• Nenhum resultado encontrado

AdS(5) magnetized solutions in minimal gauged supergravity

N/A
N/A
Protected

Academic year: 2021

Share "AdS(5) magnetized solutions in minimal gauged supergravity"

Copied!
7
0
0

Texto

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

AdS

5

magnetized

solutions

in

minimal

gauged

supergravity

Jose

Luis Blázquez-Salcedo

a

,

,

Jutta Kunz

a

,

Francisco Navarro-Lérida

b

,

Eugen Radu

c aInstitutfürPhysik,UniversitätOldenburg,Postfach2503,D-26111 Oldenburg,Germany

bDept.deFísicaAtómica,MolecularyNuclear,CienciasFísicasUniversidadComplutensedeMadrid,E-28040Madrid,Spain cDepartamentodeFísicadaUniversidadedeAveiroandCIDMA,CampusdeSantiago,3810-183Aveiro,Portugal

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received27March2017 Accepted5May2017 Availableonline10May2017 Editor:M.Cvetiˇc

WeconstructageneralizationoftheAdSchargedrotatingblackholeswithtwoequalmagnitudeangular momentainfive-dimensionalminimalgaugedsupergravity.Inadditiontothemass,electricchargeand angularmomentum,thenewsolutionspossessanextra-parameterassociatedwithanon-zeromagnitude ofthemagneticpotentialatinfinity.Incontrastwiththeknowncases,thesenewblackholespossessa non-trivialzero-horizonsizelimitwhichdescribesaoneparameterfamilyofspinningchargedsolitons. AllconfigurationsreportedinthisworkapproachasymptoticallyanAdS5spacetimeinglobalcoordinates andarefreeofpathologies.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introductionandmotivation

Thesolutionsofthefive-dimensionalgaugedsupergravity mod-elsplayacentralroleintheAdS/CFTcorrespondence

[1,2]

, provid-ingadualdescriptionofstrongly-coupledconformalfieldtheories (CFTs)onthefour-dimensionalboundaryoffive-dimensional anti-deSitter(AdS)spacetime.

In the minimal case, the bosonic sector of the gauged super-gravitymodelconsistsonlyofthegraviton andan Abelianvector field.However,despiteitssimplicity,constructingsolutionsofthis theoryisanontrivialtask,sincetheknowngenerationtechniques donotworkinthepresenceofacosmologicalconstant.Thusone hastoresorttotrialanderrorortonumericalcalculations,starting fromanappropriate Ansatz.Restrictingtostationarysolutions ap-proachingasymptoticallyagloballyAdS5spacetime,onenotesthat theproblemgreatlysimplifiesforthespecialcasewherethetwo independentangularmomentaofthegenericconfigurationsareset equal.Thisfactorizesthe dependenceontheangularcoordinates, leading toa cohomogeneity-1 problem,with ordinarydifferential equations.Subjecttotheseassumptions,ageneralblackhole(BH) solutionhasbeenfoundinclosedformin

[3,4]

byCvetiˇc, Lüand Pope(CLP).Thissolutionischaracterized by threenon-trivial pa-rameters,namelythemass,theelectriccharge,andone indepen-dent angular momentum. These parameters are subjectto some constraints,suchthat closedtimelike curvesandnaked

singulari-*

Correspondingauthor.

E-mailaddress:jose.blazquez.salcedo@uni-oldenburg.de(J.L. Blázquez-Salcedo).

tiesareavoided.Moreover,theCLPsolutionpossessesanextremal limitwhichpreservessomeamountofsupersymmetry

[5]

.

AsimpleinspectionoftheBHin

[3]

showsthatitdoesnot pos-sess aglobally regularsolitoniclimit whichcouldbe viewedasa deformationoftheAdSbackground,whilethemagneticfield van-ishes asymptotically. However, a number of recent studies [6–9]

have provided evidence that the previously known solutions of the Einstein–Maxwellsysteminaglobally AdS4 background, rep-resent only ‘thetip ofthe iceberg’,being insome sense the AdS counterpartsofthe(well-known)MinkowskispacetimeBHs.A va-rietyofnewconfigurationswereshowntoexist.Instrongcontrast to theasymptotically flatcase, thisincludes particle-likesolitonic configurations [6,7] and even BHs withno spatial isometries

[9]

. Their existence can be traced back to the “box”-like behavior of theAdSspacetime,whichallowstheexistenceofelectric(or mag-netic)multipoles,astestfields,whichareeverywhereregular.

