• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número6"

Copied!
5
0
0

Texto

(1)

w w w. s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Amphidinolide

P

from

the

Brazilian

octocoral

Stragulum

bicolor

Thiciana

S.

Sousa

a,1

,

Genoveffa

Nuzzo

b,1

,

Maria

C.M.

Torres

a

,

Norberto

P.

Lopes

c

,

Adele

Cutignano

b

,

Paula

C.

Jimenez

d

,

Evelyne

A.

Santos

a

,

Bruno

A.

Gomes

a

,

Angela

Sardo

b

,

Otilia

D.L.

Pessoa

a

,

Leticia

V.

Costa-Lotufo

e

,

Angelo

Fontana

a,∗

aDepartamentodeQuímicaOrgânicaeInorgânica,UniversidadeFederaldoCeará,Fortaleza,CE,Brazil

bCNR,IstitutodiChimicaBiomolecolare,Bio-OrganicChemistryUnit,Pozzuoli,Naples,Italy

cNúcleodePesquisaemProdutosNaturaiseSintéticos,FaculdadedeCiênciasFarmacêuticasdeRibeirãoPreto,UniversidadedeSãoPaulo,RibeirãoPreto,SP,Brazil dDepartamentodeCiênciasdoMar,UniversidadeFederaldeSãoPaulo,Santos,SP,Brazil

eDepartamentodeFarmacologia,InstitutodeCiênciasBiomédicas,UniversidadedeSãoPaulo,SãoPaulo,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received15June2015 Accepted17August2015 Availableonline9October2015

Keywords: Symbiont

Marinenaturalproduct Chromatography

Nuclearmagneticresonance Marineecology

a

b

s

t

r

a

c

t

Dinoflagellatesareanimportantsourceofuniquebioactivesecondarymetabolites.Symbioticspecies, commonlynamedzooxanthellae,transfermostoftheirphotosyntheticallyfixedcarbontotheirhost. Themutualisticrelationshipprovidestheorganicmetabolitesusedforenergyproductionbutthereare veryfewreportsoftheroleofthedinoflagellatesintheproductionofsecondarymetabolitesinthe symbioticassociation.Coralsandotherrelatedcnidariansarethemostwell-knownanimalscontaining symbioticdinoflagellates.InthepresentpaperwedescribetheisolationofamphidinolideP(1)fromthe octocoralStragulumbicoloranditsprey,thenudibranchMarionialimceana,collectedoffthecoastsof Fortaleza(Ceará,Brazil).Thecoralextractsalsocontained3-O-methylderivative(2)ofamphidinolide P,togetherwithminorcompoundsstillunderinvestigation.Amphidinolideshavebeensofarreported onlyinlaboratoryculturesofAmphidiniumsp.,thuscompounds1and2representsthefirstidentification ofthesepolyketidesininvertebrates.Thefindingprovesthepossibilitytoisolateamphidinolidesfroma naturalsymbiosis,enablingfurtherbiologicalandbiotechnologicalstudies.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Manymarineinvertebrateshostsymbioticdinoflagellates, com-monly referred to as zooxanthellae, which provide nutritional requirementsin the form of photosynthetic products and also facilitatetheassimilationofdissolvedinorganicnitrogen(Hallock, 2001;Kitaetal.,2010).Dinoflagellatesareunicellulareukaryotes whichexhibita greatdiversity offormandlifestyle.Free living species are an important source of natural products, including marinetoxinsandbioactivecompounds(Wang,2008;Bluntetal., 2012),whereassymbioticmicroalgaehavebeenoftensuggested toberesponsiblefortheproductionofsecondarymetabolitesin marineinvertebrates,especiallycnidariansandporifera(Kobayashi and Ishibashi, 1993; Kobayashi and Kubota, 2010; Mydlarz etal.,2003).Symbioticcommunityofdinoflagellatescomprisesa

∗ Correspondingauthor.

E-mail:afontana@icb.cnr.it(A.Fontana).

1Theseauthorshaveequallycontributedtothiswork.

heterogeneousgroupofmanystrainsandspeciesthatinpartcan beisolated(AndersenandKawachi,2005).Althoughsomeofthese isolateshaveproventobeabletosynthesizesecondarymetabolites inlabculture(Kelleretal.,1987),thesymbioticassociationimposes abilateralexchangebetweenhostandsymbionts,whichleadsto productionofmetabolitesthatarenotgenerallyformedbyeither organismseparately(Trench,1993).Thus,synthesisofsecondary metabolitesbyzooxanthellaeinhospiteremainsanopenquestion.

