• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número6"

Copied!
19
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Review

Article

C

15

acetogenins

from

the

Laurencia

complex:

50

years

of

research

an

overview

Tauana

Wanke

a

,

Ana

Cláudia

Philippus

a

,

Gabriele

Andressa

Zatelli

a

,

Lucas

Felipe

Oliveira

Vieira

b

,

Cintia

Lhullier

a

,

Miriam

Falkenberg

a,∗

aProgramadePós-graduac¸ãoemFarmácia,UniversidadeFederaldeSantaCatarina,Florianópolis,SC,Brazil bCursodeGraduac¸ãoemFarmácia,UniversidadeFederaldeSantaCatarina,Florianópolis,SC,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received30April2015 Accepted21July2015 Availableonline9October2015

Keywords: Acetogenins Redalgae Laurenciacomplex Halogenatedmetabolites Bromoethers

a

b

s

t

r

a

c

t

Acetogenins are secondary metabolites derived from the polyketidepathway and their potential roleaschemotaxonomicalmarkersforredalgaebelongingtotheLaurenciacomplexhasbeenlong pointedout.C15acetogeninsfromalgaearequitedifferentfromplantacetogenins:theyareusually

halogenated,and haveanenyneora bromoalleneterminal group.Sincethey werefirstreported, laurencinandotheralgalacetogeninshaveinspiredgreatcuriosityamongnaturalproductchemists and also those working with synthesis. This paper reviews the literatureabout C15 acetogenins,

focusing on theirdistribution, chemical and biologicalaspects,including theirreported biological activities.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Acetogeninsarealargegroupofnonterpenoidmoleculesthat originate in the polyketide pathway (Dembitsky et al., 2003). Theyarerelativelycommonincertainplantfamilies, especially Annonaceae,and are wellknown for theirbiological activities. Annonaceousacetogeninsarelargermolecules(C35orC37)

bear-ingethergroups,butusuallynohalogen(Liawetal.,2010).Among marinealgae,acetogeninsaremostly halogenated,andare gen-erallythoughttooriginatefromacommonC15precursorderived

fromaC16fattyacid(Wangetal.,2013).Acetogeninsare

recog-nizedaschemotaxonomicmarkersforredalgaebelongingtothe familyRhodomelaceae,inparticular,tothegenusLaurencia(Stout andKubanek,2010).

It iswellknownthat halogenatedmetabolitesare abundant inredalgae,especiallyinLaurencia(Fenical,1981).Nevertheless, itstaxonomyisconsideredachallenge,andhasundergone sub-stantialrevision.Thisgenushasbeensubstantiallydividedsince itsoriginaldescriptioninthe19thcentury,andthedifferent gen-eraacceptedascomponentsoftheLaurenciacomplexhavebeen distinguishedas:Laurenciasensustricto,Palisada,Chondrophycus,

∗ Correspondingauthor.

E-mail:miriam.falkenberg@ufsc.br(M.Falkenberg).

YuzuruaandOsmundea(Furnarietal.,2001).Afurther monospe-cific genus was recently added: Laurenciella (Cassano et al., 2012).

Despite of a few linear compounds, most algal C15

aceto-geninsarecyclicethermetaboliteswithdifferentringsizesanda conjugatedenyne(C C C CH)orbromoallene(C C CHBr) ter-minus. Until the 1960s, alkyne groups were considered to be rare in the nature, but nowadays, it is well known that com-pounds withthe acetylenicgroupare alsoprevalent in marine organisms,particularlymicrorganismsandsponges,suchas Pet-rosiapolyacetylenesrangingfromC44toC47(MintoandBlacklock, 2008).

Currentlytherearemorethan22,000compoundsderivedfrom marinemacro-ormicrorganismsandsomemoleculesarequite stunning in their complexity (Carter and Crews, 2011). There have been comprehensive reviews of marine natural products organizedphylogenetically,whicharepublishedannually(Blunt et al., 2015and previousreports in this series). Thereare also reviewsintheliteratureonmarinepolyacetylenes(Legraveetal., 2015), bioactive compounds from marine invertebrates (Datta etal.,2015),andhalogenatedmetabolitesfromLaurencia(Cabrita etal.,2010),butthesedonotfocusonacetogenins,orelsethey omit some important points about this group of metabolites. Nevertheless,someintriguingacetogeninstructureshaveinspired several groups of chemists to explore this field, through both

http://dx.doi.org/10.1016/j.bjp.2015.07.027

(2)

biosyntheticandsyntheticapproaches,withthetwoapproaches frequently converging. Dembitsky et al. (2003) reviewed the literatureonacetogeninsupto1999,but sincethen, a number of new acetogenins have been described in the literature, and the structures of some known compounds have been revised (Suyamaetal.,2011).Wangetal.(2013)includedacetogeninsin theirreviewofhalogenatedmetabolitesfromRhodomelaceae,but excludedthenon-halogenatedmetabolitesanddidnotconsider thetaxonomicreviewofthegenusLaurencia.Thepresentreview aimstoprovideageneraloverviewof50yearsofchemical and biological research on algal acetogenins, including their distri-bution, structural features, biological activities and potential ecological roles, highlighting new compounds isolated in the last15years, aswellasthetaxonomicaspectsof theLaurencia complex.

Firstreports

Laurencin(1)wasisolatedfromanalgaidentifiedasLaurencia glanduliferacollectedinJapan,anditwasthefirstC15acetogeninto

bereported(Irieetal.,1965).Sinceitsisolation,50yearsago,more than200acetogeninshavebeendescribed,mostlyofthefamily Rhodomelaceae(Dembitskyetal.,2003;Wangetal.,2013),which includestheLaurenciacomplex,butalsofromseahare(inthiscase, adietaryoriginisassumed).

It is noteworthy that the structure elucidation of the first acetogeninwasbasedoncarefulandsystematicanalysis,with com-binationofpartialstructuresdeductedfromrelativelyfewspectral data(bytoday’sstandards):1HNMR,MS,infrared(IR)andstrongly

onderivatizationprocedureswithanalysisofsuccessivereaction adductstoeliminateotherpossiblehypotheses(Irieetal.,1965, 1970).

Thecharacteristic bandsin theinfrared (IR)spectraare still usefulfordiagnosis:about3300cm−1for( C H)andfrom2000

to2300cm−1 for(C C)ofenyneorabout2000cm−1 for(=C=C)

of alleniccompounds. The NMR signals for theenyne are also

characteristic, rangingfrom 2.7 to 3.1ppm for thealkyne pro-ton and about 75–83ppm for the carbons on the triple bond (Rückeretal., 2001;Gutiérrez-Cepedaetal.,2011a,b).The bro-moallenicpartialstructure (BrHC=C=CH )canberecognizedby thecharacteristic chemical shiftsof thecarbon atoms: approx-imately 70ppm for C-1, about 200ppm for C-2, and about 100ppm for C-3; thehydrogenatoms ofC-1 and C-3correlate withacouplingconstantofabout6Hz(Gutiérrez-Cepedaetal., 2011a,b).

In the 1960s, these structural features were not common, thereforeitisnotsurprisingthatlaurencin(1)andthesubsequent

isolated acetogenins attracted great curiosity from natural product chemists. Besides spectral data from natural com-poundsandtheirderivatives,totalsynthesisbecamea common approach to structure confirmation, and some Japanese groups developed expertise in acetogenin chemistry. Irie et al. (1970) reportedalso theisolation oflaureatin (2)and isolaureatin (3) a few years later, with a similarapproach to theone used for laurencin(1).

Somedifficultiesemergedconcerningthenewnaturalproduct class after the structure of laurefucin, isolated from

Lauren-cia nipponica Yamada (Fukuzawa et al., 1972), was revised 1

year later (Furusaki et al., 1973), when X-ray crystallography established the absolute configuration, and showed that the moleculehasanoxolanering(4)insteadoftheinitiallyproposed structure(5).

In a very interesting review, Faulkner (1977, p. 1423) com-mentedabouttheacetylenesisolatedfromredalgae:“...itisnot surprisingthatseveralincorrectstructureswerecorrectedusing X-rayanalysis...Becausethesignalsduetoprotons␣tooxygen, bromineandchlorineoftenoccurinthesameregionofthe spec-trum,itisdifficulttoassignsignalsinthisregion,eventhoughit maybepossibletodetermineallvicinalandgeminalrelationships betweenprotons throughcareful spindecoupling....themajor problemwastodeterminewhichfourofsixpossiblemethine car-bonatomswereinvolvedinetherlinkagesandtodeterminethe ringsizes”.

Themaneonenes(6–9)andisomaneonenes(10and11)groups werereportedinthe1970s(Waraszkiewiczetal.,1976;Sunetal., 1976).By theearly1980s, there were about25 described ace-togenins,includingsomediscoveredout ofJapan,likethatof a LaurenciaspeciesfromtheGulfofCalifornia,Mexico(Fenical,1981). WhenErickson(1983)reviewedconstituentsofLaurencia,she ded-icatedabouta quarterof her chaptertoacetogenins thatwere alreadyconsideredchemicalmarkersofthisgenus.Itwasrecently estimatedthatacetogeninsrepresent26%(180)of697halogenated moleculesofRhodomelaceaeorigin(Wangetal.,2013)andabout 18%(32)of173non-halogenatedmetabolitesfromthecomplex Laurencia(JiandWang,2014).

Classificationofacetogenins

Acetogeninsaregenerallyclassifiedbasedonstructuralfeatures suchasthepresenceofringsandtheirsize,orthenatureofthe ter-minalgroup(enyneorbromoallene).BesidestheC15acetogenins,

afewC12acetogeninshavealsobeenreportedinalgaesofar(Li etal.,2012;Liangetal.,2012).

(3)

prevalent. One of the few exceptions is the class of linear acetogenins.

Linear

Thisclassofcompoundswasreportedinjustafewspecies,and includesnon-halogenated(Kigoshietal.,1986;JiandWang,2014) andhalogenatedmetabolites(Jietal.,2009).Mosthalogenated lin-earacetogenins beara chlorineat C-6,anoxygenatedgroupat C-7,andZ-geometryattheisolated doublebonds(Wangetal., 2013).

Tetrahydrofuran

ThisclasswasreportedmainlyforL.nipponica,Chondrophycus glandulifer(asL.glandulifera)andL.obtusa.Mostcompoundsinthis grouppresentacis-ortrans-enyneasterminus,likein laureepox-ide(12),butsomebromoallenesarealsoseen.Thecompoundsare generallybrominated,butsomehavechlorineastheonlyhalogen atom,whileothersarebromochlorinated.Becausethesidechain bearssmallringsitiseasier,inthisgroup(thaninmorecomplex acetogenins),toidentifytheoriginalacycliccompoundthatcould betheprecursorbeforethecyclizationthroughthehydroxylgroups inthesidechain.