However,this“box”-likebehaviorisnotspecifictoAdS4 space-time. It hasbeenshownrecentlythat cohomogeneity-1 solutions of Einstein–Maxwell theory in odd D dimensions can be ob-tained witha non-vanishing magnetic field at the AdSD bound-ary1 [10]. These represent new families of static solitons and black holes with rather different properties as compared to the well-known Reissner–Nordström–AdS solutions. This result sug-gests that similar solutions should exist also for D

=

5 dimen-sionswithintheminimalgaugedsupergravitymodel.However,the

1 Seealsothemoregeneralresultsin[11,12].

http://dx.doi.org/10.1016/j.physletb.2017.05.014

0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Einstein–Maxwell–Chern–Simonscaseismorecomplex;apartfrom theabsenceoftheelectric-magnetic duality,wenote thatthe so-lutionswitha magneticfield necessarily rotateandalsothat the signoftheelectricchargebecomesrelevant

[13,14]

.

This paperpresents the results ofa preliminary investigation in this direction, by focusing on the simplest case of configura-tionswithequalmagnitudeangularmomenta.The newsolutions reported here provide an extension of the CLP BHs which con-tains an additional parameter associated with the magnitude of themagneticpotential atinfinity. Ourresults showthe existence ofa variety ofnew propertiesof thesolutions. For example,the BHspossessa nontrivialparticle-likelimit describing charged ro-tating solitons. Also, one finds solutions which rotate locallybut havevanishingtotalangularmomentum.

2. Themodel

2.1.Theactionandequations

TheactionforD

=

5 minimalgaugedsupergravityisgivenby I

=

1 16

π



M d5x



g

(

R

+

12 L2

FμνF μν

+

2

λ

3

3

ε

μναβγA μFναFβγ

)



+

Ib

,

(1)

whereR isthecurvaturescalar,L istheAdSlengthscale,Aμ isthe gaugepotentialwiththefieldstrengthtensor Fμν

= ∂

μ Aν

− ∂

ν Aμ and

ε

μναβγ is the Levi-Civita tensor. Also,

λ

=

1 is the Chern–

Simons(CS)couplingconstant.However,

λ

willbekeptgeneralin allrelationsbelow,(suchthat

(1)

willdescribeagenericEinstein– Maxwell–Chern–Simons (EMCS) model), although the numerical resultswillcovertheSUGRAcaseonly.

Inaddition,

(1)

containsaboundarytermwhichisrequiredfor aconsistent variationalprinciple anda properrenormalizationof variousphysicalquantities,

Ib

= −

1 8

π



∂M d4x



h



K

3 L

(

1

+

L2 12R

)

L 2log

(

L r

)



FabFab

 

.

(2)

Here,hab isthemetricinducedby gμν ontheboundary(R being the corresponding Ricci scalar), andK is the trace (with respect toh) of theextrinsic curvature ofthe boundary. Also, Fab is the electromagnetictensorinducedontheboundarybythebulkfield, whiler isanormalcoordinate.

ThefieldequationsofthismodelconsistoftheEinstein equa-tions Gμν

=

6 L2gμν

+

2



Fμρν

1 4F 2

,

(3)

togetherwiththeMaxwell–Chern–Simons(MCS)equations

νFμν

+

λ

2

3

ε

μναβγF

ναFβγ

=

0

.

(4)

2.2.Theprobelimit:Maxwell–Chern–SimonssolutionsinafixedAdS background

Beforeapproachingthe fullmodel,itisinteresting toconsider theprobe limit, i.e. aU(1) field in a fixed AdS spacetime witha line-element ds2

= −

N

(

r

)

dt2

+

dr 2 N

(

r

)

+

1 4r 2

(

σ

2 1

+

σ

22

+

σ

32

),

with N

(

r

)

=

1

+

r 2 L2

.

(5)

Intheabovelineelement,the(round) S3 sphere iswrittenasan S1-fibration over S2

≡ CP

1, with

σ

i theleft invariant one-forms,

σ

1

=

cos

ψ

d

θ

+

sin

ψ

sin

θ

d

φ

,

σ

2

= −

sin

ψ

d

θ

+

cos

ψ

sin

θ

d

φ

,

σ

3

=

d

ψ

+

cos

θ

d

φ

; also,the coordinates

θ

,

φ

,

ψ

are the Euler angles on S3,withtheusualrange.

Thegaugefield Ansatzcontainsan electricpotential,a0,anda magneticone, [3]

A

=

a0

(

r

)

dt

+

(

r

)

1

2

σ

3

,

(6)

whichresultsinthefieldstrengthtensor

F

=

a0

(

r

)

dr

dt

+

aϕ

(

r

)

1

2dr

σ

3

+

1

2

(

r

)

σ

2

σ

1

.

(7)

ThenonewritesthefollowingMCSequations

rNaϕ



=



1

+

8 3

λ

2 r2a 2 ϕ

4 raϕ

,

a  0

= −

4

λ

a3ϕ

3r3

.