Amphidiniumisa widespreadgenusof dinoflagellates,found

in temperate and tropical marine waters, in both free-living benthicandendosymbioticstates.Amphidiniumspeciesareoften amongstthemostabundantdinoflagellatesinbenthicecosystems, and a few species are knownas a prolific sourceof secondary metabolites. Symbiotic strains of thegenus have been isolated from the Okinawan flatworm Amphiscolops sp. (Kobayashi and Tsuda,2004).Alongseveralgenerations,laboratoryculturesofthis dinoflagellatehaveproducedanumberofbioactivemacrolactones designatedasamphidinolides(Kobayashi,2008).Thefamily–to datealmost40members–showsavarietyofbackboneskeletons and ring size from 12 to 29 atoms. Furthermore, due to their

http://dx.doi.org/10.1016/j.bjp.2015.08.010

(2)

diversefunctionality, stereochemical complexity and promising cytotoxicity activity, amphidinolides have been also subject of manychemicalsyntheses(KobayashiandKubota,2010).

AspartofaBilateralProgramonidentificationandbiosynthesis ofbioactivemetabolitesfromBrazilianmarineorganisms,wehave recentlystudiedthechemicalcompositionandcytotoxicactivityof theextractoftheoctocoralStragulumbicolor(Octocorallia: Clavu-lariidae)(BumbeeranddaRocha,2012).Theaimofthisworkisto describetheidentificationofamphidinolideP(1)(Ishibashietal., 1995)anditsderivative3-O-methylamphidinolideP(2)fromthe invertebrateandfromitspredator,thenudibranchMarionia lim-ceana.

O

O O

14

3 19 5 3

1

18 7 8

9

14 11 12

13 15

16 17 21 20

22

O O

O O O

OH OMe

1

2

Materialsandmethods

General

OpticalrotationsweremeasuredonaJascoP-2000 Polarime-ter.UVspectrawereacquiredonaJascoV-650spectrophotometer. High resolution electrospray ionization mass spectra (HRES-IMS)wereacquiredonaQ-ExactiveHybridQuadrupole-Orbitrap Mass Spectrometer(Thermo Scientific) or AmaZonSL (Bruker®

–Billa Rica,USA)instrument. 1H(600MHz)and 13C(150MHz)

NMR spectra were performed on a Bruker Avance DRX 600 equippedwitha cryoprobe.Chemicalshifts valuesarereported in ppm (␦) and referenced to internal signals of residual protons (C6D6 1H ␦ 7.15, 13C 128.0ppm). Solid phase

extrac-tion was carried out with polystyrene–divinyl benzene resin (CHROMABOND® HR-X). Silica gel chromatography was

per-formedusingprecoatedMerckF254platesandMerckKieselgel60 powder.

Samplecollection

Stragulumbicolorwascollectedontheundersideofbeachrocks intheintertidalzonealong Capongabeach(04◦02S3811W)

located61kmeastfromFortaleza,Ceará,Brazil.Specimen identi-ficationwascarriedoutbyProf.TitoMonteirodaCruzLotufoat UniversityofSãoPaulo,andavouchersample(ColBIOTL1364e ColBIOTL1365)weredepositedatthe“Prof.EdmundoF.Nonato” collectionintheOceanographicInstituteoftheUniversityofSão Paulo(Brazil).FirstsamplingwascarriedinAugust2013,andthe octocoralwascollectedalong withitspredator,thenudibranch

Marionialimceana.ThemolluscwasidentifedbythebiologistFelipe deVasconcelosSilvaoftheFederalUniversityofCeará(Fortaleza, Brasil).Colonieswerewashedwithsterileseawaterand keptin iceuntilMeOH extractionin thelaboratory. InApril 2014,new sampleswerecollectedaimedtoisolationofassociatedmicroalgae byusingtheprotocoldescribedbyAndersenandKawachi(2005). Thecoloniesweretransportedtothelaboratoryinsterileseawater andkeptinice.Afteravigorouslyagitation,thesupernatantwas collectedinaPetridish,anddinoflagellateswereisolatedwitha micropipetteunderinvertedmicroscopy(200×).Eachsamplewas

transferredtoa24multiwellplatecontainingKmedium(Keller

etal.,1987)andmaintainedat23◦Cunderaphotoperiodof12h

(light):12h(dark).