Bis-tetrahydrofuran

ThisclasswasreportedforLaurenciaspeciesdistributedfrom theMediterraneanSeatothePacificOcean.Again,mostcompounds are brominated,and enynesare more prevalentthan bromoal-lenes.Thestructureofatleastthreecompoundsofthisgroupwas revisedafterachievingtotalsynthesis,e.g.elatenyne(previously reportedas 13, had itsstructure revisedto14)(Suyamaet al., 2011).Itisnotablethatacetogeninswithpartialstructures2,2′ -bis-tetrahydrofuranand2,7-dioxabicyclo[4.4.0]decanepresentthe sameCandHconnectivity,thereforeunambiguousstructure elu-cidation by NMR analysisalone is quite a challenge (Faulkner, 1977).

2,6-Dioxabicyclo[3.3.0]octaneand2,7-dioxabicyclo[4.3.0]nonane

Obtusin(15)wasthefirstmembertobedescribedforthe diox-abicyclooctane class, which includes just over ten compounds, mostly bromoallenic compounds, and was mainly found in L. obtusaandL.intricata.Thesecondclassincludesthevery unsta-blejaponenynesA–C(16–18)fromL.japonensis(Takahashietal., 1999).

Tetrahydropyran

Justfewmembersofthissix-memberedcyclicetherclasshave beenreportedfor theLaurenciacomplex todate:scanlonenyne (19)fromL. obtusa(Suzuki et al., 1997) andbisezakyne B (20) fromanundescribedJapaneseLaurencia(Suzukietal.,1999).Some

acetogeninsbelongingtothisclasshavebeenreportedforAplysia species,suchasthedactylyne-relatedcompounds(seeAcetogenins ofseahare).

Seven-memberedcyclicethers

These acetogenins maybemonocyclic (oxepane) or bearan additional6,9-epoxidering,asinisoprelaurefucin(21).Most com-poundsaredihalogenatedandhaveanenyneastheterminalgroup (Kurosawaetal.,1973).

Eight-memberedcyclicethers

Thisclass is themostabundant,includingthefirst reported acetogenin, laurencin (1), as well as more than 70 other metabolites. Accordingtotheringclosure system(whichmight include epoxy rings in different positions and different termi-nalgroups),itcanbedividedintosevensubclasses(Wangetal., 2013).

Nine-to12-memberedcyclicethers

Acetogeninsoftheseclassesmayalsocontainepoxyring sys-tems,and havebeenfoundamongotherspecies inL.obtusa,L. okamurae,L.nipponica,Osmundeapinnatifida(asL.pinnatifida)and Laurenciaintricata(asL.implicata),whichaffordedtheonlyknown 10-memberedcyclicether(22)(CollandWright,1989apudWang etal.,2013).Most12-memberedcyclicetherswerereportedfor L.obtusa,butsofar,therehavebeennoreportsof11-membered cyclicethers(Wangetal.,2013).

Maneonenesandisomaneonenes

This class differs from the other because the carbon chain cyclisesbackonitselftoformacarbocyclicringinmaneonenes (6–9) (Waraszkiewicz et al., 1976, 1978; Sunet al., 1976) and biscarbocyclic rings in isomaneonenes (10–11) (Waraszkiewicz etal.,1978).BothclasseswerefirstdescribedforL.nidificafrom Hawaii.

Branched

TheseacetogeninshavebeensofarreportedjustforL.

micro-cladia from Il Rogiolo, Italy, and the compounds were named

afteritas“rogiolenynes”(Guellaetal.,1992b;GuellaandPietra, 1991).

Miscellaneous

(4)

Biosynthesis

Kurosawaetal.(1972)isolatedfromL.nipponicathe nonhalo-genatedtrans-andcis-laurediols(23and24),whichwereregarded asbiosyntheticprecursorsofvariousnonterpenoidC15metabolites.

Fouracetylenicpolyenes(25–28)closelyrelatedtolaurediols(23 and24)wereisolatedfromL.okamurae(Kigoshietal.,1986)and werealsofoundtobeofbiogeneticsignificance.

Duetothecomplexvariationsthatacetogeninsmaypresent, each structural grouprequired specific studies,but those early findingswereessentialtoestablishthefirstcommonstepsofthe biosyntheticalprocess.

Eight-memberedcyclicethersarethemostabundantand struc-turally diverse C15 acetogenins. They can be divided into two

subclasses:lauthisantype,aslaurencin(1)andlaurenantype,as laureatin(2)andlaurallene(29)(Sugimotoetal.,2007).Aseries ofstudiesbytheMuraigroupledtotheproposalofabiogenetic pathwayforlaurenancompounds,includingthebromo-cationic cyclization of an acyclic precursor cis-laurediol (24) to afford prelaureatin(30),whichisconvertedtolaureatin(2)andseveral bicycliccompoundsbythesubsequentbromo-cationiccyclization (Muraietal.,1977).FukuzawaandMurai’sproposedbiosynthesis ofvariousbromoethersstemmingfrombromoniumionisshownin Scheme1.Muraihasalsoshownthatlactoperoxydasecancatalyze theformationof5-memberedethersfromlinearpolyenes,asin Scheme2(TaylorandFox,2015).Theideathatatransient bromo-niumspeciescouldbetheintermediarykeyforthebiosynthesisof severalacetogenins,throughintramolecularbromoetherification

inspiredothergroups.Accordingtothisbiogeneticpathway,the firsttotalsynthesisoflaureatin(2)wasproposedsomeyearslater (Sugimotoetal.,2007).Bromoniumionswerealsousedrecentlyto proposeabromine-inducedskeletalrearrangementofanoxocene precursortoobtaintheepoxytetrahydrofuranlaureepoxide(12) (TaylorandFox,2015).

Distributionbyspecies

Somealgaespeciesareparticularlyproficuousonthesynthesis ofacetogenins,liketheoneshighlightedabove.Speciesnotclearly

identified,butthatalsocontaininterestingstructures,areincluded onthetopic“Otherspecies”.

Chondrophycusglandulifer(asLaurenciaglandulifera)

Laurenciaglandulifera (Kützing)Kützing is a taxonomic syn-onymforChondrophycusglandulifer(Kützing)Lipkin&P.C.Silva (currentacceptednameaccordingtotheAlgaebase).Itisreported mainly in Europe,but also in theAtlantic Islands (Canary and Madeira),Indianand PacificOceans,and Asia.IntheAlgaebase, thereisjustonerecordofthis speciescollectedinJapan(Guiry andGuiry,2015).

(5)

O Br HO

H

H O Br

HO H H

Bromonium

O Br

H

Br O

H O

Br O

O

H H

OH

OO

Br

H H2O

Laurefucin

O

Cl

O

Br H

H

Notoryne Br

Et

O Br

H O

Laureoxanyne Br+

Br+

CI–

H

+

Scheme1.FukuzawaandMurai’sproposedbiosynthesisofvariousbromoethersstemmingfrombromonium.

Scheme2.ProposedbiosynthesisofbrominatedTHF’sfromlinearpolyenes.

asL.glandulifera,collectedinOshoroBay,Hokkaido,Japan(1965). Inapaperonthebiosynthesisofbrominatedmetabolites,Suzuki andcoauthors(2009)affirmthatlaurencin(1)wasisolatedfrom achemicalraceofL.nipponicaYamadathatwasidentified asL. glanduliferaKützing(seeLaurencianipponica).Thesampleafforded laurencin(1)inrelativelyhighquantities(4.5gfrom8.5kgdried algaaccordingtoIrieetal.,1968c),whichallowedthescientists toperformseveral reactionsuntilits structure elucidation(Irie

et al.,1965,1968c).Investigationof this compound withX-ray crystallography enabled its stereochemistry to be established (Cameronetal.,1965), andthefirsttotal synthesisoflaurencin (1) in a racemic form was achieved in 1977 by Murai et al. (1977).Biologicalinvestigations showedthat laurencin(1) pro-longed pentobarbitone-inducedsleep time in mice(Kaulet al., 2011).

(6)

Laurenciachondrioides

L.chondrioidesBørgesenisreportedinEurope(mostly Mediter-ranean Sea), Atlantic Islands, Caribbean Islands, Israel and Philippines (Guiry and Guiry, 2015). The material collected in Kefalonia Island (Greece) was submitted to a dereplication approachusingUHPLC-PDA-HRMSand2DHSQCNMR.Twonew bromoalleneacetogeninswereisolated:marilzallene B(42)and chondrioallene(43)alongwithknownacetogenins3-E-laurenyne (44),trans-pinnatifidenyne(45),obtusenyne(46)andobtusallenes II(47),III(48),V(49)andVI(50)(Kokkotouetal.,2014).

Laurenciadecumbens

L.decumbensKützing(syn.L.pygmaeaWeber–vanBosse)is reportedinseverallocationsofAmerica,Africa,AsiaandOceania, butnotinEurope(GuiryandGuiry,2015).

AccordingtoStout andKubanek(2010)it isnot commonto see bromoallene and enyne metabolites co-occurring, but this wasreportedforL.decumbensfromChina,thatbesideselatenyne (14)presentslaurendecumenynes A (51)and B(52)as wellas laurendecumallenes A (53) and B (54) (Ji et al., 2007, 2010). Their structures and relative stereochemistry were established byspectroscopicanalysisincluding1Dand2DNMRtechniques, but two compounds had their structures revised (Ji et al., 2010).

Laurenciaelata

Laurenciaelata(C.Agardh)J.D.Hooker&Harveywasreported inAfrica,South-WestAsia,AustraliaandNewZealand(Guiryand Guiry,2015).Elatenynewasisolatedin1986fromL.elataandits structurededucedas13 onthebasis of1Hand 13C NMR

spec-troscopicanalysis(HallandReiss,1986).However,morerecently elatenynewasisolatedfromsampleofL.elatacollectedinSt.Paul’s Beach, Sorrento, Victoria (Australia), with 3-Z-chlorofucin (55)

(DiasandUrban,2011).Inthiscase,theelucidationofelatenyne was performed in comparison withdata reported by Hall and Reiss(1986);therelative configurationwasrevisedto14using synthesis of several derivatives togetherwith onand off reso-nance decoupling, double resonance and lanthanideshift NMR experiments(BrkljacaandUrban,2013;Wrightetal.,1993). More-over,elatenynehasalsobeenreportedfromthemarineredalgae L. majuscula (Wright et al., 1993) and L. decumbens (Ji et al., 2007).

Laurenciafiliformis

Laurencia filiformis (C. Agardh) Montagne is found mainly

in Australia and New Zealand, but it is also reported from Europe,Florida, Brazil,Belize (Central America), Tanzania, Pak-istan,Japan,IndonesiaandPacificIslands(GuiryandGuiry,2015). FromL.filiformiscollectedalongthewesterncoastofAustralia, eight-memberedetherringacetogeninswereisolated,suchascis -dihydrorhodophytin(56)(BrennanandErickson,1982),alsofound inOsmundeapinnatifida(asL.pinnatifida)(Norteetal.,1989a), Lau-rencianangii(VairappanandTan,2009)andfrommolluskspecies Aplysiabrasiliana(Kinneletal.,1979).Therelatedmetabolitecis -epi-dihydrorhodophytin(57)alsowasisolatedfromthisspecies (BrennanandErickson,1982).