(8) For

λ

=

0 (i.e. apure Maxwell field in AdS spacetime) the elec-tricpotentialcanbesettozeroandonefindsthefollowingexact solution

(

r

)

=

cm



1

L 2 r2log

(

1

+

r2 L2

)

,

(9)

withcmanarbitrary(nonzero)constant.Unfortunately,theEqs.(8) cannot be solved in closedform2 for

λ

=

0. However, such a so-lution exists; its small-r expansion reads (with u

,

v0

,

cm and

μ

ˆ

nonzeroconstants):

(

r

)

=

ur2

+ (−

2 3 u L2

+

8u3

λ

2 9

)

r 4

+ . . . ,

a0

(

r

)

=

v0

2u

λ

3r 2

+ . . . ,

(10)

whileitsformforr

→ ∞

is

(

r

)

=

cm

+

ˆ

μ

+

2cmL2log

(

L r

)

1 r2

+ . . . ,

a0

(

r

)

= −

2cm2

λ

3 1 r2

+ . . . .

(11)

Thisimpliestheexistenceofanonvanishing asymptoticmagnetic field, Fθ φ

→ −

12cmsin

θ

,such thattheparametercm canbe iden-tifiedwiththemagneticfluxatinfinitythroughthebasespace S2 ofthe S1fibration,



m

=

1 4

π



S2 ∞ F

= −

1 2cm

.

(12)

Thesmoothprofilesconnectingtheasymptotics

(10)

,

(11)

are con-structednumerically,atypicalexamplebeingshownin

Fig. 1

.

Also,onecanshowthatboth

(

r

)

anda0

(

r

)

arenodeless func-tions.OtherpropertiesoftheMCSsolutionsaresimilartothoseof their gravitatinggeneralizationsdiscussedin Section3.Moreover, rathersimilarconfigurationsarefoundwhenconsideringinsteada Schwarzschild–AdSBHbackground.

2 Althoughonecan constructaperturbativesolutionaround(9),this involves complicatedspecialfunctions,beingnotsouseful.

(3)

Fig. 1. TheprofileofatypicalsolutionoftheMaxwell–Chern–Simonsequationsin afixedAdSbackground.

2.3. Thebackreactingcase

When taking into account the backreaction on the geometry, the solutionsabove should result inEMCS solitons andBHs. Un-fortunately, itseemsthat noanalyticaltechniquescanbe usedto construct these solutions in closed form.3 As such, in this work weapproachthisproblembysolvingtheEMCS equations numer-ically,subjecttoasetofboundaryconditionscompatiblewithan approximateexpansion atthe boundariesof the domainof inte-gration.4

The corresponding metric Ansatz is found by supplementing

(5)withfourundeterminedfunctionswhichtakeintoaccountthe deformationofthe AdSbackgroundandfactorizetheangular de-pendenceallowingforconfigurationswithtwoequalangular mo-menta ds2

= −

f

(

r

)

N

(

r

)

dt2

+

1 f

(

r

)



m

(

r

)

N

(

r

)

dr 2

+

1 4r 2



m

(

r

)(

σ

12

+

σ

22

)

+

n

(

r

)

σ

3

2

ω

(

r

)

r dt

2



,

(13)

while the gauge field Ansatz5 is still given by (6). This frame-work can be proven to be consistent, and, asa result, the EMCS equationsreducetoasetofsixsecondorderordinarydifferential equationsplusafirstorderconstraintequation,whoseexpression can befound inRef. [14].Also, theseequationspossesstwo first integrals a0

+

ω

ra  ϕ

4

λ

3 f3/2a2ϕ r3

mn

=

2 f3/2

π

mnr3c1

,

16

λ

3

3a 3 ϕ

n3/2

mr3 f5/2

(

r

ω



ω

)

=

c 2

8 c1

π

,

(14)

wherec1 andc2aretwoconstants.

3 Some partial results can be found, however,in the Einstein–Maxwell case (λ=0).Anapproximateformofthestaticsolitons(a0(r)=ω(r)=0)canbe con-structedtherebyconsideringaperturbativeexpansionofthesolutionsintermsof theparametercm.

4 Tointegrate the equations, weused the differentialequationsolver COLSYS whichinvolvesaNewton–Raphsonmethod[15].

5 A rathersimilarframework has been usedin[16] toconstruct magnetized squashedBHsinD=5 Kaluza–Kleintheory.However,thepropertiesofthose solu-tionsareverydifferent.

