 t H-11;H3-14;H3-15

13 1.65(m) 28.9 d H2-12;H3-14;H3-15

14 0.91(d,6.6) 22.4 q H2-12

15 0.91(d,6.6) 22.4 q H2-12

16 1.38(bs) 11.9 q H-7;H-11 17 1.34(s) 27.6 q H-7 18 1.60(s) 21.0 q H-7;H-9 19 1.64(s) 13.1 q H-7

20 1.64(s) 6.7 q –

OMe 3.99(s) 55.0 q –

aBrukerWM500andAM400MHzspectrometers;CDCl

3;assignmentsmadeby 1H–1HCOSY,HSQCandHMBCexperiments(J=6and10Hz).

1613(broad)cm−1;UV(MeOH)

max271(ε =6400)nm;EIMS,m/z (%):330(M+,6),315(36),243(50),233(59),173(100);HREIMS,

m/z330.2210(C21H30O3requires330.2195).1Hand13CNMRin Table1.

Resultsanddiscussion

TheextractofthesacoglossanE.crispatahasbeenre-considered withtheaimtoidentifycompound5amongtheminormetabolites whichwerenotpreviouslydescribed(Gavagninetal.,1996,1997). Inparticular,thelesspolarfractionobtainedbythefirst chromato-graphicfractionationofcrudediethyletherextractofE.crispata

(Gavagninetal.,1996,1997)hasbeenre-analyzed.Further purifi-cationstepsofthisfractionhadledtotheisolationofthemain component,(−)-tridachiahydropyrone(4),aspreviouslydescribed (Gavagninetal.,1996).Aminormorepolarrelatedcompoundhad alsobeendetectedinthesamefractionatthattime(unpublished data)butitwasnotpurifiedandcharacterizedbyspectroscopic analysis.However,apreliminary1HNMRanalysisofan

unpuri-fiedsamplehadshowedastructuralrelationshipwithcompound

4.Thefractionscontainingthisunreportedcompoundhavebeen nowcombined,checkedby1HNMRandthensubmittedtoSi-gel

purificationtogive3.5mgofpure(−)-phototridachiahydropyrone (5).

Compound 5 had the molecular formula C21H3003 and the

EIMS fragmentation pattern the same as that observed for

tridachiahydropyrone(4).AnalysisofNMRspectraof5confirmed theclosestructural relationshipwith4, inparticular indicating thepresenceof thebicycliccoreincludingthe␥-pyroneringas

wellasofthelateralalkylchain.Acheckofpublisheddata (Sup-portinginformationinSharmaetal.,2009)confirmedthatnatural polypropionate5wasphototridachiahydropyrone.Fullassignment ofprotonandcarbonvaluesthatwasnotpreviouslyreportedis listedinTable1.

Asitwasmentionedbefore,(±)-phototridachiahydropyrone(5) wasanunexpectedproductformedinthecourseof photochem-icalelectrocyclicconversionof␥-pyronepolyeneprecursor6to

(±)-tridachiahydropyrone(4)underirradiation witha UVlamp (Scheme1accordingtoSharmaetal.,2009).Aselectivetandem sequenceof photochemicaltransformationswasobserved:first, theformationof4bycyclizationof6and,subsequently,the con-versionof4into5,underthesamereactionconditions.Prolonged irradiationof4resultedintothecompleteandirreversible con-versionto5suggestingthatphototridachiahydropyrone(5)isthe preferredphotochemicalproduct(Sharmaetal.,2009).

Thisconversionwassuggestedtooccurthrougha photochemi-cal1,3-sigmatropicmigrationoflateralalkylchainfromC-9toC-7 accordingtoretentionoftherelativeconfigurationofmethylatC-4 andthesidechainin5withrespectto4.

Natural(−)-phototridachiahydropyrone(5)isopticallyactive and displays the CD profile identical with that of natural (− )-tridachiahydropyrone (4) (Fig. 1) implying the same absolute configuration.However,theabsolutestereochemistryof tridachi-ahydropyronesremainstobedeterminedandthusenantiomers drawninstructures4and5havebeenchosenarbitrarily.

Theisolationofpropionate5fromE.crispatasupportstheideas thatledtopredictionsofitsexistenceinnature.Natural5,infact, couldbegenerated from4 through a concertedphotochemical mechanismaccordingtosyntheticprocess(Sharmaetal.,2009; SharmaandMoses,2010).Inthenaturalhabitat,this transforma-tionappearstobeonlypartialasindicatedbytheapproximate ratiooftridachiahydropyrones(4:5,5:1)detectedintheE.crispata

extract.ThisismostlikelyduetotheattenuationofUVlightinthe seawaterbythemaskingeffectinfluencedbyseveralfactorssuch asdissolvedorganicmaterials,depthofwater,temperature,etc.

(SharmaandMoses,2010).

(4)

M.Gavagninetal./RevistaBrasileiradeFarmacognosia25(2015)588–591 591

3.000E+04

–3.000E+04 [θ]

200.0 WL [nm] 400.0

a

3.000E+04

–4.000E+04 [θ]

200.0 WL [nm] 400.0

b

Fig. 1.CD curves []of (a) (−)-phototridachiahydropyrone (5) and (b) (− )-tridachiahydropyrone(4).