Laurenciaintricata

(7)

ThesamplescollectedinJapanpresentedacetogenins belong-ing to three different classes: tetrahydrofuran derivatives such asitomanalleneB(61)andnine-memberedcyclicetherssuchas itomanalleneA(62)(Suzukietal.,2002).Thetotalsynthesisfor itomanalleneA(62)wasobtainedthroughintermolecularamide enolatealkylationandring-closingmetathesis(Jeongetal.,2010). L.implicata J.Agardhisregardedasataxonomicsynonymof L.intricataJ.V.Lamouroux,which isthecorrect nameaccording totheAlgaebase(GuiryandGuiry,2015).Therearetworeports of studies under the non-correct epithet, both from Australia. The samples collected in Magnetic Island, Australia, presented acetogeninsbelongingtotwodifferentclasses:eight-membered cyclic ethers such as 3-Z-bromofucin(63)and nine-membered cyclicetherssuchas64(CollandWright,1989apudWangetal., 2013).Twoother acetogenins wereisolated from material col-lectedfromBritomartReef,Australia,alsopresentingeight-and nine-memberedcyclic etherssuchas 65 and 66 (Wright etal., 1991).

Laurenciamajuscula

Laurencia majuscula (Harvey) A.H.S. Lucas is regarded as a taxonomicsynonymofL.dendroideaJ.Agardh,whichisthe cur-rentlyacceptedname,accordingtotheAlgaebase.Thisspecieswas describedinEurope;AtlanticIslands,Africa,IndianOceanIslands; Asia(China,Japan,Korea);South-eastAsia(Indonesia,Malaysia, Philippines,Vietnam);Australia,NewZealandandPacificIslands (GuiryandGuiry,2015).

(8)

acetogenin,67 (Kim etal.,1989)whichwastotallysynthesized throughanefficientsyntheticrouteforhalogenated pyrano[3,2-b]pyrans(Sheldrakeetal.,2006).MaterialfromHawaiiafforded acetogeninsbelongingtothe2,2-bis-tetrahydrofuran class(68), twolinearacetogenins(69–70)andthreebelongingto miscella-neousacetogenins(71–73)(Wrightetal.,1993).

Laurenciamicrocladia

Laurencia microcladia Kützing occurs in the Atlantic Ocean, Pacific Islands, Asia, and Mediterranean Sea (Guiry and Guiry, 2015).The samplescollected atTorrent IlRogiolo,Italy, in the MediterraneanSeapresentedacetogeninsoftheseven-membered cyclicetherclasssuchasrogioloxepanesA–C(74–76)(Guellaetal., 1992a),andbranchedacetogeninslikerogiolenyneA–D(77–80) (Guellaetal.,1992b;GuellaandPietra,1991).Curiously,the rogi-olenynesA–C(77–79)werealsoidentifiedforaspongespeciesin thesamearea,whichfeedonthealgae(GuellaandPietra,1991).The samplecollectedintheFrenchcoastatCapeFerrat,Mediterranean Seapresentstheeight-memberedcyclicethersmicrocladallenesA andB(81–82)(Kennedyetal.,1984).

Laurencianidifica

LaurencianidificaJ.AgardhoccursmainlyintheSouthPacific andIndian Ocean, especially inHawaii, butalsoin theAtlantic Islands,China,AustraliaandNewZealand(GuiryandGuiry,2015). ThesamplecollectedfromtheIslandofOahu,Hawaii,presented cis-maneonene A (6) (Waraszkiewicz et al., 1976; Sun et al., 1976), cis-maneonene B (7) (Waraszkiewicz et al., 1976), cis -maneoneneC(8)(Waraszkiewiczetal.,1978),trans-maneonene B(9)(Waraszkiewiczetal.,1976,1978)andisomaneonenesAand

B(10and11)(Waraszkiewiczetal.,1978).Holmesetal.(1983) reportedthetotalsynthesisof10and11;1yearlater,thesame groupsynthesized9(Holmesetal.,1984).Laurenidificin(83)was reportedforthespeciescollectedinHainann Island,China,and belongtothe2,6-dioxabicyclooctaneclass(Liuetal.,2010).

Laurencianipponica

LaurencianipponicaYamada,knowninJapanbythename “Ura-sozo”(Irieetal.,1970)isreportedonlyinAsiancountries(Guiry andGuiry,2015).SamplescollectedinHakodateBayJapan, pre-sented specially acetogenins belonging to the eight-membered cyclicetherclass,suchaslaureatin(2)andisolaureatin(3),which wereobtainedinrelativelyhighquantitiesfromthesameextract andhadtheirstructureselucidatedalsobyacombinationof1H

NMR,IR,MSandchemicalreactions(Irieetal.,1970;Kurosawa etal.,1972).Asoccurredwithlaurencin(1),thestructureswere reportedfirst(Irieetal.,1968a,b),andthenmorecompletedetails

oftheisolationandstructuralelucidationwerepublished(Irieetal., 1970).TotalsynthesisofbothwasachievedbyKimetal.(2007).

Further investigations led to the isolation of the eight-memberedcyclicethersdeacetyllaurencin(84)(Kurosawaetal., 1972), prelaureatin(30)(Fukuzawa etal., 1991), laurefucin (4), acetyllaurefucin(85),(Fukuzawaetal.,1972)andlaurallene(29) (FukuzawaandKurosawa,1979).

L.nipponicaalsocontainsacetogeninsbelongingtothe tetrahy-drofuran class: laureepoxide (12) (Fukuzawa and Kurosawa,

(9)

cis-deacetylkumausyne (88 and 89) (Suzuki et al., 1983c), laureoxolane(90)(Fukuzawaetal.,1989).

Someotheracetogenins havealsobeenreported:the seven-membered isoprelaurefucin (21) (Kurosawa et al., 1973) and neoisoprelaurefucin(91)(Suzukietal.,1996a);thenine-membered isolaurallene(92)(Kurataetal.,1982;Furusakietal.,1985); noto-ryne(93)belongingtothe2,2′-bis-tetrahydrofuranclass(Kikuchi etal.,1991);the2,6-dioxabicyclo[3.3.0]octanekumausallene(94) (Pradillaetal.,1998;Suzukietal.,1983b);andthelinear aceto-geninstrans-andcis-laurediols(23and24)(Kurosawaetal.,1972).

This extraordinary chemical diversity may be explained by theoccurrence of severalraces, which produce differentmajor metabolites(sesquiterpenesoracetogenins)withadistinctrange ofgeographical distribution(Masudaet al.,1997).Thedifferent populationswerestudied,alsoincrossabilityexperiments,which alsoshowed that ...”occurrence ofmixed types of metabolites betweenexperimentalinterpopulationhybrids andseveralwild plants at thesympatric locality strongly suggests that the lat-terplantsarenatural hybridsbetweentwo chemicallydifferent populations”.Furthermore,theauthorsconsiderthis finding“an answertothequestionposedbyErickson(1983)...thatspecies of Laurencia producing different sets of halogenated secondary metabolitesmay include several different species or varieties”. Based onMasuda’s groupresults (Masuda et al., 1997), Suzuki etal.(2009)usedlaurencin-andlaureatin-producingracesintheir biosynthesisstudiesonL.nipponica.

Regardingtheeight-memberedcyclicetherclass,some com-pounds, laureatin (2) and isolaureatin (3), showed insecticidal activityagainstmosquitolarvae(Culexpipienspallens)(Watanabe et al., 1989); isolaureatin (3) and laurefucin (4) prolonged sleep-time in mice induced by pentobarbitone (Kaul et al., 2011).

Laurenciaobtusa

Laurenciaobtusa (Hudson) J.V. Lamouroux is a species with

widespreaddistributionworldwide.It wasdescribedin Europe, theAtlanticIslands,CentralAmerica, theCaribbeanIslands,the WesternAtlantic,SouthAmerica,Africa,theIndianOceanIslands, South-WestAsia,South-EastAsia,Australia,NewZealandandthe

Pacific Islands(Guiry and Guiry,2015).This species is theone withthe highest number of isolated compounds for the genus Laurencia,includingmorethanthirtyacetogenins.Theseinclude compoundsbelongingtothetetrahydrofuranclass,isolatedfrom materialcollectedintheCanaryIslands,Spain,suchasgraciosin (95),graciosallene(96)(Norteetal.,1988)andalsofromtheRed Sea, Egypt,suchashurgadenyne(97)(Ayyadet al.,1990).Two belongtothe2,2′-bis-tetrahydrofuranclass:98frommaterial col-lectedinLaGraciosa,CanaryIslands,Spain(Norteetal.,1989b)and

99fromalgaecollectedinGüvercinlik,nearBodrum,inthe Mediter-ranean(Imreetal.,1995).Obtusin(15)wasobtainedfrommaterial collectedinTossadeMar,intheMediterranean,andbelongstothe 2,6-dioxabicyclo[3.3.0]octaneclass;itsstructurewasestablished byX-raycrystallography(Howardetal.,1979)andcontainsa bro-moproparglycterminus,astructuralfeaturethatwasreportedso farjustforacetogeninsfromL.obtusa(as95,98,106and107).

Scanlonenyne(19)wasisolatedfromLaurenciaobtusacollected intheScanlonIslands,Irelandandbelongstothesix-membered cyclicetherclass(Suzukietal.,1997).Eight-memberedcyclicether acetogenins werereportedfromalgae collectedin Sicily,in the Mediterranean,includinglaurencienyne(100),whichwasactive againstBacillussubtilisandEscherichiacoli(Caccameseetal.,1980); 3-Z-laurenyne(44), frommaterialcollectedin Gökceada,in the AegeanSea(Falshawetal.,1980);epoxyisodihydrorhodophytin (101)wasisolatedfromorganismsfoundintheSeaofMarmara, Turkey,intheMediterranean(Imreetal.,1987).Fromacollectionin SymiIsland,intheAegeanSea,Greece,compounds102–105were obtained(Iliopoulouetal.,2002);fromLaGraciosa,intheCanary Islands,Spain,compounds106and107werereported(González etal.,1984;Norteetal.,1989b).

(10)

LaurenciaobtusacollectedintheSaudiArabiaRedSeaCoast atJeddah alsoaffordedacetogenins fromthemaneoneneclass: 12-Z-cis-maneoneneD(114),12-E-cis-maneoneneE(115),and 12-Z-trans-maneoneneC (116);compounds 114and 115inhibited apoptosis of blood neutrophils, suggesting that they may be involvedinregulationofprogrammeddeathintheinitiationand propagationofinflammatoryresponses(Ayyadetal.,2011). Com-pound117belongstothemiscellaneousacetogeninsanditwas isolatedfromalgaecollectedinLaGraciosa,intheCanaryIslands, Spain(Norteetal.,1989b).