2.4. Theasymptotics

In deriving the far field expression of the solutions, we im-posethat,asymptotically,i

)

thegeometrybecomesAdSinastatic frame, ii

)

the electricpotential vanishes, a0

0; and, asa new feature as compared to the CLP case, iii

)

the magneticpotential approachesaconstantnonzerovalue,

cm.Thenafar-field ex-pression of asolution compatiblewiththeseassumptions canbe constructedinasystematicway.Thefirstfewtermsinthis expan-sionread f

(

r

)

=

1

+



ˆ

α

+

12 5 c 2 mL2log

(

L r

)

1 r4

+ . . . ,

ω

(

r

)

=

ˆ

J r3

4q 3



ˆ

μ

1 3cmL 2

(

1

6 log

(

L r

))

1 r5

+ . . . ,

m

(

r

)

=

1

+



ˆβ +

4 5c 2 mL2log

(

L r

)

1 r4

+ . . . ,

n

(

r

)

=

1

+



3

(

α

ˆ

− ˆβ) +

4 15c 2 mL2

+

24 5 c 2 mL2log

(

L r

)

1 r4

+ . . . ,

(

r

)

=

cm

+



ˆ

μ

+

2cmL2log

(

L r

)

1 r2

+ . . . ,

a0

(

r

)

= −

q r2

+

cm

λ

3



2

μ

ˆ

+

cmL2



1

+

4 log

(

L r

)

1 r4

+ . . . ,

(15)

with

{ ˆ

α

,

ˆβ,

ˆ

J

;

cm

,

μ

ˆ

,

q

}

undeterminedparameters.

Concerning the solitons, one can also construct a small-r ap-proximateformofthesolutionsasapowerseriesinr,compatible withtheassumptionofregularityatr

=

0.Thefirsttermsinthis expansionare6 f

(

r

)

=

f0

+



m0

f0 L2

+

4u2f02 3m0



r2

+ . . . ,

m

(

r

)

=

m0

+

m2r2

+ . . . ,

ω

(

r

)

=

w1r

8u3f5/2 0

λ

3

3m20 r 2

+ . . . ,

n

(

r

)

=

m0

+



3m0

(

m0

f0

)

f0L2

m2

+

4u2f0 3

r2

+ . . . ,

a0

(

r

)

=

v0



2u2f03/2

λ

3m0

+

u w1



r2

+ . . . ,

(

r

)

=

ur2

+

u 9 f0L2m0



4u2f02L2

(

1

+

2

λ

2

)

+

3

(

4m20

3 f0

(

2m0

+

L2M2

))

r4

+ . . . ,

(16)

withthefreeparameters

{

f0

,

m0

,

m2

,

w1

;

u

,

v0

}

.

However,whengravitatingsolitonsexistinagivenmodel, nor-mally one can also construct bound states of such solitons with an event horizon [17,18]. These BHs have a horizon which is a squashed S3 sphereandresidesataconstant valueof the

quasi-6 Itisinterestingtocontrasttheseasymptoticswiththosesatisfiedbythe topo-logicalsolitonsin[23]which,however,possessavanishingmagneticfieldat infin-ity,cm=0.Fortopologicalsolitons,thepropersizeoftheψ-circlegoestozeroas

r→0,whilethecoefficientoftheroundS2-partin(13)ispositive(thisholdsalso forgrrand−gtt).

(4)

isotropicradialcoordinater

=

rH

>

0.Thenon-extremalsolutions7 havethefollowingexpansionvalidasr

rH

f

(

r

)

=

f2

(

r

rH

)

2

+

O

(

r

rH

)

3

,

m

(

r

)

=

m2

(

r

rH

)

2

+

O

(

r

rH

)

3

,

n

(

r

)

=

n2

(

r

rH

)

2

+

O

(

r

rH

)

3

,

ω

(

r

)

=

ω

0

+

O

(

r

rH

) ,

a0

(

r

)

=

a0(0)

+

O

(

r

rH

)

2

,

(

r

)

=

a(ϕ0)

+

O

(

r

rH

)

2

,

(17) with

{

f2

,

m2

,

n2

,

ω

0

;

a(00)

,

a (0)

ϕ

}

undetermined parameters. Also, note that the behavior of solutions inside the horizon (r

<

rH) isnotdiscussedinthiswork.

2.5.Physicalparameters

In the next Section we give numerical evidence forthe exis-tenceofsmoothEMCSsolutionsinterpolatingbetweenthe asymp-toticsabove.Mostofthephysicalpropertiescanbereadofffrom theasymptoticdatanearthehorizon/originandatinfinity.

The mass M and angular momentum J of these solutions is computedby usingthe quasilocal formalism [19], witha bound-arystresstensorTab

=

√2hδhδIab.Then M and J aretheconserved

chargesassociatedwithKilling symmetries

t,

ψ ofthe induced

boundarymetrich,foundforalarge constantvalue ofr.This re-sultsin8 M

= −

π

8

(

3

α

ˆ

+ ˆβ)

L2

+

c2 m

π

30

+

3

π

32L 2

,

J

=

π

4

ˆ

J

.

(18)

Theelectriccharge Q ,ascomputedfromtheusualdefinition,is

Q

= −

1 2



S3∞

˜

F

=

π

q

,

(19)

with

˜

1μ2μ3



μ1μ2μ3ρσ Fρσ .However, thisquantity is not re-latedtoanyconservationlawifcm

=

0.Amoreappropriate defini-tionisnowthePagecharge

[20,21]

,

Q(P)

= −

1 2



S3 ∞



˜

F

+

λ

3A

F

=

Q

2

π

3

λ

c 2 m

c1

,

(20)

being related to the total derivative structure of the Maxwell– Chern–Simons equations (with c1 the integration parameter we introducedinthefirstintegral

(14)

).