Authorscontributions

EMcontributedinrunningthepurificationwork.MGsupervised thelaboratorywork,analyzedspectroscopicdata,anddraftedthe paper.GCcontributedtoanalysisofthedataandtocriticalreading ofthemanuscript.Alltheauthorshavereadthefinalmanuscript andapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

Thisresearchworkwaspartiallyfinanced byPORCampania FESR2007–2013–Project“FARMABIONET:Reteintegrataperle BiotecnologieApplicateamolecoleadattivitàfarmacologica”.

References

Beaudry,C.M.,Malerich,J.P.,Trauner,D.,2005.Biosyntheticandbiomimetic elec-trocyclizations.Chem.Rev.105,4757–4778.

Carbone,M.,Muniain,C.,Castelluccio,F.,Iannicelli,O.,Gavagnin,M.,2013.First chemicalstudyofthesacoglossanElysiapatagonica:isolationofa␥-pyrone propionatehydroperoxide.Biochem.Syst.Ecol.49,172–175.

Cimino,G.,Fontana,A.,Gavagnin,M.,1999.Marineopisthobranchmolluscs: chem-istryandecologyinsacoglossansanddorids.Curr.Org.Chem.3,327–372. Cimino,G.,Ghiselin,M.T.,2009.Chemicaldefenseandtheevolutionof

opistho-branchgastropods.Proc.Calif.Acad.Sci.60,175–422.

Cutignano,A.,Cimino,G.,Villani,G.,Fontana,A.,2009.Shapingthe polypropi-onatebiosynthesisinthesolar-poweredmolluscElysiaviridis.ChemBioChem 10,315–322.

Díaz-Marrero,A.R.,Cueto,M.,D’Croz,L.,Darias,J.,2008.Validatingand endoper-oxideasakeyintermediateinthebiosynthesisofelysiapyrones.Org.Lett.10, 3057–30060.

Evertsen,J.,Burghardt,I.,Johnsen,G.,Wägele,H.,2007.Retentionoffunctional chloroplastsinsomesacoglossansfromtheIndo-PacificandMediterranean. Mar.Biol.151,2159–2166.

Eade,S.J.,Walter,M.W.,Byrne,C.,Odell,B.,Rodriguez,R.,Baldwin,J.E.,Adlington, R.M.,Moses,J.E.,2008.Biomimeticsynthesisofpyrone-derivednatural prod-ucts:exploringchemicalpathwaysfromauniquepolyketideprecursor.J.Org. Chem.73,4830–4839.

Fu,X.,Hong,E.P.,Schmitz,F.J.,2000.Newpolypropionatepyronesfromthe Philip-pinesacoglossanmolluscPlacobranchusocellatus.Tetrahedron56,8989–8993. Gavagnin,M.,Marin,A.,Mollo,E.,Crispino,A.,Villani,G.,Cimino,G.,1994a. Sec-ondarymetabolitesfromMediterraneanElysioidea:originandbiologicalrole. Comp.Biochem.Physiol.108B,107–115.

Gavagnin,M.,Spinella,A.,Castelluccio,F.,Arnaldo,M.,Cimino,G.,1994b. Polypropi-onatesfromtheMediterraneanmolluskElysiatimida.J.Nat.Prod.57,298–304. Gavagnin, M., Mollo,E., Cimino, G.,Ortea,J., 1996. Anew␥

-dihydropyrone-propionatefromtheCaribbeansacoglossanTridachiacrispata.TetrahedronLett. 37,4259–4261.

Gavagnin,M.,Mollo,E.,Montanaro,D.,Castelluccio,F.,Ortea,J.,Cimino,G.,1997. AnoveldietarysesquiterpenefromthemarinesacoglossanTridachiacrispata. Nat.Prod.Lett.10,151–156.

Gavagnin,M.,Mollo,E.,Montanaro,D.,Ortea,J.,Cimino,G.,2000.Chemicalstudies ofCaribbeansacoglossans:dietaryrelationshipswithgreenalgaeandecological implications.J.Chem.Ecol.26,1563–1578.

Ireland,C.,Faulkner,D.J.,Solheim,B.A.,Clardy,J.,1978.Tridachione,a propionate-derivedmetaboliteoftheopisthobranchmolluscTridachielladiomedea.J.Am. Chem.Soc.100,1002–1003.

Ireland,C.,Scheuer,P.J.,1979.Photosyntheticmarinemollusks:invivo14C incorpo-rationintometabolitesofthesacoglossanPlacobranchusocellatus.Science205, 922–923.

Ireland,C.,Faulkner,D.J.,1981.ThemetabolitesofmarinemolluscsTridachiella diomedeaandTridachiacrispata.Tetrahedron37(Suppl.1),233–240. Jeffery,D.W.,Perkins,M.V.,White,J.M.,2005.Synthesisoftheputativestructureof

tridachiahydropyrone.Org.Lett.7,1581–1584.