Laurenciaokamurae

(11)

(120)(SuzukiandKurosawa,1982),andachlorohydrin(121)that isananalogueofkamurallene(Suzukiet al.,1989).Their struc-tures(118–121)weresubsequentlyconfirmed(Suzukietal.,1991). OthermetaboliteswereisolatedfromL.okamurae,alsocollected inHokkaidoBay,Japan:neolaurallene(122)belongstothe nine-memberedcyclicetherclass(Suzukietal.,1984;Jietal.,2008), compound123isaneight-memberedcyclicether(Suzukietal., 1989)and fouracetylenicpolyenes(25–28)consideredtobeof biogeneticsignificance(Kigoshietal.,1986).

Laurenciapannosa

LaurenciapannosaZanardiniisreportedinAsia(India,Taiwan, Indonesia)andAustralia(GuiryandGuiry,2015).Someacetogenins belongingtotheeight-memberedetherringclasswereisolated inthis species.From L.pannosacollectedatAnThoi, PhuQuoc Island(Vietnam)3-E-chlorofucin(124)anditsdibromo-containing analogue(125)wereisolated,togetherwiththebromoallene pan-nosallene(126)(Suzukietal.,1996b).Thelatterwassubsequently reportedinL.okamurae(Lietal.,2012)andL.nipponicaas epilaural-lene(Abeetal.,1999)anditwasalsoreportedforL.nangii(Kamada andVairappan,2012).Recently,compound125wasalsoobtained bysynthesis(Kimetal.,2012).

Theisomer3-Z-chlorofucin(55)wasreportedforthisspeciesin asamplecollectedinPulauTalang-TalangKecil(Kuching,Sarawak, Malaysia)(Suzukietal.,2001).ItwaspreviouslyreportedforL. sny-derae(Howardetal.,1980;Youngetal.,1980),redalgaDasyphila plumariodes(Denysetal.,1993),andalsoforunrecordedspecies collectedatPulauNyireh,Terengganu(Malaysia)(Vairappanetal., 2008).Compound55wasalsoisolatedfromL.elata(DiasandUrban, 2011)andshowedantibacterialactivityagainstChromobacterium violaceum(Suzukietal.,2001),butnoappreciableantitumor activ-ity(DiasandUrban,2011).

Laurenciasnyderae

Laurenciasnyderae E.Y.DawsonoccursinNorth Americaand South-West Asia(Guiryand Guiry,2015).The eight-membered cyclicether3-E-chlorofucin(124)wasisolatedfromasample col-lected in La Jolla, California (Howard et al., 1980); it was also

reportedfor L.elata(Diasand Urban,2011), L.pannosa(Suzuki et al.,1996b)and otherLaurenciaspecies collectedin Malaysia (Vairappanetal.,2008).

Laurenciathyrsifera

(12)

Laurenciavenusta

LaurenciavenustaYamada wasreportedin America (Mexico,

Brazil),Africa,Asia,AustraliaandNewZealand,andalsoinPacific Islands(Fiji)(GuiryandGuiry,2015).Allacetogeninsisolatedsofar fromthisspeciesbelongtotheeight-memberedcyclicetherclass. ThefirstreportedacetogeninswerevenustinA(132)andB(133) (Suzuki and Kurosawa,1980)obtainedfroma samplecollected at Moheji, Hakodate Bay, Hokkaido (Japan). These metabolites were renamed as 3-E-epoxyvenustin and 3-E-venustin (Suzuki etal.,1983a),respectively.Arelatedmetabolite3-Z-epoxyvenustin (134),majorcomponentcomprising10%oftheextract,andalso 3-Z-venustin(135)and3-Z-venustinene(136)werereportedinJapan forasamplecollectedatMoura,nearAsamushi,AomoriPrefecture (Suzukietal.,1983c).

Laurenciellamarilzae(asLaurenciamarilzae)

Laurenciamarilzae was described some years ago as a new

species of thegenus Laurencia(Gil-Rodríguez et al., 2009), but after phylogenetic analyses it was reclassified as a new genus (Laurenciella),whichissofarmonospecific(Cassanoetal.,2012). Therefore, thecurrentlyaccepted name accordingto Algaebase (Guiry and Guiry,2015), isLaurenciella marilzae (Gil-Rodríguez, Sentíes,Díaz-Larrea,Cassano&M.T.Fujii)Gil-Rodríguez,Sentíes, Díaz-Larrea, Cassano &M.T. Fujii. It has been identified in the CanaryIslands,SoutheasternBrazilandintheMexicanCaribbean (Cassanoetal.,2012).

Co-occurrenceofenyneandalleneswasreportedfor Lauren-ciellamarilzae collectedin Tenerife (Canary Islands). Gutiérrez-Cepeda et al. (2011a) reported the isolation of eight new acetogenins (mostly eight- and 12-membered cyclic ethers),

besidestheknownobtusalleneIV(109).Newcompoundsincluded marilzallene(137)andtwoacetoxyderivativesofit,besides lin-ear acetogenins Z- (138)and E-adrienyne (139).The structural elucidationwas obtainedby theauthorsusing HECADE experi-ment.Asecondreportdescribednew12-memberedcyclicethers, marilzabicycloallenes A–D (140–143). The framework of these metabolitesreinforcedthehypothesisthatbiosynthesisof obtusal-lenesoccursthroughelectrophilicbromination(Gutiérrez-Cepeda etal.,2011b).

Osmundeapinnatifida(asLaurenciapinnatifida)

AccordingtotheAlgaebase,thecurrentacceptednameforL. pinnatifidaisOsmundeapinnatifida(Hudson)Stackhouse(Guiryand Guiry,2015).Thisspecieswasreportedunderitspreviousnamein allcontinents,notablyinthecountriesofEurope(GuiryandGuiry, 2015).Inadditiontolinearacetogenins(144–151)(Gonzálezetal., 1982;Norteetal.,1991),someacetogeninsbelongingtothe eight-memberedetherringsclasswereisolatedfromalgaecollectedon theIslandofTenerife(CanaryIslands),astheisomerscis-(152)and trans-pinnatifidenyne(45)(Gonzálezetal.,1982;Norteetal.,1991) and trans- (153) and cis-dihydrorhodophytin (56)(Norte et al., 1989a),aswellasstructureswithanine-memberedetherring(154 and155)(Norteetal.,1991).Theabsoluteconfigurationsof152 and45havebeenreassignedonthebasisofX-rayanalysis(Norte etal.,1991),and45wasisolatedalsofromAplysiadactylomela col-lectedintheSouthChinaSea(Manzoetal.,2005).Pinnatifidine (156)hasbeenisolatedfromsamplecollectednearKarachi,and representsthefirstdiacetylateddibromobelongingtothe eight-membered ether ring class (Atta-ur-Rahman,1989).Metabolite cis-dihydrorhodophytin(56)presentedantifeedantactivity(Kinnel etal.,1979)andsignificantantibacterialactivityagainstthetested foodpathogens(VairappanandTan,2009).Recently,thetotal syn-thesisof 152 (Kim et al., 2003)and 56 (Kim et al.,2011) was performed.

Yuzuruapoiteaui(asLaurenciapoitei)

(13)

Otherspecies

InvestigationsonLaurenciasp.cf.L.graciliscollectedinNew Zealandwatersallowedtheisolationofthefirstexamplesfrom LaurenciaspeciesofnonhalogenatedC15acetogenins(158and159)

belongingto theeight-memberedcyclic ether class(König and Wright,1994).Therelatedchlorine-containingmetabolite160was alsoreported(KönigandWright,1994).Noreportunderthisname wasfoundintheAlgaebase(GuiryandGuiry,2015).

AsampleofLaurenciasp.fromPhilippineswasreportedto con-tainthreediasteromericpairsofcyclicetheracetogeninsnamed laurefurenynesA–F(161–166).Thestructureswereassignedonthe basisofextensive1Dand2DNMRexperiments,NOESYand molec-ularmodelling.Thematerialwasprovidedthroughcollaboration withtheAmericanNCI(NationalCancerInstitute);laurefurenynes C(163)andF(166)weremoderatelycytotoxicagainstsolidtumors

andleukaemiaL1210cells,butnon-selective(Abdel-Mageedetal., 2010).Accordingtotheauthors,itwasthefirstreportof cytotox-icityforvinylacetylenicacetogenins.Nevertheless,structuresof laurefurenynesA(161)andB(162)wererevisedafternew evi-dencesbased onDFTcalculationsandtotal synthesis(Shepherd etal.,2013;HolmesandBritton,2013).

(14)

Acetogeninsofseahare

Theseahares,opistobranch mollusksbelongingtotheorder Aplysiomorpha,aresoft-bodiedandslow-movingbenthicmarine animals.Theyarestrictlyherbivorous,usuallyfeedingona vari-etyofmarinealgae,andwithwidedistributioninbothtemperate andtropicalwaters(Manzoetal.,2005;Ioannouetal.,2009).These molluskshavebeenproventoactassourceofbioactivecompounds thatareoftenconsideredtobeofdietaryorigin.Theaccumulation ofsecondarymetabolitesmayplayaroleasadefensemechanism againstpredators,andthischemicalrelationshipbetweenseahares andalgaehasbeentheobjectofinterestamongscientists(Manzo etal.,2005;Ioannouetal.,2009;PalanivelooandVairappan,2014). SpeciesbelongingtothefamilyAplysiidae,includingthegenera Aplysia,havebeenstudied,resultingintheidentificationofalarge numberofdietarymetabolites,typicallyalgalhalogenated com-pounds(Bluntetal.,2015andpreviousreportsofthisseries).

Aplysiaspp.areusuallygrazingspeciesoftheLaurencia com-plex,thereforeawiderangeofhalogenatedmetaboliteshavebeen isolatedfromthismollusk.Differentspeciescollectedfromvarious locationshaveaffordednewandknownhalogenatedcompounds, mainlyterpenesandacetogenins(Ioannouetal.,2009),thelatter beingthefocusofthisreview.

Fromspecimens of A. dactylomelacollectedin the Bahamas, twoacetogeninsofthenine-memberedcyclicetherclass,3-Z-and 3-E-12-epi-obtusenyne(170and 171)have been isolatedalong with3-Z-and3-E-dactomelyne(172and173)(Gopichandetal., 1981).Thetrans-isomer(173)hasbeenfoundasametaboliteofL. obtusacollectedinTurkey(Aydo˘gmus¸etal.,2004).Investigation ofanothercollection,alsointheBahamas,affordedacetogeninsof thehydropyransubclass:3-Z-dactylyneand3-E-isodactylyne(174 and175)(McDonaldetal.,1975;VanderahandSchmitz,1976); 3-Z-dactylynehasalsobeenisolatedfromaLaurenciaspeciesfrom Japan(Suzukietal.,1999)andhaspresentedpronounced activ-ityinincreasingbloodlevelsofpentobarbitalinadose-dependent manner.Itincreasedboththehalf-lifeandthedurationofaction ofthedrug,possiblyduetotheinhibitionofmetabolic elimina-tionofpentobarbitalcausedby3-Z-dactylyneitself,orperhapsby ametabolite(KaulandKulkarni,1978).