Cytotoxicactivity

Cytotoxicitywasevaluatedagainsttheadenocarcinomacolon cancer cell line HCT-116 (ATCC CCL-247TM). Cells were

main-tainedinRPMI1640mediumsupplementedwith10%fetalbovine serum(v/v),2mMglutamine,100U/mlpenicillin,100␮g/ml strep-tomycin at 37◦C under a 5% CO2 atmosphere. Extracts and

fractions were tested at concentrations ranging from 0.001 to 50␮g/ml, while compounds (1 and 2)were tested at concen-trations ranging from 0.001 to 25␮M during 72h. The effect on cell proliferation was evaluated in vitro using the MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromide] assay,asdescribedbyMosmann(1983).Doxorubicinwasusedas positive control.IC50 (the concentrationthatinhibitsgrowthin

50%)valueswerecalculated,alongwiththerespective95%CI (con-fidenceinterval),bynon-linearregressionusingGraphPadPrism 5.0.

Extractionandisolationofmetabolites

TheoctocoralcoloniesweresuccessivelyextractedwithMeOH (3×100ml).Thisdryextract(250mg)wasresuspendedin1.5ml

waterandfractionatedon2.5gHR-Xresinbyelutionwith90ml H2O,60mlCH3CN/H2O7:3,45mlCH3CNand45mlCH2Cl2/CH3OH

9:1(Cutignanoetal.,2015).TheactiveCH3CNfraction(11.2mg)

waschromatographedonsilicagelwithagradientofdiethylether inpetroleumethertogivetwelvefractions(A–L).FractionFandH containedcompound2(0.1mg)and1(0.5mg)respectively.LC–MS andNMR analysesoffractionJ,KandLrevealedminoranalogs whoseinvestigationiscurrentlyinprogress.

AmphidinolideP(1):colorlessoil;[␣]25

D+12.8(c0.04,MeOH);

UV(MeOH)max(ε)225(26,452),231(28,101),239(18,095)nm;

HRESIMS[M+Na]+m/z397.1982(calcdforC

22H30O5Na397.1991).

3-O-Methyl-amphidinolideP(2):colorlessoil;UV(MeOH)max

(ε) 225 (16,452), 231 (18,101), 239 (12,095) nm; 1H and 13C

NMRdataseeTable2;HRESIMS[M+Na]+m/z411.2149(calcdfor

C23H32O5Na411.2147).

Massspectrometryanalysis(ESI-MS/MS)

Comparativeanalysisofnudibranchextractsandpure1was performedonAmaZonSL(Bruker®BillaRica,USA)instruments.

Nitrogenwasusedasanebulizing(10psi)anddryinggas(5l/min, 180◦C)whilethecapillaryhighvoltagewassetto3.5kVandtheend

plateat500V.Sampleswereinfused(5␮l/min)bysyringepump (Bruker®BillaRica,USA).

Resultsanddiscussion

Stragulum bicolor belongs toa recently described genusand

speciesofoctocoralthatcommonlyoccursalongtheshallowwaters oftheBraziliancoasts(BumbeeranddaRocha,2012).Thespecies hasattractedmuchattentionforitssuspectedinvasivenaturebut sofarthereisnoreportofsecondarymetabolitesfromthis organ-ism.Theoctocoralisalsothemaincomponentofthedietofthe newspeciesofnudibranchMarionialimceana(Nudibranchia: Tri-toniidae)(Silvaetal.,2013).Bothinvertebrateswerecollectedin theintertidalzoneofthebeachrocksonthecoastofCapongaBeach (Cascavel, Ceará,Brazil)in August2013.Thecnidarianand two specimensofnudibranchswereextractedbyMeOH.Theorganic extractofS.bicolorwasfurtherfractionatedusinganovel proto-colofsolidphase extraction(SPE)basedonpolystyrene-divinyl benzenecolumns(CHROMABOND®

(3)

Table1

Cytotoxicactivityofextracts,SPE-HRXfractions(#1–#4)andpurecompounds1

and2fromtheoctocoralStragulumbicolorandofthemethanolextractofthe nudi-branchMarionialimceana.ValuesareexpressedasIC50in␮g/mlagainstthecolon

adenocarcinomacelllineHCT-116.