Anotherphysicallyrelevantparameteronecandefineisthe R-charge, associated with the conservation of the R-current of the dualtheoryattheAdSboundary

[22]

:

Q(R)

= −

1 2



S3



˜

F

+

2

λ

3

3A

F

=

Q

4

π

3

3

λ

c 2 m

.

(21)

Notethatthesethreechargescoincideintheabsenceofa bound-arymagneticfield,cm

=

0.Also,thefirstintegral

(14)

impliesthat 1

2cmQ(R)

+

J

= −

16πc2.

7 WehavefoundnumericalevidencefortheexistenceofextremalBHsaswell. Suchsolutionspossessadifferentnearhorizonexpression,whilethefarfield ex-pansion(15)holdsalsointhatcase.TheextremalBHspossessanumberofdistinct featuresandwillbereportedelsewhere(however,somepropertiesofthe TH=0

limitcanbeseeninFig. 5).

8 NotethatM and J areevaluatedrelativetoaframewhichisnonrotatingat infinity.

In the above relations,

α

,

β

,

ˆ

J and q are parameters which enter the far field expansion (15). Also, we remark that the in-terpretationproposedforcm intheprobelimit,asamagneticflux atinfinity,stillholdsinthebackreactingcase.

Turningnow toBH quantitiesdefinedinterms ofthehorizon boundarydatain

(16)

,wenotethatthesolutions’horizonangular velocityis



H

=

ω

0 rH

,

(22)

while the area of thehorizon AH andthe Hawking temperature TH ofthesolutionsaregivenby

AH

=

2

π

2r3H m2 f2



n2 f2

,

TH

=

1 2

π



1

+

r 2 H L2



f2

m 2

.

(23)

The horizon electrostatic potential



H as measured in a co-rotatingframeonthehorizonis



H

=

a(00)

+ 

Ha(ϕ0)

.

(24)

Also,tohaveameasureofthesquashingofthehorizon,we intro-ducethedeformationparameter

ε

=

n

(

r

)

m

(

r

)





r=rH

=

n2 m2

,

(25)

which gives the ratio of the S1 and the round S2 parts of the (squashed S3)horizonmetric,respectively.

Finally, let us remark that all configurations reported in this work have f

,

m

,

n strictly positive functionsfor r

>

rH (or r

0 forsolitons).Assuch,t isaglobaltimecoordinateandthemetric isfreeofcausalpathologies

[23]

.WehavealsomonitoredtheRicci andtheKretschmannscalarsofthesolutionsanddidnotfindany indicationforasingularbehavior.

3. Thesolutions

3.1. Solitons

Thenumericalresults indicatetheexistence ofafamilyof ev-erywhere regular solutions with finite mass, charge and angular momentum.Suchconfigurationscanbeviewedasdeformationsof the(globally)AdSbackground,correspondingtocharged, spinning EMCS solitons. They possess no horizon, while the size of both partsofthe S3-sectorofthemetricshrinkstozeroasr

0.The profileofatypicalsolutionisexhibitedin

Fig. 2

(left).

Thesolitonshaveratherspecialproperties.The onlyinput pa-rameter here is the constant cm which fixes the magnitude at infinityofthemagneticpotential.Forany

λ

=

0,theelectriccharge andangularmomentumaregivenby9

J

= −

λ

π

3

3c 3 m

,

Q

=

3Q(R)

=

2

λ

π

3c 2 m

,

(26)

suchthatthefollowinguniversalrelationissatisfied

J

= 

mQ(R)

,

(27)

with



mcomputedfrom

(12)

.

The M

(

cm

)

dependencecan be found only numerically, being displayedin

Fig. 3

.Agoodfituptoarelativelyhighvaluecm

4 reads

9 Therelations(26)arefoundbyevaluatingthefirstintegrals(14)forthe asymp-toticexpansions(15),(16)(notethatthesolitonshavec1=c2=0).

(5)

Fig. 2. The profiles of a typical soliton with cm=1, L=1 (left) and a typical black hole with rH=2, J=0, Q=10, cm=10 and L=15 (right).

Fig. 3. Themass, angularmomentumandelectric chargeofgravitatingspinning solitonsareshownasafunctionofthemagneticparametercm.

M L2

=

3

π

32

+

a2 c2m L2

+

a4 c4m L4

+

a6 c6m L6

,

(28)

witha2

= −

1

.

52,a4

=

0

.

175,a6

= −

0

.