FromspecimensofA.dactylomelacollectedinHainanIsland,in theChinaSea,othernine-memberedcyclicetherswerereported, suchas3-Z-and3-E-6R,7R-obtusenyne(176and177)(Manzoetal., 2005).Isomersofpinnatifidenyne(152,153and178), represent-ativesofeight-memberedcyclicetheracetogenins,wereisolated fromA.dactylomela(Manzoetal.,2005;PalanivelooandVairappan, 2014)andalsofromthealgaeOsmundeapinnatifida(asL. pinnat-ifida)(Gonzálezetal.,1982)andL.claviformis(Norteetal.,1991). Someof the isomerswere tested as feeding-deterrents against goldfishCarassiusauratus,178presentingactivity,aswellas3-Z -laurenyne(44),thelastonebeingalsotoxictowardsbrineshrimp, butinactivewhentestedforantibacterialactivityagainstmarine bacteria(Manzoetal.,2005;Takahashietal.,2002).Theacetogenin 44hasbeenreportedforA.dactylomela(Manzoetal.,2005)andfor thealgaL.yanoguniensisfoundinJapan(Takahashietal.,2002).The latterwaspresentedasanewspeciesofLaurencia,butnoreportwas foundunderthisnameattheAlgaebase(GuiryandGuiry,2015).

Palaniveloo and Vairappan (2014) collected samples of A. dactylomelafromdifferentislandsof Malaysia,and isolated 12-Z-lembyneA(167),whichwasalsoreportedforanon-identified Laurenciasp.fromMalaysia(Vairappanetal.,2001a)and 12-E -lembyneA(179)whichwasalsoisolatedfromL.mariannensisfrom Japan(Vairappanetal.,2001b).Bothpresentedprominent antibac-terialactivityagainstmarinebacteria(Vairappanetal.,2001a,b). Dactylallene(180)wasfirstreportedforA.dactylomelafromthe CanaryIslands;thiscompoundhasnotbeenfoundinalgae,but itsdiastereoisomerobtusalleneII(47)haspreviouslybeenisolated

fromL.obtusa(Ciavattaetal.,1997).AnothercompoundfoundinA. dactylomelaiscis-maneoneneC(8)(Sakaietal.,1986),ametabolite firstreportedforL.nidifica(Waraszkiewiczetal.,1978).

Ioannouetal.(2009)investigatedthechemicalprofileofthe speciesA.fasciata,collectedinAlfacsBay,Catalonia,Spain.Two linearacetogenins(182)and(144)wereidentified;thefirstoneis anewnaturalproductandthelatterwaspreviouslyreportedfor L.pinnatifidafromtheCanaryIslands(Gonzálezetal.,1982;Norte etal.,1991).Ioannouetal.(2009)alsoidentifiedthreeacetogenins oftheeight-memberedcyclicetherclass:3-Z-venustinene(136), previouslyisolatedfromL.venusta(Suzukietal.,1983a);3-Z -13-epi-pinnatifidenyne(182),previouslymentionedforA.dactylomela, and3-E-laurenyne(44),alsoisolatedfromL.obtusa(Öztunc¸etal., 1991a).

Aplysia brasiliana is considered a synonym for A.

fasci-ata (accepted name according to the database WoRMS). Four acetogenins were reported for the species described as A.

brasiliana collected in the Gulf of Florida, USA. Two of them

are the diastereoisomers cis-dihydrorhodophytin (56) and cis -isodihydrorhodophytin(183)(Kinneletal.,1979).Acetogenin56 hasalreadybeenidentifiedassecondarymetaboliteofsome Lau-renciaspecies(Brennanand Erickson,1982;Norte etal.,1989a; VairappanandTan,2009),andhasshownantifeedantproperties inbioassayswithswordtailfish(Xiphophorushelleri)(Kinneletal., 1977)andsignificantantibacterialactivityagainstfoodpathogens, besides Vibrio cholerae, Staphylococcus aureus, Escherichia coli, Salmonellaenteritidis,S.typhiandS.thyphimurium(Vairappanand Tan,2009).Metabolite183hasalsobeenisolatedfromL.obtusa (Imreetal.,1981).Anothertwometaboliteswereisolatedfrom materialidentifiedasA.brasiliana:brasilenyne(184)(Kinneletal., 1979)andpanacene(185)(Kinneletal.,1977),whosecomplete structural elucidation was started by Feldman (1982) withthe assignmentofrelativestereochemistryofthebromoalleneportion achievedbyBoukouvalasetal.(2006),whenthefirstpathwaysfor anasymmetrictotalsynthesiswereestablished.Brasilenyne(184) isanine-memberedcyclicetherandpresentedantifeedantactivity inabioassaywithswordtailfish(Kinneletal.,1979).

Otherspecies of Aplysiapresented acetogeninsas secondary metabolites.InvestigationofspecimensofA.oculiferafoundinSri LankaandOahuIsland,Hawaiiledtotheisolationofthree ace-togenins,srilankenyne(186), Z-andE-ocellenyne(187and188) (Schulteetal.,1981;Silvaetal.,1983).FromA.parvulaitwas pos-sibletoidentifyanewacetogenin,aplyparvunin(189),acompound that presentsichthyotoxicactivity,withLC100 of 3ppm in24h

(Myiamotoetal.,1995).Themetabolite3-Z-bromofucin(63)was alsoreportedforA.parvula(McPhailandDavies-Coleman,2005) andpreviouslyforL.intricata(asL.implicata)(CollandWright,1989 apudWangetal.,2013).ForthespeciesA.kurodaifromthecoastof Fukui,Japan,anewbromoallenewithpromisingactivityasNa, K-ATPaseinhibitorhasbeenreportedandnamedasaplysiallene(190) (Okamotoetal.,2001).ItsstructurehasbeenreviewedbyOkamoto etal.(2003),andwasfoundtobethesameasabromoalleneisolated fromL.okamurae(SuzukiandKurosawa,1985).In2007,Wangand Pagenkopfachievedthetotalsynthesisofaplysiallene,thereforeits stereochemistrycouldbeunambiguouslyreassigned.

Chemotaxonomy

(15)

identifiedasL.glandulifera,butwas,infact,L.nipponica,according toSuzukietal.(2009).Therefore,halogenatedsecondary metabo-litesmaybeausefultaxonomictoolatthespecieslevel,afterthe investigationofthenaturalvariabilityfactors(Stengeletal.,2011). Fujiietal.(2011)reviewedthetaxonomyandthemajor metabo-litesoftheLaurenciacomplexfromBrazil,andnoacetogeninwas reportedforthespecies citedin thereview,but thosemustbe consideredpreliminarydata.

TheconfirmationofdifferentracesforL.nipponicacouldexplain the extreme high chemical diversity observed for this species withinthesamegeographicalarea.

ThechemicaldifferencesbetweenL.okamuraeandL.composita haveproventobeusefulasanaidtotheidentificationofthese species.Thesetwo speciesareconsidereddifficultto differenti-atebasedontheirmorphologicalfeaturesalone;however,itwas observedthatthelatterisnotabletosynthesizeoxygenatedand halogenatedacetogenins(possiblyduetothelackoftheenzyme activitynecessaryforoxygenating/halogenatingenynes),whileL. okamuraeaffordedseveralcomplexacetogenins(Jietal.,2009).

Investigationsperformedinthelast5 yearswiththespecies L. chondrioides and Laurenciella marilzae suggest that the co-occurrenceofenynesandbromoallenesmightbemorecommon thanwasfirstthought,thereforethetypeoflinearorcyclic struc-turemaybemorerelevantinachemotaxonomicalapproachthan thetype ofterminus. Nevertheless, it is noteworthy that com-poundswithbromoparglycterminushavebeenreportedsofarjust forLaurenciaobtusa.

Biologicalactivities

MetabolitesisolatedfromalgaebelongingtotheLaurencia com-plexhaveexhibitedmarkedantibacterial,insecticidal,antifungal, andantiviralactivity,buttheactivityofterpenesismorewidely investigated than that of acetogenins. Sea hares of the genus Aplysia(Anaspidea,Aplysiidae) areknowntopreyonLaurencia,

andsequesterhalogenatedsecondarymetabolitesfromtheirdiet (Kladietal.,2014).Curiously,manyofthemwerefirstreported forseahare,andsomelaterfoundinalgae.Thismaysuggestthese metabolitesarenotveryefficientasfeeding-deterrentformollusks, butitisnotclearwhethertheyareactiveagainstotherpotential predators.Thenaturalfunctionofmostmarinesecondary metabo-litesremains uninvestigated,butithasbeendemonstratedthat many secondarymetabolites, suchas alkaloids,sterolsand ter-penes,amongothermetabolites,canplayaroleinthedefenses againstconsumers,competitors,foulingorganisms,etc.(Hay,1996; Maia et al., 1999; Coutinho et al., 2002; Epifanio et al., 2006). It mustbeestablishedwhetheracetogeninsareincludedornot among thesechemical defensesforthealgae,but theyseem to beforAplysiaspp(Kinneletal.,1977,1979;VairappanandTan, 2009).

Inageneralway,thebiologicalactivitieswereassayedjustfora fewcompounds,probablyduetotherelativelylowamounts usu-allyisolatedinthestudiesreportedhere.Laurencin,laureatinand isolaureatinwereexceptions,but inthesecases,theamountof algalmaterial usedasthebasis for theinvestigationswasover 10kgofdriedalgae(Irieetal.,1965,1970),consideringthatthe available structure elucidation methods atthat time consumed uptograms ofisolatedcompounds.Anotherpointis thatsome acetogenins, such as elatenyne, are unstable (Dias and Urban, 2011).

(16)

Species Compounds Biological activities

Chondrophycus glandulifer = L. glandulifera

133-36 Prolongs sleep-time by pentobarbitone (Kaul et al., 2011)

Antistaphylococcal (MRSA) (Kladi et el., 2008)

L. elata 55, also isolated from

L. pannosa

Antibacterial activity against C. violaceum (Suzuki et al., 2001) but no appreciable antitumour activity (Dias et al., 2011)

L. obtusa 100 Antibacterial activity against Bacillus subtilisand E. coli (Caccamese et al., 1980)

L. obtusa 114 and 115 Apoptosis inhibition of blood neutrophils (Ayyad et al., 2011)

L.nipponica 2 and 3

3 and 4

Insecticidal against mosquito larvae (Watanabe et al., 1989) Prolongs sleep-time by pentobarbitone (Kaulet al., 2011)

Laurencia sp 168 Antibacterial activity against C. violaceum, Clostridium cellobioparumand Vibrio parahaemolyticus (Vairappan et al.,

2001a).