Sample IC50

CI95%(␮g/ml)

S.bicolor(methanolextract) 0.505 0.24–1.07 S.bicolor(Fraction#1) >50 S.bicolor(Fraction#2) >50 S.bicolor(Fraction#3) 12.44 S.bicolor(Fraction#4) >50 AmphidinolideP(1) >25a

3-O-Methyl-amphidinolideP(2) 12.15a

6.98–21.17

M.limceana(methanolextract) 47.20

3.46–643.8

Doxorubicin 0.02a

0.02–0.03

aThesevaluesareexpressedinMconcentration.

ExtractsandfractionsofS.bicolorwerescreenedforcytotoxicity usingtheMTTassayonadenocarcinomacelllineHCT-116and rel-evantcytotoxicity(>80%inhibition)wasfoundonlyinthefraction elutedbyCH3CN(Table1).Thismaterialwasfurtherfractionated

onsilicagelcolumnwithanelutiongradientofdiethyletherin petroleumethertogiveamphidinolideP(1,0.5mg),its3-O-methyl derivative(2,0.1mg)andanumberofminorcompoundsthatare stillunderinvestigation.

Compound 1 was identified by NMR analysis and compari-son of theresulting NMR and MS datawith those reported in theliterature(Ishibashietal.,1995;Trostetal.,2005)whereas, despitetheclearstructuralrelationship,theassignmentof com-pound 2 required an accurate spectroscopic study. In fact, the

1HNMRspectrumofcompound2wasratherdifferentfromthat

of 1 mainlyfor what concernedthe presenceof a methyl sin-gletat3.20ppmandthedistributionoftheallylicprotonsaround 2.5ppmandmethylsignalsbetween0.84 and0.93ppm(Fig.1). However,2D-NMRexperimentsallowedanunambiguous charac-terizationofallspinsystemsaccordingtothedepictedstructure (Table2).

RecollectionofS.bicolorfromdifferentsitesoffCearácoastin April2014confirmedthepresenceofamphidinolideP(1)inthe tis-sueofthecnidarian.Furthermore,fullscanESI-MSanalysiscarried outbydirectinfusionofthemethanolextractofthenudibranchM. limceanacollectedupontheoctocoralshowedamajorionspecies atm/z397.2(C22H30NaO5+)(Fig.2).TheMS/MSfragmentation

pat-ternofthisionwassuperimposabletosodiatedamphidinolideP(1) thatgavetwoseriesoffragmentsarisingbyeitherneutrallossof water(m/z379.2)orsequentiallossofCO2,waterandketene(m/z

353.2,335.2and311.2,respectively)(seeSupportingInformation) accordingtothemechanismpreviouslydescribedforthe polyke-tidestetronasinandmycolactone(Fonsecaetal.,2004;Hongetal., 2003).

Likeothermembersofthefamily(KobayashiandKubota,2010), amphidinolideP(1)hasbeenneverreportedfromothersources exceptforthelaboratoryculturesofthedinoflagellateAmphidinium

sp.Thus,thepresenceofamphidinolideP(1)intheoctocoralisthe firstreportofthisclassofmacrolidesininvertebratesand,tothe bestofourknowledge,inafieldsample.S.bicolorhostsarichand apparentlyuncultivablecommunityofdinoflagellates.Analysisof theinhospitegroupofzooxanthellaeofS.bicolorcollectedinApril 2014revealedamajorpresenceofasingletypeofdinoflagellate cellthatwasisolatedandmaintainedforseveralweeksinmultiwell platesbyusingdifferentculturemedia(k,f/2andsupplementedES). Unfortunatelythecells,whoseidentityisstillunderdetermination,

Table2

1Hand13CNMRspectroscopicdataofamphidinolideP(1)and3-O-methyl-amphidinolideP(2).

1a,b 2a

No. ␦H(multi,JinHz) ␦C ␦H(multi,JinHz) ␦C

1 172.3 168.7

2 2.27,d(12.0)

2.36,d(12.0)

44.7 2.44,d(12.5)

2.57,d(12.5)

44.9

3 99.0 100.7

4 1.94,m 45.1 1.98,m 47.7

5 – 143.5 – 143.8

6 2.09,dd(12.0,12.0)

2.51,dd(2.5,12.0)

38.9 2.11,dd(12.0,12.6)

2.51,dd(2.5,12.6)

39.1

7 3.46,m 73.3 3.13,ddd(2.5,3.0,

8.0)

74.1

8 2.61,dd(2.0,8.0) 62.3 2.71,dd(2.0,8.0) 63.2

9 2.47,dd(2.0,8.0) 57.4 2.57c 56.7

10 2.17,dd(8.0,14,0)