Jensen,K.,(PhDthesis)1997.Systematics,PhylogenyandEvolutionoftheSacoglossa (Mollusca,Opisthobranchia).ZoologiskMuseum,University ofCopenhagen, Denmark.

Manzo,E.,Ciavatta,M.L.,Gavagnin,M.,Mollo,E.,Wahidulla,S.,Cimino,G.,2005. New␥-pyronepropionatesfromtheIndianOceansacoglossanPlacobranchus ocellatus.TetrahedronLett.46,465–468.

Miller,A.K.,Trauner,D.,2005.Miningthetetraenemanifold:totalsynthesisof com-plexpyronesfromPlacobranchusocellatus.Angew.Chem.Int.Ed.44,4602–4606. Miller,A.K.,Trauner,D.,2006.Mappingthechemistryofhighlyunsaturatedpyrone

polyketides.Synlett14,2295–2316.

Moses,J.E.,Baldwin,J.E.,Brückner,S.,Eade,S.J.,Adlington,R.M.,2003.Biomimetic studiesonpolyenes.Org.Biomol.Chem.1,3670–3684.

Powell,K.J.,Sharma,P., Richens,J.L.,Davis, B.M.,Moses,J.E.,O’Shea, P.,2012. Interactionsofmarine-derived␥-pyronenaturalproductswithphospholipid

membranes.Phys.Chem.Chem.Phys.14,14489–14491.

Rodriguez,R.,Adlington,R.M.,Eade,S.J.,Walter,M.W.,Baldwin,J.E.,Moses,J.E., 2007.TotalsynthesisofcyerceneAandthebiomimeticsynthesisof(± )-9,10-deoxytridachioneand(±)-ocellapyroneA.Tetrahedron63,4500–4509. Rudman,W.B.,1998.Solar-PoweredSeaSlugs.SeaSlugForum.AustralianMuseum,

Sydney,http://www.seaslugforum.net/find/solarpow.

Rumpho,M.E.,Summer,E.J.,Manhart,J.R.,2000.Solar-poweredseaslugs, Mol-lusc/algalchloroplastsymbiosis.PlantPhysiol.123,29–38.

Rumpho,M.E.,Worful,J.M.,Lee,J.,Kannan,K.,Tyler,M.S.,Bhattacharya,D.,Moustafa, A.,Manhart,J.R.,2008.HorizontalgenetransferofthealgalnucleargenepsbO tothephotosyntheticseaslugElysiachlorotica.Proc.Natl.Acad.Sci.U.S.A.105, 17867–17871.

Sharma,P.,Griffiths,N.,Moses,J.E.,2008.Biomimeticsynthesisandstructural reass-ignmentrevisionof(±)tridachiahydropyrones.Opt.Lett.10,4025–4027. Sharma,P.,Lygo,B.,Lewis,W.,Moses,J.E.,2009.Biomimeticsynthesisandstructural

reassignmentofthetridachiahydropyrones.J.Am.Chem.Soc.131,5966–5972. Sharma,P.,Moses,J.E.,2010.Photochemicalstudiesofthetridachiahydropyrones

inseawater.Synlett,525–528.

Sharma,P.,Powell,K.J.,Burnley,J.,Awaad,A.S.,Moses,J.E.,2011.Totalsynthesisof polypropionate-derived␥-pyronenaturalproducts.Synthesis18,2865–2892.

Imagem

Table 1 NMR data a of phototridachiahydropyrone (5). Carbon ı H (mult, J) ı C m HMBC (C→H) 1 – 165.7 s H 3 -20; OMe 2 – 87.9 s H 3 -20 3 – 194.8 s H-9; H 3 -17; H 3 -20 4 – 44.6 s H-7; H-9; H 3 -17 5 – 145.0 s H-7; H-9; H 3 -17; H 3 -19 6 – 117.4 s H-7; H
Fig. 1. CD curves [  ] of (a) (−)-phototridachiahydropyrone (5) and (b) (−)- (−)-tridachiahydropyrone (4).

Referências

Documentos relacionados

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

- The speci- mens cited above constitute a fine series of this rare species, which has not been previously reported from Brazil.. The seven collections reported

A compound recessive mutation has been described previously in a female patient in which one of the mutations was located in the conserved region of the last transmembrane domain

La intensificación en la cuenca que drena al Área Protegida Esteros de Farrapos, significó para el período de 13 años (1998 a 2011), invertir la relación de usos, desde una

O estagiário será avaliado pelo professor orientador, pelo professor de estágio e pelo professor formador em todos os processos e etapas do estágio. Sua nota será

aerugi- nosa exhibited the highest biofilm formation level, significantly more than other strains ( Fig. aureus being the selected reference strains. On the other hand, the assay

One of them obtained from an ethyl acetate:hexane (5:95) fraction (PDEF 3), revealed an intense citrus, fragrant, woody and marine odor, similar to the observed in the fresh

In situ Raman imaging analysis from Phyllogorgia dilatata tissues: (A) off-white tissue; (B) purple and off-white tissue and (C) purple tissue.. The chemical maps are colored