Laurencia sp 163and 166 Cytotoxic against solid tumours and leukaemia L1210 cells (Abd el-Mageed et al., 2010)

Osmundea pinnatifida = L.

pinnatifida

56 Antibacterial activity against food pathogens (Kinnel et al., 1979); antifeedant activity (Vairappan and Tan, 2009)

Chart1. ReportedbiologicalactivitiesofacetogeninsisolatedfromalgaebelongingtotheLaurenciacomplex.

Species of

Aplysia Compounds Biological activities

A. dactylomela 174 also isolated from

Laurencia (Suzuki et al., 1999)

Activity in increasing blood levels of pentobarbital in a dose-dependent(Kaul and Kulkarni, 1978)

A. dactylomela 178 and 45 Antifeedant against Carassius auratus (Manzo et al., 2005); toxicity to brine shrimp but inactive against marine

bacteria (Takahashi et al., 2002)

A. dactylomela 167and 179, also isolated from Laurencia

sp (Vairappan et al., 2001)

Antibacterial activity against marine bacteria (Vairappan et al, 2001a,b)

A. fasciata =A. brasiliana

56, also isolated from

Laurencia sp(Brennan and Erickson, 1982;

Norte et al., 1989; Vairappan and Tan,

2009)

Antifeedant against Xiphophorus helleri(Kinnel et al., 1977); antibacterial activity against Salmonella enteritidis,

Vibrio cholerae,Staphylococcus aureus,E. coli, S. typhi

and S. thyphimurium (Vairappan and Tan, 2009)

A. fasciata= A. brasiliana

184 Antifeedant activity (Kinnel et al., 1979)

A. kurodai 190 Inhibitor Na, K-ATPase (Okamoto et al., 2001)

A. parvula 189 Ichthyotoxic activity (Myiamoto et al., 1995)

Chart2.Reportedbiologicalactivitiesofacetogeninsisolatedprimarilyfromseahare.

Conclusionandperspectives

After50yearsofresearchontheLaurenciacomplex,hundredsof metaboliteshavebeenisolated,mainlyterpenesandacetogenins andmanymoreareexpectedtobefoundinanearfuture,since thenewdereplicationapproaches thatarebeingusedpresently areabletodetectunknowncompoundseven inlow concentra-tions.Ourpoorknowledgeabouttaxonomicalaspectsmightbea

(17)

Authors’contributions

Allauthorscontributedincollectingandanalyzingdatabesides draftingpartsofthepaper.TW(PhDstudent),ACP(Master stu-dent),GAZ(MSc),LFOV(Undergraduatestudent)andCL(postdoc fellowship)contributedalsodrawingthestructures.MF (Profes-sor)organizedthedataandcontributedtocriticalreadingofthe manuscript.Alltheauthorshave read thefinal manuscript and approvedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

TheauthorsthankCoordenac¸ãodeAperfeic¸oamentodePessoal de NívelSuperior (Capes, Brazil) (TW, ACPand GAZ)and Con-selhoNacionaldeDesenvolvimentoCientíficoeTecnológico(CNPq, Brazil) (LFOV and CL) for their fellowships. The authors thank ManuelaBatista(CCB,UFSC)forthepictureusedinthegraphical abstract.

References

Abdel-Mageed,W.M.,Ebel,R.,Valeriote,F.A.,Jaspars,M.,2010.LaurefurenynesA–F, newcyclicetheracetogeninsfromamarineredalga,Laurenciasp.Tetrahedron 66,2855–2862.

Abe,T.,Masuda,M.,Suzuki,T.,Suzuki,M.,1999.Chemicalracesintheredalga

Laurencianipponica(Rhodomelaceae,Ceramiales).Phycol.Res.47,87–95. Atta-ur-Rahman,1989.Isolationandstructuralstudiesonnewnaturalproductsof

potentialbiologicalimportance.PureAppl.Chem.61,453–456.

Aydo˘gmus¸,Z.,Imre,S.,Ersoy,L.,Wray,V.,2004.Halogenatedsecondarymetabolites fromLaurenciaobtusa.Nat.Prod.Res.18,43–49.

Ayyad,S.E.N.,Dawidar,A.M.,Dias,H.W.,Howie,R.A.,Jakupovic,J.,Thomson,R.H., 1990.ThreehalogenatedmetabolitesfromLaurenciaobtusa.Phytochemistry29, 3193–3196.

Ayyad,S.E.N.,Al-Footy,K.O.,Alarif,W.M.,Sobahi,T.R.,Bassaif,S.A.,Makki,M.S.,Asiri, A.M.,AlHalwani,A.Y.,Badria,A.F.,Badria,F.A.,2011.BioactiveC15acetogenins fromtheredalgaLaurenciaobtusa.Chem.Pharm.Bull.59,1294–1298. Blunt,J.W.,Lake,R.J.,Munro,M.H.G.,Yorke,S.C.,1981.Anewvinylacetylenefrom

theredalgaLaurenciathyrsifera.Aust.J.Chem.34,2393–2400.

Blunt,J.W.,Lake,R.J.,Munro,M.H.G.,1984.Metabolitesofthemarineredalga Lau-renciathyrsifera.III.Aust.J.Chem.37,1545–1552.

Blunt,J.W.,Copp,B.R.,Keyzers,R.A.,Munro,M.H.G.,Prinsep,M.R.,2015.Marine naturalproducts.Nat.Prod.Rep.32,116–211.

Boukouvalas,J.,Pouliot,M.,Robichaud,J.,MacNeil,S.,Snieckus,V.,2006.Asymmetric totalsynthesisof(-)-panaceneandcorrectionofitsrelativeconfiguration.Org. Lett.8,3597–3599.

Brennan,M.R.,Erickson,K.L.,1982.Austradiolacetateandaustradioldiacetate, 4,6-dihydroxy-(+)-selinanederivativesfromanAustralianLaurenciasp.J.Org.Chem. 47,3917–3921.

Brkljaca,R.,Urban,S.,2013.Relativeconfigurationofthemarinenaturalproduct elatenyneusingNMRspectroscopicandchemicalderivatizationmethodologies. Nat.Prod.Commun.8,729–732.

Cabrita,M.T.,Vale,C.,Rauter,A.P.,2010.Halogenatedcompoundsfrommarinealgae. Mar.Drugs8,2301–2317.

Caccamese,S.,Azzolina,R.,Duesler,E.N.,Paul,I.C.,RinehartJr.,K.L.,1980. Lauren-cienyne,anewacetyleniccyclicetherfromthemarineredalgaLaurenciaobtusa. TetrahedronLett.21,2299–2302.

Cameron,A.F.,Cheung,K.K.,Ferguson,G.,Robertson,J.M.,1965.Thecrystalstructure andstereochemistryoflaurencin.Chem.Commun.,638.

Cardellina,J.H.,Horsley,S.B.,Clardy,J.,Leftow,R.,Inwald,J.,1982.Secondary metabo-litesfromtheredalgaLaurenciaintricata:halogenatedenynes.Can.J.Chem.60, 2675–2677.

Carter,G.T.,Crews,P.,2011.Harnessingthebiosyntheticcapacityofmarine-derived organisms.Bioorg.Med.Chem.19,6556.

Cassano,V.,Oliveira,M.C.,Gil-Rodríguez,M.C.,Sentíes,A.,Díaz-Larrea,J.,Fujii,M.T., 2012.MolecularsupportfortheestablishmentofthenewgenusLaurenciella

withintheLaurenciacomplex(Ceramiales,Rhodophyta).Bot.Mar.55,349–357. Ciavatta,M.L.,Gavagnin,M.,Puliti,R.,Cimino,G.,1997.Dactylallene:anoveldietary C15bromoallenefromtheAtlanticanaspideanmolluscAplysiadactylomela. Tetrahedron53,17343–17350.

Coutinho,A.F.,Chanas,B.,Souza,T.M.L.,Frugrulhetti,I.C.P.P.,Epifanio,R.A.,2002.Anti HSV-1alkaloidsfromafeedingdeterrentmarinespongeofthegenusAaptos. Heterocycles57,1265–1272.

Cox,P.J.,Imre,S.,Islimyeli,S.,Thomson,R.H.,1982.ObtusalleneI,anewhalogenated allenefromLaurenciaobtusa.TetrahedronLett.23,579–580.

Datta,D.,Nath-Talapatra,S.,Swarnakar,S.,2015.Bioactivecompoundsfrommarine invertebratesforpotentialmedicines–anoverview.Int.Lett.Nat.Sci. 34, 42–61.

Dembitsky,V.M.,Tolstikov,A.G.,Tolstikov,G.A.,2003.Naturalhalogenated non-terpenicC15-acetogeninsofseaorganisms.Chem.Sust.Dev.11,329–339. Denys,R.,Coll,J.C.,Carroll,A.R.,Bowden,B.F.,1993.Tropicalmarinealgae.X.

Isolau-refucinmethylether,anewlauroxocanederivativefromtheredalgaDasyphila plumariodes.Aust.J.Chem.46,1073–1077.

Dias,D.A.,Urban,S.,2011.PhytochemicalstudiesofthesouthernAustralianmarine alga,Laurenciaelata.Phytochemistry72,2081–2089.

Epifanio,R.A.,Gama,B.A.P.,Pereira,R.C., 2006.11␤,12␤-Epoxypukalideasthe antifoulingagentfromtheBrazilianendemicseafanPhyllogorgiadilatataEsper (Octocorallia,Gorgoniidae).Biochem.Syst.Ecol.34,446–448.

Erickson,K.L.,1983.ConstituentsofLaurencia.In:Scheuer,P.J.(Ed.),MarineNatural Products.AcademicPress,NewYork,pp.131–257.

Falshaw,C.P.,King,T.J.,Imre,S.,Islimyeli,S.,Thomson,R.H.,1980.Laurenyne,anew acetylenefromLaurenciaobtusa:crystalstructureandabsoluteconfiguration. TetrahedronLett.21,4951–4954.

Faulkner,D.J.,1977.Interestingaspectsofmarinenaturalproductschemistry. Tetra-hedron33,1421–1443.

Feldman,K.S.,1982.Biomimeticsynthesisof(±)panacene.TetrahedronLett.23, 3031–3034.

Fenical,W.,1981.Naturalhalogenatedorganics.In:Duursma,E.K.,Dawson,R.(Eds.), ElsevierOceanographySeries.ElsevierScientificPub.,Amsterdam/NewYork,pp. 375–393.

Fujii,M.T.,Cassano,V.,Stein,E.M.,Carvalho,L.R.,2011.Overviewofthetaxonomy andofthemajorsecondarymetabolitesandtheirbiologicalactivitiesrelatedto humanhealthoftheLaurenciacomplex(Ceramiales,Rhodophyta)fromBrazil. Rev.Bras.Farmacogn.21,268–282.