2.64,d(14.0)

36.2 2.19,dd(9.0,14,0)

2.74,d(14.0)

36.0

11 142.7 140.8

12 6.19,d(15.0) 133.4 6.33,d(15.0) 134.8

13 5.59,dd(8.0,15.0) 128.8 5.57,dd(8.0,15.0) 129.1

14 5.29,t(8.0) 78.1 5.33,t(8.0) 78.1

15 2.42,m 45.0 2.47,m 44.6

16 – 146.5 – 146.8

17 4.87,brs

4.88,brs

111.9 4.87,brs

4.90,brs

111.7

18 0.91,d(7.0) 11.4 0.84,d(7.0) 10.7

19 4.76,s

4.81,s

109.5 4.69,s

4.77,s

108.6

20 4.80,s

4.93,s

117.6 4.86,s

4.91,s

119.0

21 0.90,d(7.0) 16.0 0.93,d(7.0) 16.2

22 1.66,s 19.4 1.71,s 19.1

OMe – – 3.20,s 49.5

aDataweremeasuredinC

6D6at600MHz.

(4)

6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

Fig.1.1HNMRspectra(C

6D6,600MHz)ofcompounds1(top)and2(bottom).

remainedintheirnon-motileformandanyattempttogrowthem turnedouttobeunsuccessfulsofar.Itisworthnotingthatdespite thecommonbeliefthatmanysecondarymetabolitesisolatedfrom invertebratesmaybeproducedbysymbioticzooxanthellae,only theoriginoftheterpeneglycosidespseudopterosinsfromthesoft coralPseudopterogorgiaelisabethaehasbeenrigorouslytracedback

toasymbioticdinoflagellateofthegenusSymbiodinium(Mydlarz etal.,2003;Boehnleinetal.,2005).

Amphidinolidesarepotentanticanceragentsandsomeofthem exhibitedcytotoxicitytocancercelllinesinsub-nanomolarrange (KobayashiandTsuda,2004).Althoughpreviousstudiesindicated amoderate cytotoxicityfor amphidinolideP(1)(Kobayashiand

100 200 300 400 m/z

0.0 0.2 0.4

0.00

250 300 350 400 m/z

0.25 0.50 0.75 1.00 1.25

335.2

311.2 379.2

OH

(1)

O O

O O

m/z 311.2

m/z 379.2

m/z 353.2

M+ Na+

397.24 353.2

0.6 0.8 1.0 Intens. x107

Intens. x106

(5)

Tsuda,2004; Kobayashi,2008), theproductof S.bicolordidnot showanyactivityagainstadenocarninomacoloncancerHCT-116 cells,whilecompound2wasonlymoderatelyactive,presentingan IC50of12.2␮M.

Inconclusion,wehaveidentifiedamphidinolideP(1)andits derivative3-O-methylamphidinolideP(2)intheoctocoralS.bicolor

evenifthelatterproductisprobablyanartifactthatarises dur-ingextractionwithMeOH.Amphidinolideshavebeenrecognized aspotentanticanceragents(KobayashiandTsuda,2004)but com-pounds1and2didnotshowsignificantcytotoxicity.Sincethepure compoundswereless activethanrawfractionsoftheoctocoral (Table1),itisconceivablethatotherminoramphidinolidescould bepresentinthetissueoftheinvertebrate.Thisbringsintodebate thesynthesisofsecondarymetabolitesbyS.bicolorandthe uncul-tivablestrainofaputativeAmphidiniumsymbiont.Infact,despite theprimaryecologicalrelevanceoftheinteractionbetween cnidar-iansanddinoflagellatealgae(Davyetal.,2012),theisolationof1is thefirstandsofaronlyevidenceaboutproductionofapolyketide byasymbioticassociation.ItisworthnotingthatamphidinolideP (1)hasbeenrecoveredfromthecoraltissuesinamountfarhigher thanthatreportedfromculturesofAmphidiniumisolate(0.25%w/w intheoctocoralextractfor1and0.005%w/wintheextractofthe dinoflagellatepellet)(Ishibashietal.,1995).Thisapparentincrease intheproductionofthesecondarymetabolitesisinagreementwith thesymbioticoriginoftheproductsinceitiswelldocumentedthat thehostsplaysanimportantroleinregulatingthetypeandthe quantityofmetabolitesproducedbythesymbiont(Trench,1993; GordonandLeggat,2010).Furthermore,occurrenceof amphidi-nolidesinanaturalassemblageopenstotheintriguingpossibility tofindcompoundsdifferentfromthosesofarreportedfrompure culturesofthedinoflagellate,aswellasraisesaquestionaboutthe ecologicalorphysiologicalroleofthesecompounds.Tothisregards, thepresenceofamphidinolideP(1)intheextractofthenudibranch provesthedietarydependenceofthetwoanimalsandprovidesthe firstevidenceoftransferofthisclassofsecondarymetabolitesalong thetrophicmarinelevels.Thisfindingalsosuggeststhatthese com-poundsmaynothaveinthecoraladefensiveroleagainstselective predators.