0025,andvarianceof resid-uals of 3

×

10−4. Note that no upper bound on

|

c

m

|

seems to exist;however,thenumerics becomes difficultforlargevalues of it.Also, similartotheprobelimit,wecouldnotfindexcited solu-tions(whichwouldpossessamagneticpotentialwithnodes

[14]

); thisholds alsoin theBH case. However, we conjecture the exis-tenceofsuchsolutionsforlargeenoughvaluesoftheCS coupling constant

λ

.

3.2. Blackholes

As expected, thesesolutions possess BH generalizations. They canbe constructedstarting withany CLP solutionandslowly in-creasingthevalueoftheparametercm.TheprofileofatypicalBH isshownin

Fig. 2

(right).

Finding the domain of existence of these BHs together with theirgeneralpropertiesisa considerabletaskwhichisnotaimed atin thispaper. Instead, we analyze severalparticular classes of solutions,lookingforspecialproperties.

In Fig. 4 we display the results for configurations with fixed valuesofboth Q(R) and J andseveralvaluesofcm.Thefirst

fea-turewe noticeisthat cm

=

0 leadsto some differencesforsmall valuesofTH only,whilethesolutionswithlargetemperaturesare essentiallyCLP BHs.Also, asexpected, thequalitative behavior of solutionswithsmall

|

cm

|

resemblesthatoftheunmagnetizedcase. However,thischangesforlargeenoughvaluesofcm andonefinds e.g. amonotonicbehaviorofmassandhorizonareaasafunction of temperature. In particular, this means that for large valuesof

|

cm

|

,theBHs becomethermodynamicallystableforthe fullrange ofTH,withtheexistenceofonebranchofsolutionsonly.Also,the signofcm isrelevantforsmallvaluesof

|

cm

|

,only.

More unusualfeatures occur aswell. Forexample, incontrast with the CLPcase, one finds BHs which have J

=

0 but still ro-tateinthebulk.10Someresultsinthiscaseareshownin

Fig. 5

for

solutionswithafixedvalueoftheelectriccharge Q(R)

= −

0

.

044.

These 3D plots exhibit the temperatureas a function of cm and horizonarea,massandhorizonangularvelocity,respectively. The

(

TH

;

cm

,

R

(

rH

))

-diagram is also included there (with R

(

rH

)

the Ricciscalarevaluatedatthehorizon),toshowthattheseBHs pos-sessaregularhorizon.11

4. Furtherremarks

The main purpose of this paper was to report a generaliza-tion of theknown Cvetiˇc, Lü and Pope(CLP) BH solutions [3]of the D

=

5 minimal gaugedsupergravity, whichcontainsan extra-parameterinadditiontomass,electricchargeandangular momen-tum. This extra-parameter can be identified with the magnitude ofthemagneticpotentialatinfinity.12Assuch,thesolutionshere can be viewedasthesimplestAdS5 generalizationsofthe D

=

4 Einstein–MaxwellsolitonsandBHsrecentlyreportedinthe litera-ture

[6–9]

.Thusonecanpredicttheexistenceofavarietyofother D

=

5 solutions with the U(1) potentials satisfyingnon-standard farfieldboundaryconditions.

Themostinterestingnewfeatureascomparedto theCLPcase isperhapstheexistenceofaoneparameterfamilyofglobally reg-ular,smoothsolitonicconfigurations.Differentfromthepreviously known EMCS solitons with cm

=

0 which are supported by the nontrivial topology of spacetime [23], the solutions here can be considered as deformations of the globally AdS background and requirea non-vanishing magneticfield onthe boundary.We also remarkthatboththeBHsandthesolitonscanbeupliftedtotype IIBortoeleven-dimensionalsupergravitybyusingthestandard re-sultsintheliterature(seee.g.[24–27]).

The study of these magnetized solutions in an AdS/CFT con-text isaninteresting openquestion. Forexample,thebackground metric uponwhichthe dualfield theoryresidesis a D

=

4 static

10 Thisfeaturehasbeennoticedin[14]forc

m=0 BHsinEMCStheorywithλ>1.

11 Theonlyexceptionistheextremalconfigurationwith A

H=0,forwhichthe

Ricciscalardivergesatthehorizonataparticularvalueofcm.Notethatthis

con-figurationmarkstheseparationoftwodifferentbranchesofextremalBHsandhas =0.

12 Solutionsoftheminimalgaugedsupergravitywithanon-vanishingmagnetic fieldontheboundaryhavebeenconsideredin[28].However,thosesolutions pos-sessaRicciflathorizon,beingasymptotictoPoincaréAdS5,andhaveverydifferent propertiesascomparedtotheBHsinthiswork.

(6)

Fig. 4. AreaAH,massM,angularvelocityH andhorizondeformationε,asafunctionofthehorizontemperatureTHandforseveralvaluesofthemagneticfluxonthe

boundary.ThesesolutionshaveAdSlengthL=1,angularmomentum J=0.003,andtheR-chargeQ(R)=0.044.