Fukuzawa,A.,Kurosawa,E.,1979.Laurallene,anewbromoallenefromthemarine redalgaLaurencianipponicaYamada.TetrahedronLett.30,2797–2800. Fukuzawa, A., Kurosawa, E., 1980. Laureepoxide, new bromo ether from

the marine red alga Laurencia nipponica Yamada. Tetrahedron Lett. 21, 1471–1474.

Fukuzawa,A.,Kurosawa,E.,Irie,T.,1972.Laurefucinandacetyllaurefucin,new bromocompoundsfromLaurencianipponicaYamada.TetrahedronLett.1,3–6. Fukuzawa,A.,Aye,M.,Takaya,Y.,Fukui,H.,Masamune,T.,Murai,A.,1989. Lau-reoxolane,anewbromoetherfromLaurencianipponica.TetrahedronLett.30, 3665–3668.

Fukuzawa,A.,Takasugi,Y.,Murai,A.,1991.Prelaureatin,anewbiogenetickey inter-mediateisolatedfromLaurencianipponica.TetrahedronLett.32,5597–5598. Furnari,G.,Cormaci,M., Serio,D.,2001. TheLaurenciacomplex (Rhodophyta,

Rhodomelaceae)intheMediterraneanSea:anoverview.CryptogamieAlgol. 22,331–373.

Furusaki,A.,Kurosawa,E.,Fukuzawa,A.,Irie,T.,1973.Therevisedstructureand abso-luteconfigurationoflaurefucinfromLaurencianipponicaYamada.Tetrahedron Lett.46,4579–4582.

Furusaki,A.,Katsuragi,S.,Suehiro,K.,Matsumoto,T.,1985.Theconformationsof (Z)-2,3,4,7,8.9-hexahydrooxoninand(Z)-cyclononene.X-raystructure determi-nationsofisolauralleneandneolaurallene,andforce-fieldcalculations.Bull. Chem.Soc.Jpn.58,803–809.

Gil-Rodríguez,M.C.,Sentíes,A.,Díaz-Larrea,J.,Cassano,V.,Fujii,M.T.,2009.Laurencia marilzaesp.nov.(Ceramiales,Rhodophyta)fromtheCanaryIslands,Spain,based onmorphologicalandmolecularevidence.J.Phycol.45,264–271.

González,A.G.,Martín,J.D.,Martín,V.S.,Norte,M.,Pérez,R.,Ruano,J.Z.,Drexler,S.A., Clardy,J.,1982.Non-terpenoidC-15metabolitesfromtheredseaweedLaurencia pinnatifida.Tetrahedron38,1009–1014.

González, A.G.,Martín,J.D., Norte, M.,Rivera, P., Ruano,J.Z., 1984.Two new C15 acetylenesfromthemarineredalgaLaurenciaobtusa.Tetrahedron40, 3443–3447.

Gopichand,Y.,Schmitz,F.J.,Shelley,J.,Rahman,A.,Helm,D.V.,1981.Marinenatural products:halogenatedacetylenicethersfromtheseahareAplysiadactylomela. J.Org.Chem.46,5192–5197.

Guella,G.,Pietra,F.,1991.RogiolenyneA,B,andC:thefirstbranchedmarineC15 acetogenins,isolationfromtheredseaweedLaurenciamicrocladiaorthesponge

SpongiazimoccaoflIRogiolo.Helv.Chim.Acta74,47–54.

Guella,G.,Mancini,I.,Chiasera,G.,Pietra,F.,1992a.Ontheunusualpropensityby theredseaweedLaurenciamicrocladiaofIlRogiolotoformC15oxepanes: iso-lationofrogioloxepaneA,B,C,andtheirlikelybiogeneticacyclicprecursor, prerogioloxepane.Helv.Chim.Acta75,310–322.

Guella,G.,Mancini,I.,Chiasera,G.,Pietra,F.,1992b.RogiolenyneD,thelikely imme-diateprecursorofrogiolenyneAandB,branchedC15acetogeninsisolatedfrom theredseaweedLaurenciamicrocladiaofIlRogiolo.Conformationandabsolute configurationinthewholeseries.Helv.Chim.Acta75,303–309.

Guella,G.,Chiasera,G.,Mancini,I., ¨Oztunc¸,A.,Pietra,F.,1997.Twelve-membered

O-bridgedcyclicethersofredseaweedsinthegenusLaurenciaexistinsolution asslowlyinterconvertingconformers.Chem.Eur.J.3,1223–1231.

Guella,G.,Mancini,I., ¨Oztunc¸,A.,Pietra,F.,2000.Conformationalbiasinmacrocyclic ethersandobservationofhighsolvolyticreactivityatamaskedfurfuryl (=2-furylmethyl)C-atom.Helv.Chim.Acta83,336–348.

Guiry, M.D., Guiry, G.M., 2015. AlgaeBase. World-wide electronic publication, NationalUniversityofIreland,Galway.http://www.algaebase.org;searchedon Apr.2015.

(18)

Gutiérrez-Cepeda,A.,Fernández,J.J.,Norte,M.,Souto,M.L.,2011b.New bicyclotride-caneC15 nonterpenoidbromoallenesfromLaurenciamarilzae.Org.Lett.13, 2690–2693.

Hall,J.G.,Reiss,J.A.,1986.Elatenyne–apyrano[3,2-B]pyranylvinylacetylenefrom theredalgaLaurenciaelata.Aust.J.Chem.39,1401–1409.

Hay,M.E.,1996.Marinechemicalecology:what’sknownandwhat’snext?J.Exp. Mar.Biol.Ecol.200,103–134.

Holmes,A.B.,Jennings-White,C.L.D.,Kendrick,D.A.,1983.Totalsynthesisof cis-maneonenesAandB.J.Chem.Soc.8,415–417.

Holmes,A.B.,Jennings-White,C.L.D.,Kendrick,D.A.,1984.Totalsynthesisof(±

)-trans-maneoneneB.J.Chem.Soc.23,1594–1595.

Holmes,M.T.,Britton,R.,2013.Synthesisandstructuralrevisionoflaurefurenynes AandB.Chem.Eur.J.19,12649–12652.

Howard, B.M., Fenical, W., Arnold, E.V., Clardy, J., 1979. Obtusin, a unique bromine-containingpolycyclicketalfromtheredmarinealgaLaurenciaobtusa. TetrahedronLett.20,2841–2844.

Howard, B.M., Schulte, G.R., Fenical, W., Solheim, B., Clardy, J., 1980. Three newvinylacetylenesfromthemarineredalgaLaurencia. Tetrahedron36, 1747–1751.

Iliopoulou,D.,Vagias,C.,Harvala,C.,Roussis,V.,2002.C15acetogeninsfromthered algaLaurenciaobtusa.Phytochemistry59,111–116.

Imre,S.,Islimyeli,S.,Öztunc¸,A.,Thomson,R.H.,1981.Obtusenol,asesquiterpene fromLaurenciaobtusa.Phytochemistry20,833–834.

Imre, S., Lotter, H., Wagner, H., Thomson, R.H., 1987. Epoxy-trans -isodihydrorhodophytin,anewmetabolitefromLaurenciaobtusa.Z.Naturforsch. 42c,507–509.

Imre,S.,Aydo˘gmus¸,Z.,G ¨uner,H.,Lotter,H.,Wagner,H.,1995.Polybrominated non-terpenoidC15compoundsfromLaurenciapaniculataandLaurenciaobtusa.Z. Naturforsch.50c,743–747.

Ioannou,E.,Nappo,M.,Avila,C.,Vagias,C.,Roussis,V.,2009.Metabolitesfromthe seahareAplysiafasciata.J.Nat.Prod.72,1716–1719.

Irie,T.,Suzuki,M.,Masamune,T.,1965.Laurencin,aconstituentfromLaurencia

species.TetrahedronLett.6,1091–1099.

Irie,T.,Izawa,M.,Kurosawa,E.,1968a.Isolaureatin,aconstituentfromLaurencia nipponicaYamada.TetrahedronLett.23,2735–2738.

Irie,T.,Izawa,M.,Kurosawa,E.,1968b.Laureatin,aconstituentfromLaurencia nip-ponicaYamada.TetrahedronLett.17,2091–2096.

Irie,T.,Suzuki,M.,Masamune,T.,1968c.Laurencin,aconstituentofLaurencia glan-duliferaKützing.Tetrahedron24,4193–4205.

Irie,T.,Izawa,M.,Kurosawa,E.,1970.Laureatinandisolaureatin,constituentsof

LaurencianipponicaYamada.Tetrahedron26,851–870.

Jeong,W.,Kim,M.J.,Kim,H.,Kim,S.,Kim,D.,Shin,K.J.,2010.Substrate-controlled asymmetrictotalsynthesisandstructurerevisionof(+)-itomanalleneA.Angew. Chem.Int.Ed.49,752–756.

Ji,N.Y.,Li,X.,Li,K.,Wang,B.G.,2007.LaurendecumallenesA-Band laurendecu-menynesA-B,halogenatednonterpenoidC15-acetogeninsfromthemarinered algaLaurenciadecumbens.J.Nat.Prod.73,1499–1502.

Ji,N.Y.,Li,X.,Wang,B.G.,2008.HalogenatedterpenesandaC15-acetogeninfromthe marineredalgaLaurenciasaitoi.Molecules13,2894–2899.

Ji,N.Y., Li,X.,Li, K.,Gloer,J.B.,Wang, B.G.,2009.Halogenatedsesquiterpenes andnon-halogenatedlinearC15-acetogeninsfromthemarineredalga Lauren-ciacompositaandtheirchemotaxonomicsignificance.Biochem.Syst.Ecol.36, 938–941.

Ji,N.Y.,Li,X.,Li,K.,Wang,B.G.,2010.LaurendecumallenesA-Band laurendecu-menynesA-B,halogenatednonterpenoidC15-acetogeninsfromthemarinered algaLaurenciadecumbens.J.Nat.Prod.73,1192-1192.

Ji,N.Y.,Wang,B.,2014.NonhalogenatedorganicmoleculesfromLaurenciaalgae. Phytochem.Rev.13,653–670.

Kamada,T.,Vairappan,C.S.,2012.Anewbromoallene-producingchemicaltypeof theredalgaLaurencianangiiMasuda.Molecules17,2119–2125.

Kaul,N.P.,Kulkarni,S.K.,1978.Newdrugmetabolisminhibitorofmarineorigin.J. Pharm.Sci.67,1293–1296.

Kaul,N.P.,Kulkarni,S.K.,Kurosawa,E.,2011.Novelsubstancesofmarineoriginas drugmetabolisminhibitors.J.Pharm.Pharmacol.30,589–590.

Kennedy,D.J.,Selby,I.A.,Cowe,H.J.,Cox,P.J.,Thomson,R.H.,1984.Bromoallenes fromthealgaLaurenciamicrocladia.J.Chem.Soc.3,153–155.

Kigoshi,H.,Shizuri,Y.,Niwa,H.,Yamada,K.,1986.FournewC15acetylenicpolyenes ofbiogeneticsignificancefromtheredalgaLaurenciaokamurai:structureand synthesis.Tetrahedron42,3781–3787.