Authorscontributions

GN,TSSandMCMTcarriedoutpurificationandstructure eluci-dation;EAS,BAGandODLPcontributedincollectionandextraction oftheanimals;ACcontributedintheNMRandMSinvestigations; NPLcontributedinthemassspectrometryanalysisand fragmenta-tionstudiesoncrudesamples;ASisolatedthesymbiont;PCS,EAS andLVCSperformedthebiologicalassays.AFdraftedthepaper. AFand LVCL developedtheprojectand interpretedtheresults. Alltheauthorshavereadthefinalmanuscriptandapprovedthe submission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

Fundingwas provided by Bilateral Project CNR-CNPq (Italy-Brazil) “Characterization and Biosynthetic Origin of Bioactive NaturalProductsinMarineInvertebratesandAssociated Microor-ganismsfromtheNortheasternBrazilianCoasts”.Mrs.Dominique

Melck of Servizio NMR at ICB-NMR and Mr. Maurizio Zampa of Servizio Spettrometria di Massa at ICB-CNR were gratefully acknowledgedforrecordingspectra.LVCLandAFaregratefulto Prof.TitoMonteirodaCruzLotufoandFelipedeVasconcelosSilva forthetaxonomicidentification.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bjp.2015.08.010.

References

Andersen,R.A.,Kawachi,M.,2005.Traditionalmicroalgaeisolationtechniques.In: Andersen,R.A.(Ed.),Algalculturingtechniques.ElsevierAcademicPress,San Diego,CA,USA,pp.83–100.

Blunt,J.,Buckingham,J.,Munro,M.,2012.Taxonomyandmarinenatural prod-uctsresearch.In:Fattorusso,E.,Gerwick,W.H.,Taglialatela-Scafati,O.(Eds.), Handbookofmarinenaturalproducts.SpringerScience+BusinessMediaB.V., Dordrecht,pp.3–54.

Boehnlein,J.M.,Santiago-Vázquez,L.Z.,Kerr,R.G.,2005.Diterpenebiosynthesisby thedinoflagellatesymbiontoftheCaribbeangorgonianPseudopterogorgia bip-innata.Mar.Ecol.Prog.Ser.303,105–111.

Bumbeer,J.A.,daRocha,R.M.,2012.Detectionofintroducedsessilespeciesonthe nearshorecontinentalshelfinsouthernBrazil.Zoologia29,126–134. Cutignano,A.,Nuzzo,G.,Gallo,C.,Ianora,A.,Luongo,E.,Romano,G.,etal.,2015.

DevelopmentandapplicationofanovelSPE-methodforbioassay-guided frac-tionationofmarineextracts.Mar.Drugs13,5736–5749.

Davy,S.K.,Allemand,D.,Weis,V.M.,2012.Cellbiologyofcnidarian-dinoflagellate symbiosis.Microbiol.Mol.Biol.Rev.76,229–261.

Fonseca,T.,Lopes,N.P.,Gates,P.J.,Staunton,J.,2004.Fragmentationstudieson tetronasinbyaccurate-masselectrospraytandemmassspectrometry.J.Am.Soc. MassSpectrom.15,325–335.

Gordon,B.R.,Leggat,W.,2010.Symbiodinium-invertebratesymbiosesandtherole ofmetabolomics.Mar.Drugs8,2546–2568.

Hallock,P.,2001.Coralreefs,carbonatesedimentsnutrientsandglobalchange.In: StanleyJr.,G.D.(Ed.),Thehistoryandsedimentologyofancientreefsystems. Springer,NewYork,pp.387–427.