Fig. 5. TheareaAH,massM,angularvelocityHandRicciscalarR(rH)ofmagnetizedblackholesareshownasafunctionof(TH,cm).ThesesolutionshaveL=1,afixed

electricchargeQ(R)= −0

(7)

Einstein universe with a line element ds2

=

γ

abdxadxb

= −

dt2

+

1

4L 2

(

σ

2

1

+

σ

22

+

σ

32

)

. However, differentfrom the solution in [3], inthiscasethetheoryisformulated inabackgroundU

(

1

)

gauge field, withF(0)

=

12cm

σ

2

σ

1.The expectationvalue of thestress tensorofthedual theorycan becomputedby usingtheAdS/CFT “dictionary”,with

γ γ

ab

<

τ

bc

>

=

limr→∞

hhabTbc. Thenonvanishingcomponentsof

<

τ

ab

>

are

<

τ

θθ

>

=<

τ

φφ

>

=

1 8

π

L



1 8

5

(

α

ˆ

− ˆβ)

2L4

32cm2 15L2



,

<

τ

ψψ

>

=

1 8

π

L



1 8

7

α

ˆ

11

ˆβ

2L4

+

2cm2 5L2



,

<

τ

φψ

>

=

cos

θ

<

τ

ψψ

>

− <

τ

φφ

>

,

<

τ

ψt

>

=

1 cos

θ

<

τ

t φ

>

= −

1 4L 2

<

τ

ψ t

>

=

ˆ

J 8

π

L3

,

<

τ

tt

>

=

1 8

π

L



3 8

+

3

α

ˆ

+ ˆβ

2L4

2c2 m 15L2



.

Thetraceofthistensorisnonzero,with

<

τ

aa

>

= −

c 2 m 2

π

L3

= −

L 64

π

F 2 (0)

,

(29)

resulting from the coupling of the dual theory to a background gaugefield

[29]

.Aninterestingquestionhereconcernsthepossible existence, within theproposed framework, ofconfigurations pos-sessingaKillingspinor.However,theresultsin

[30]

showthatthis isnotthecase:asupersymmetricsolutionwithanonzero bound-ary magnetic field is not compatible with the far field asymp-totics(15),requiringasquashed S3 sphereatinfinity.

Asavenuesforfutureresearch,we remarkthattheframework andthepreliminaryresults proposedin thiswork mayprovidea fertile ground for the further studyof charged rotating configu-rations in the D

=

5 gauged supergravity model.For example,it would be interesting to studyin a systematic way their domain ofexistence, together withthe extremallimit. Moreover, one ex-pectssomeofthesolutions’propertiestobegenericwhenadding scalarsortakingunequalspins.Wehopetoreturnelsewherewith adiscussionofsomeoftheseaspects.

Acknowledgements

WegratefullyacknowledgesupportbytheDFGResearch Train-ing Group 1620 “Models of Gravity” and by the Spanish Min-isterio de Ciencia e Innovación, research project FIS2011-28013. E.R. acknowledgesfundingfromtheFCT-IFprogramme.Thiswork wasalsopartiallysupportedbytheH2020-MSCA-RISE-2015Grant No. StronGrHEP-690904, and by the CIDMA project UID/MAT/ 04106/2013.J.L.B.S.andJ.K.gratefullyacknowledgesupportbythe grantFP7,MarieCurieActions,People,InternationalResearchStaff Exchange Scheme (IRSES-606096). F.N.-L. acknowledges funding fromComplutenseUniversityunderProjectNo. PR26/16-20312.

References

[1]J.M.Maldacena,Int.J.Theor.Phys.38(1999)1113,Adv.Theor.Math.Phys.2 (1998)231,arXiv:hep-th/9711200.

[2]E.Witten,Adv.Theor.Math.Phys.2(1998)253,arXiv:hep-th/9802150. [3]M.Cvetic,H.Lü,C.N.Pope,Phys.Lett.B598(2004)273,arXiv:hep-th/0406196. [4]Z.W.Chong, M.Cvetic,H. Lü,C.N.Pope,Phys. Rev.Lett.95(2005) 161301,

arXiv:hep-th/0506029.

[5]J.B. Gutowski,H.S.Reall,J. High Energy Phys. 0402(2004) 006, arXiv:hep-th/0401042.

[6]C.Herdeiro,E.Radu,Phys.Lett.B749(2015)393,arXiv:1507.04370[gr-qc]. [7]M.S.Costa,L.Greenspan,M.Oliveira,J.Penedones,J.E.Santos,Class.Quantum

Gravity33(2016)115011,arXiv:1511.08505[hep-th].

[8]C.Herdeiro,E.Radu,Phys.Lett.B757(2016)268,arXiv:1602.06990[gr-qc]. [9]C.A.R.Herdeiro,E.Radu,Phys.Rev.Lett.117(2016)221102,arXiv:1606.02302

[gr-qc].

[10]J.L.Blázquez-Salcedo,J.Kunz,F.Navarro-Lérida,E.Radu,Entropy18(2016)438, arXiv:1612.03747[gr-qc].