Kikuchi,H.,Suzuki,T.,Kurosawa,E.,Suzuki,M.,1991.Thestructureofnotoryne,a halogenatedC15nonterpenoidwithanovelcarbonskeletonfromtheredalga

LaurencianipponicaYamada.Bull.Chem.Soc.Jpn.64,1763–1775.

Kim,K.,Brennan,M.R.,Erickson,K.L.,1989.Lauroxolanesfromthemarinealga

Laurenciamajuscula.TetrahedronLett.30,1757–1760.

Kim,H.,Choi,W.J.,Jung,J.,Kim,S.,Kim,D.,2003.Constructionofeight-membered etherringsbyolefingeometry-dependentinternalalkylation:firstasymmetric totalsynthesesof(+)-3-(E)-and(+)-3-(Z)-pinnatifidenyne.J.Am.Chem.Soc. 125,10238–10240.

Kim,H.,Lee,H.,Lee,D.,Kim,S.,Kim,D.,2007.Asymmetrictotalsynthesesof (+)-3-(Z)-laureatinand(+)-3-(Z)-isolaureatinby“lonepair–lonepair interaction-controlled”isomerization.J.Am.Chem.Soc.129,2269–2274.

Kim,B.,Sohn,T.I.,Kim,S.,Kim,D.,Lee,J.,2011.Concisesubstrate-controlled asymmetrictotalsynthesisof(+)-3-(Z)-dihydrorhodophytin.Heterocycles82, 1113–1118.

Kim, M.J., Sohn, T., Kim, D., Paton, R., 2012. Concise substrate-controlled asymmetrictotal synthesesofdioxabicyclicmarinenatural products with

2,10-dioxabicyclo-[7.3.0]dodeceneand2,9-dioxabicyclo[6.3.0]undecene skele-tons.J.Am.Chem.Soc.134,20178–20188.

King,T.J.,Imre,S., ¨Oztunc¸,A.,Thomson,R.H.,1979.Obtusenyne,anewacetylenic nine-membered cyclic ether from Laurencia obtusa. TetrahedronLett. 20, 1453–1454.

Kinnel,R.B.,Duggan,A.J.,Eisner,T.,Meinwald,J.,1977.Panacene:anaromatic bro-moallenefromaseahare(Aplysiabrasiliana).TetrahedronLett.18,3913–3916. Kinnel,R.B.,Dieter,R.K.,Meinwald,J.,VanEngen,D.,Clardy,J.,Eisner,T.,Stallard, M.O.,Fenical,W.,1979.Brasilenyneandcis-dihydrorhodophytin:antifeedant medium-ringhaloethersfromaseahare(Aplysiabrasiliana).Proc.Natl.Acad. Sci.U.S.A.76,3576–3579.

Kladi,M.,Vagias,C.,Stavri,M.,Rahman,M.M.,Gibbons,S.,Roussis,V.,2008.C15 aceto-geninswithantistaphyloccocalactivityfromtherefalgaLaurenciaglandulifera. Phytochem.Lett.1,31–36.

Kladi,M.,Vagias,C.,Papazafiri,P.,Brogi,S.,Tafi,A.,Roussis,V.,2009.Tetrahydrofuran acetogeninsfromLaurenciaglandulifera.J.Nat.Prod.72,190–193.

Kladi,M.,Ntountaniotis,D.,Zervou,M.,Vagias,C.,Ioannou,E.,Roussis,V.,2014. GlandulaurencianolsA–C,brominatedditerpenesfromtheredalga,Laurencia glanduliferaandtheseahareAplysiapunctata.TetrahedronLett.55,2835–2837. Kokkotou,K.,Ioannou,E.,Nomikou,M.,Pitterl,F.,Vonaparti,A.,Siapi,E.,Zervou, M.,Roussis,V.,2014.AnintegratedapproachusingUHPLC-PDA-HRMSand2D HSQCNMRforthemetabolicprofilingoftheredalgaLaurencia:dereplication andtracingofnaturalproducts.Phytochemistry108,208–219.

König,G.M.,Wright,A.D.,1994.NewC15acetogeninsandsesquiterpenesfromthe redalgaLaurenciasp.cf.L.gracilis.J.Nat.Prod.57,477–485.

Kurata,K.,Furusaki,A.,Suehiro,K.,Katayama,C.,Suzuki,T.,1982.Isolaurallene,anew nonterpenoidC15-bromoallenefromtheredalgaLaurencianipponicaYamada. Chem.Lett.11,1031–1034.

Kurosawa,E.,Fukuzawa,A.,Irie,T.,1972.Trans-andcis-laurediol,unsaturated gly-colsfromLaurencianipponicaYamada.TetrahedronLett.21,2121–2124. Kurosawa,E.,Fukuzawa,A.,Irie,T.,1973.Isoprelaurefucin,newbromocompound

fromLaurencianipponicaYamada.TetrahedronLett.42,4135–4138. Legrave,N.,Elsebai,M.F.,Mehriri,M.,Amade,P.,2015.Marinepolyacetylenes:

dis-tribution,biologicalproperties,andsynthesis.In:Atta-ur-Rahman(Ed.),Studies inNaturalProductsChemistry,45.Elsevier,pp.251–295.

Li,X.D.,Miao,F.P.,Li,K.,Ji,N.Y.,2012.Sesquiterpenesandacetogeninsfromthe marineredalgaLaurenciaokamurai.Fitoterapia83,518–522.

Liang,Y.,Li,X.M.,Cui,C.M.,Li,C.S.,Sun,H.,Wang,B.G.,2012.Sesquiterpeneand acetogeninderivativesfromthemarineredalgaLaurenciaokamurai.Mar.Drugs 10,2817–2825.

Liaw,C.C.,Wu,T.Y.,Chang,F.R.,Wu,Y.C.,2010.Historicperspectiveson Annona-ceousacetogeninsfromthechemicalbenchtopreclinicaltrials.PlantaMed.76, 1390–1404.

Liu,X.,Li,X.M.,Li,C.S.,Ji,N.Y.,Wang,B.G.,2010.Laurenidificin,anewbrominated C15-acetogeninfromthemarineredalgaLaurencianidifica.Chin.Chem.Lett. 21,1213–1215.

Maia,L.F.,Epifanio,R.A.,Eve,T.,Fenical,W.,1999.Newfishfeedingdeterrents, includinganovelsesquiterpenoidheterogorgiolidefromtheBraziliangorgonian

Heterogorgiauatumani(Octocorallia,Gorgonaceae).J.Nat.Prod.62,1322–1324. Manzo,E.,Ciavatta,M.L.,Gavagnin,M.,Puliti,R.,Mollo,E.,Guo,Y.W.,Mattia,C.A., Mazzarella,L.,Cimino,G.,2005.Structureandabsolutestereochemistryofnovel C15-halogenatedacetogeninsfromtheanaspideanmolluscAplysiadactylomela. Tetrahedron61,7456–7460.

Martin-Lescanne,J.,Rousseau,F.,DeReviers,B.,Payri,C.,Couloux,A.,Cruaud,C.,Le Gall,L.,2010.PhylogeneticanalysesoftheLaurenciacomplex(Rhodomelaceae, Ceramiales) supportrecognition of fivegenera: Chondrophycus, Laurencia,

Osmundea,PalisadaandYuzuruastat.nov.Eur.J.Phycol45,51–61.

Masuda,M.,Abe,T.,Sato,S.,Susuki,T.,Suzuki,M.,1997.Diversityofhalogenated secondarymetabolitesintheredalgaLaurencianipponica(Rhodomelaceae, Ceramiales).J.Phycol.33,196–208.

McDonald,F.J.,Campbell,D.C.,Vanderah,D.J.,Schmitz,F.J.,Washecheck,D.M.,Burks, J.E.,Helm,D.V.,1975.Marinenaturalproducts.Dactylyne,anacetylenic dibro-mochloroetherfromtheseahareAplysiadactylomela.J.Org.Chem.40,665–666. McPhail,K.L.,Davies-Coleman,M.T.,2005.(3Z)-bromofucinfromaSouthAfricansea

hare.Nat.Prod.Res.19,449–452.

Minto,R.E.,Blacklock,B.J.,2008.Biosynthesisandfunctionofpolyacetylenesand alliednaturalproducts.Prog.LipidRes.47,233–306.

Murai,A.,Murase,H.,Matsue,H.,Masamune,T.,1977.Thesynthesisof(±)-laurencin. TetrahedronLett.18,2507–2510.

Myiamoto,T.,Ebisawa,Y.,Higuchi,R.,1995.Aplyparvunin,abioactiveacetogenin fromtheseahareAplysiaparvula.TetrahedronLett.36,6073–6074.

Norte,M.,Fernández,J.J.,Ruano, J.Z.,Matías,L.,Rodríguez,P.,1988.Graciosin andgraciosallene,twobromoethersfromLaurenciaobtusa.Phytochemistry27, 3537–3539.

Norte,M.,Fernández,J.J.,Cataldo,F.,González,G.,1989a.E-dihydrorhodophytin, aC15acetogeninfromtheredalgaLaurenciapinnatifida.Phytochemistry28, 647–649.

Norte,M.,Fernández,J.J.,Runao,J.Z.,1989b.Threenewbromoethersfromthered algaLaurenciaobtusa.Tetrahedron45,5987–5994.

Norte,M.,González,A.G.,Cataldo,F.,Rodríguez,M.L.,Brito,I.,1991.Newexamples ofacyclicandcyclicC-15acetogeninsfromLaurenciapinnatifida.Reassignment oftheabsoluteconfigurationforEandZpinnatifidienyne.Tetrahedron47, 9411–9418.

Referências

Documentos relacionados

The ordination of the samples by the similarities of their chromatographic traits showed the existence of three chemo- types: (i) the populations Búzios and Abrolhos which

rigida , is a cytotoxic quinone with low selectivity that induces cells death trough a mechanism that is associated, though incompletely, with the excessive generation of

Recently, about eighty unknown and/or bioactive metabolites isolated from endophytic fungi associated to marine macroalgae (Chlorophyta, Phaeophyta e Rhodophyta) were reviewed

Some compounds, identified by GC–MS in marine sponges stud- ied ( C. avara ), are widely known in the literature for the biological activities, as antiprotozoal activity ( Torres

1 shows the qualitative results of the autographic assay of acetylcholinesterase inhibition activity (AChEI), and Table 1 displays the fresh seaweed biomass weights, dried extract

The extracts of Gracilaria ornata and species belonging to the genera Dictyota and Laurencia showed activity at relatively low concentrations.. The active extracts were analyzed

This work describes the antimicrobial (including antimolli- cutes), antioxidant, and anticholinesterase activities in vitro of organic extracts from fourteen seaweed species

The DSS induced-colitis animal model has a number of advantages over other models. These advantages include simple experimental methods, reproducibility of the development time-