Hong,H.,Gates,P.J.,Staunton,J.,Stinear,T.,Cole,S.T.,Leadlay,P.F.,etal.,2003. IdentificationusingLC–MSnofco-metabolitesinthebiosynthesisofthe polyke-tidetoxinmycolactonebyaclinicalisolateofMycobacteriumulcerans.Chem. Commun.2003,2822–2823.

Ishibashi,M.,Takahashi,M.,Kobayashi,J.,1995.Amphidinolides0andP,novel 15-memberedmacrolidesfromthedinoflagellateAmphidiniumsp.:analysisofthe relativestereochemistryandstablesolutionconformation.J.Org.Chem.60, 6062–6066.

Keller,M.D.,Selvin,R.C.,Claus,W.,Guillard,R.R.L.,1987.Mediaforthecultureof oceanicultraphytoplankton.J.Phycol.23,633–638.

Kita,M.,Ohno,O.,Han,C.,Uemura,D.,2010.Bioactivesecondarymetabolitesfrom symbioticmarinedinoflagellates:symbiodinolideanddurinskiols.Chem.Rec. 10,57–69.

Kobayashi,J.,2008.Amphidinolidesanditsrelatedmacrolidesfrommarine dinoflag-ellates.J.Antibiot.61,271–284.

Kobayashi,J.,Ishibashi,M.,1993.Bioactivemetabolitesofsymbioticmarine microor-ganisms.Chem.Rev.93,1753–1769.

Kobayashi,J.,Kubota,T.,2010.Bioactivemetabolitesfrommarinedinoflagellates. In:Mander,L.,Lui,H.-W.(Eds.),ComprehensivenaturalproductsIIchemistry andbiology,vol.2.Elsevier,Oxford,pp.263–325.

Kobayashi,J.,Tsuda,M.,2004.Amphidinolides,bioactivemacrolidesfromsymbiotic marinedinoflagellates.Nat.Prod.Rep.21,77–93.

Mosmann,T.,1983.Rapidcolorimetricassayforcellulargrowthandsurvival: applicationtoproliferationandcytotoxicityassays.J.Immunol.Methods65, 55–63.

Mydlarz,L.D.,Jacobs,R.S.,Boehnlein,J.,Kerr,R.G.,2003.Pseudopterosin biosyn-thesisinSymbiodiniumsp.,thedinoflagellatesymbiontofPseudopterogorgia elisabethae.Chem.Biol.10,1051–1056.

Silva,F.V.,Meirelles,C.A.O.,Matthews-Cascon,H.,2013.Anewspeciesof Mario-nia(Opistobranchia:NudibranchiaTritoniidae)fromthetropicalSouthAtlantic ocean.J.Mar.Biol.Assoc.UK93,1617–1624.

Trench,R.K.,1993.Microalgal-invertebratesymbioses–areview.Endocytobiosis CellRes.9,135–175.

Trost,B.M., Papillon,J.P.N., Nussbaumer, T., 2005.Ru-catalyzed alkene-alkyne coupling. Total synthesis of amphidinolide P. J. Am. Chem. Soc. 127, 17921–17937.

Imagem

Fig. 2. Full-scan ESI-MS by direct infusion of the MeOH extract of the nudibranch M. limceana

Referências

Documentos relacionados

In situ Raman imaging analysis from Phyllogorgia dilatata tissues: (A) off-white tissue; (B) purple and off-white tissue and (C) purple tissue.. The chemical maps are colored

The ordination of the samples by the similarities of their chromatographic traits showed the existence of three chemo- types: (i) the populations Búzios and Abrolhos which

rigida , is a cytotoxic quinone with low selectivity that induces cells death trough a mechanism that is associated, though incompletely, with the excessive generation of

Recently, about eighty unknown and/or bioactive metabolites isolated from endophytic fungi associated to marine macroalgae (Chlorophyta, Phaeophyta e Rhodophyta) were reviewed

Some compounds, identified by GC–MS in marine sponges stud- ied ( C. avara ), are widely known in the literature for the biological activities, as antiprotozoal activity ( Torres

1 shows the qualitative results of the autographic assay of acetylcholinesterase inhibition activity (AChEI), and Table 1 displays the fresh seaweed biomass weights, dried extract

The extracts of Gracilaria ornata and species belonging to the genera Dictyota and Laurencia showed activity at relatively low concentrations.. The active extracts were analyzed

This work describes the antimicrobial (including antimolli- cutes), antioxidant, and anticholinesterase activities in vitro of organic extracts from fourteen seaweed species