[11] P. Chrusciel, E. Delay, Lett. Math. Phys. (2017), http://dx.doi.org/10.1007/ s11005-017-0955-x,arXiv:1612.00281[math.DG].

[12]P.T.Chru´sciel,E.Delay,P.Klinger,arXiv:1701.03718[gr-qc].

[13]J.L.Blázquez-Salcedo,J.Kunz,F.Navarro-Lérida,E.Radu,Phys.Rev.D92(2015) 044025,arXiv:1506.07802[gr-qc].

[14] J.L.Blázquez-Salcedo,J.Kunz,F.Navarro-Lérida,E.Radu,Phys.Rev.D95(2016) 064018, http://dx.doi.org/10.1103/PhysRevD.95.064018, arXiv:1610.05282 [gr-qc].

[15]U.Ascher,J.Christiansen,R.D.Russell,Math.Comput.33(1979)659; U.Ascher,J.Christiansen,R.D.Russell,ACMTrans.Math.Softw.7(1981)209. [16]P.G.Nedkova,S.S.Yazadjiev,Phys.Rev.D85(2012)064021,arXiv:1112.3326

[hep-th];

P.G.Nedkova, S.S.Yazadjiev,Eur.Phys. J.C73(2013)2377,arXiv:1211.5249 [hep-th].

[17]D.Kastor,J.H.Traschen,Phys.Rev.D46(1992)5399,arXiv:hep-th/9207070. [18]M.S.Volkov,D.V.Gal’tsov,Phys.Rep.319(1999)1,arXiv:hep-th/9810070. [19]V.Balasubramanian,P.Kraus,Commun.Math.Phys.208(1999)413,

arXiv:hep-th/9902121.

[20]D.N.Page,Phys.Rev.D28(1983)2976.

[21]D.Marolf,Chern–Simonstermsandthethreenotionsofcharge,arXiv:hep-th/ 0006117.

[22]O.Aharony,S.S.Gubser,J.M.Maldacena,H.Ooguri,Y.Oz,Phys.Rep.323(2000) 183,arXiv:hep-th/9905111.

[23]M.Cvetic,G.W.Gibbons,H.Lü,C.N.Pope,Rotatingblackholesingauged su-pergravities:thermodynamics,supersymmetriclimits,topologicalsolitonsand timemachines,arXiv:hep-th/0504080.

[24]A.Chamblin,R.Emparan,C.V.Johnson,R.C. Myers,Phys. Rev.D60 (1999) 064018,arXiv:hep-th/9902170.

[25]J.P.Gauntlett,D.Martelli,J.Sparks, D.Waldram,Class. QuantumGravity21 (2004)4335,arXiv:hep-th/0402153.

[26]J.P.Gauntlett,E.O.Colgain,O.Varela,J.HighEnergyPhys.0702(2007)049, arXiv:hep-th/0611219.

[27]J.P.Gauntlett,O.Varela,Phys.Rev.D76(2007)126007,arXiv:0707.2315 [hep-th].

[28]E.D’Hoker, P.Kraus,J. HighEnergyPhys.1003(2010)095,arXiv:0911.4518 [hep-th];

E.D’Hoker, P.Kraus,J.HighEnergyPhys. 0910(2009)088,arXiv:0908.3875 [hep-th].

[29]M.Taylor,Moreoncounterterms inthegravitational actionand anomalies, arXiv:hep-th/0002125.

[30]D.Cassani,D.Martelli,J.HighEnergyPhys.1408(2014)044,arXiv:1402.2278 [hep-th].

Imagem

Fig. 1. The profile of a typical solution of the Maxwell–Chern–Simons equations in a fixed AdS background.
Fig. 2. The profiles of a typical soliton with c m = 1, L = 1 (left) and a typical black hole with r H = 2, J = 0, Q = 10, c m = 10 and L = 15 (right).
Fig. 5. The area A H , mass M, angular velocity  H and Ricci scalar R ( r H ) of magnetized black holes are shown as a function of ( T H , c m )

Referências

Documentos relacionados

Lénia Marques, Carla Melo, Juliette Hecquet .... Planning, Integrated Coastal Zone Management and ‘Blue Growth Strategies’ with sailing and yachting identified as a key

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

FPGAs has gained interest on robotics and mobile robotics applications due to their flexibility to implement from glue logic, up to complete embedded systems for robot control

The efficacy of 28 individual or blended disinfectants against avian Salmonella enterica serovar Enteritidis and Escherichia coli strains was determined.. An in vitro test

Significant differences were observed in the chromatographic profiles of the extractive solutions obtained from the different parts of the plant, which could

import 'dart:async'; import 'dart:convert'; import 'package:flutter/material.dart'; import 'package:http/http.dart' as http; import 'package:flutter_app/AdminPage.dart';

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados