• Nenhum resultado encontrado

Ion Current Density Calculation of the Inductive Radio Frequency Ion Source

N/A
N/A
Protected

Academic year: 2017

Share "Ion Current Density Calculation of the Inductive Radio Frequency Ion Source"

Copied!
5
0
0

Texto

(1)

ч

ч

ч

. .

*

,

. .

,

. .

, . .

а

А

а ы, .

ав в ая

, 58, 40030

,

ы,

а а

( 30.03.2012; – 17.09.2012; online 30.10.2012)

( ) ,

27,12 . , ,

-

. ,

. ,

30 35 100

-- 7 40 / 2,

43 / 2.

15 85 / 2 100

- .

юч : , , , .

PACS numbers: 41.75.Ak, 52.50.Qt, 52.80.Pi

______________

*

vozny@ipflab.sumy.ua

1.

-

.

,

-.

(ion milling)

,

-,

.

,

,

-,

.

[1, 2].

,

-,

.

(

)

,

:

,

,

.

,

,

.

-

,

-,

[3-

5].

--

[6

-11]

.

-,

-,

,

27,12

:

(

-),

--

.

-H

+

He

+

.

.

--

Ar

-.

-.

-

,

-

,

.

2.

Ч

,

-,

-

[12].

n

e

-T

e

.

,

n

e

,

n

s

.

-

.

(2)

.

[12]:

P

abs =

n

s

u

b

AE

t,

(1)

P

abs

,

,

n

s

-

-,

u

b = (

kT

e/

M

)

1/2

-

,

k

-,

T

e

,

M

,

A

,

E

t

,

,

.

n

s

,

-A

eff

,

∫n

s

dA

=

n

e

A

eff

,

n

e

-.

-R

L

A

eff

:

A

eff =

2 R

(

Lh

R +

Rh

L)

,

h

L =

n

sL/

n

e

h

R =

n

sR/

n

e

,

-n

sL

(

n

sR)

.

,

i

,

h

L

h

R

[12]:

h

L = 0,86

(3 +

L

/2

i) - 1/2

,

h

R = 0,8(4 +

R

/

i) - 1/2

.

-

i = 1/

n

g

σ

i,

i

-,

n

g

.

--

:

.

i

= 10

-18 2

-T

i ~0,05

.

p

(

)

n

g

= 3,

3·10

19

p

,

– 3

,

-

i

=

1

/

33p

, [12].

(1)

,

-n

e

[12]:

n

e =

P

abs/

u

b

A

eff

E

t.

(2)

E

t

,

,

[12]:

E

t =

E

ew +

E

iw +

E

c

,

E

ew =

2kT

e

-,

;

E

iw

,

,

E

c

-,

--

.

E

iw

,

V

s

.

,

,

u

b

,

kT

e/

2

.

,

E

iw =

eV

s +

kT

e/

2

,

e

.

V

s

-,

V

s = (

kT

e/2

e

)

ln

(

M

m

e

),

m

e

.

V

s = 4,7(

kT

e/

e

)

,

-,

,

E

iw

5,2

kT

e

.

-,

E

t

,

,

E

t

E

c + 7,2

kT

e [12].

E

c

,

-

,

[12]:

E

c =

E

iz +

∑[

E

ex,i(

K

ex,i/

K

iz) + (

K

el/

K

iz)(2

m

e/

M

)(3

kT

e/2)] (3)

E

iz=15,76

;

E

ex,i

i

;

K

iz

;

K

ex,i

i

;

K

el

.

(3)

-,

.

-.

(2

m

e/

M

)(3

kT

e/2)

,

.

-K

iz

, K

ex,i

K

el

[12]

ε

c,

-.

T

e

.

-.

R

L

[12]:

K

iz/

u

b = 1/

n

g

d

eff,

(4)

d

eff = 0,5

RL

/(

Lh

R +

Rh

L),

.

K

iz,

(4)

T

e

n

g

d

eff

,

,

-T

e

p

.

,

--

E

c

E

t

,

,

.

(2),

.

,

n

e

-T

e

-j

s

.

-n

s

--

u

b:

j

s =

en

s

u

b =

en

e

h

L(

kT

e/

M

)

1/2

.

(5)

3.

.

1.

-D

L

,

(3)

3

).

Mo

3

,

d

= 0,6

.

.

Рис. 1 –Схема ин уктивно о ВЧ-источника: 1–плазменный объем; 2–экстрактор; 3– иафра ма; 4–фокусирующий электро ; 5–разря ная камера; 6–спиральная ВЧ-антенна

-

27,12

,

«ACOM

-1000»(500

)

,

-.

,

-,

.

--

P

,

.

«Leybold

-

350»,

4

·

10

- 6

.

«

-

2».

4.

4.1

ч

(2)

-

(5)

-n

e

,

T

e

j

s

--

D

=

2

R

L

.

4

-

:

1)

D

= 30

,

L

= 70

, 2)

D

= 30

,

L

= 35

,

3)

D

= 15

,

L

= 70

, 4)

D

= 15

,

L

= 35

.

1

50

.

T

e

-p

.

2

4-

-D

L

.

,

1 50

T

e

8,5

2,2

.

L

= 70

L

= 35

-T

e

.

-D

.

D

= 30

L

= 35

p

= 6 - 10

T

e

= 3,5 - 4

.

(2)

n

e

-P

abs

.

,

-P

abs = 100

.

n

e

j

s

Рис. 2 –Зависимость электронной температуры Teот ав-ления ар она p ля 4-х вариантов размера разря ной ка-мерыD, L, Pabs=100 Вт

-

,

.

--

P

abs

P

abs

=

η

P

,

P

,

η

.

ы л е

е

[10].

p

7

η

е

0,83

-

P

.

Рис. 3 – Плотность плазмы ne в зависимости от авления

ар она p ля 4-х вариантов размераразря ной камерыD, L. Pabs=100 Вт

.

3

-n

e

p

4

-

-D, L

.

,

-.

A

,

.

D

= 30

L

= 35

-n

e = 8,8

10

11 – 3

n

e

= 5,5

10

12 – 3

1

50

.

p

= 7

-n

e

= 2,5

10

11 – 3

.

15

n

e = 4,9

10

12 – 3

.

j

s

,

,

(5)

--

P

abs.

.

4

j

s

p

4

-

-D, L

.

1 5

0

(4)

.

,

j

s

,

n

e

,

u

b

h

L

.

.

4

,

-.

,

,

-.

D

= 30

L

= 70

j

i

= 20

/

2

p

= 3

5

.

L

= 35

j

i

= 40

/

2

.

D

= 15

L

= 70

.

L

= 35

-j

i = 85

/

2

.

Рис. 4 – Плотность ионно о тока насыщения js в зависи-мости от авления ар она p ля 4-х вариантов размера разря ной камерыD, L. Pabs= 100 Вт

4.2

,

,

,

-V

ext.

(

.

5).

[13, 14].

(

j

s)

j

c

,

-.

j

c

-

[13]:

j

c = (4ε0/9)(2

q

/

M

)

1/2

(

V

ext3/2

/

s

2

)

(6)

ε

0

,

q

-

,

V

ext

;

s

.

,

n

e

V

ext.

(

V

ext

)

(

.

5 )

,

;

s

-;

.

(

V

ext

)

(

.

5

),

-;

.

,

(

.

5

).

Рис. 5–Форма ионно о пучка, извлекаемо о из плазмен-но о ВЧ-источника. 1- плазма, 2- изолятор, 3- экстрактор,

4- пучок

.

6

,

--

.

j

i

-I

i

:

j

i

= 4I

i

d

2

,

d

= 0,6

.

I

i

.

Рис. 6 Плотность ионно о тока ji в зависимости от вы-тя ивающе о напряжения Vext. D  30 мм, L = 35 мм,

p = 7 мТорр, P = 120 Вт

j

i

V

ext

.

6

.

,

j

i

-V

ext

(

(6

))

V

ext

= 1,6

2,4

(

(5)).

= 120

= 7

43

/

2

,

40

/

2

.

5.

Ч

-

-.

-

,

-

,

.

,

--

-.

,

(5)

--

~ 150

.

.

,

D

= 30

L

= 35

40

/

2

P

abs

= 100

.

43

/

2

,

-.

,

D

= 15

85

/

2

100

-,

~

120

/

2

P

abs = 150

.

,

--

--

.

,

-

-:

D

= 15-20

L

= 30-35

.

Ion Current Density Calculation of the Inductive Radio Frequency Ion Source

V.I. Voznyi, V.E. Storizhko, V.I. Miroshnichenko, D.P. Shulha

Institute of Applied Physics NAS of Ukraine, 58, Petropavlivska Str., 40030 Sumy, Ukraine

A radio-frequency (RF) inductive ion source at 27.12 MHz is investigated. With a global model of the argon discharge, plasma density, electron temperature and ion current density of the ion source is calcu-lated in relation to absorbed RF power and gas pressure as a discharge chamber size changes. It is found that ion beam current density grows as the discharge chamber size decreases. Calculations show that in the RF source with a discharge chamber 30 mm in diameter and 35 mm long the ion current density is 40 mA/cm2 at 100 W of absorbed RF power and 7 mTorr of pressure, and agrees well with experimentally measured value of 43 mA/cm2. With decreasing discharge chamber diameter to 15 mm ion current density can reach 85 mA/cm2 at absorbed RF power of 100 W.

Keywords: RF ion source, Ion beam, Plasma, Current density.

х

і

і

ч

і і

.І.

, . .

, .І.

, . .

а

А

а

, в .

ав в а

, 58, 40030

,

,

а а

( ) e , є 27,12 .

, ,

--

-. , є

-. ,

30 35 100 7

є 40 / 2, є

43 / 2.П і іа а 15 и і я а

85 А/ 2 100В ВЧ- і.

юч і : , І , , .

1. C.D. Coath, J.V.P. Long, Rev. Sci. Instrum. 66, 1018 (1995). 2. R. Clampitt, D.K. Jefferies, Nucl. Instrum. Meth. 149, 739

(1978).

3. N.S. Smith, P.P. Tesch, N.P. Martin, D.E. Kinion, Appl. Surf. Sci. 255, 1606 (2008).

4. X. Jiang, Q. Ji, A. Chang, K.N. Leung, Rev. Sci. Instrum. 74, 2288 (2003).

5. Y.J. Kim, D.H. Park, H.S. Jeong, Y.S. Hwang, Rev. Sci. Instrum. 77, 03B507 (2006).

6. V.I. Miroshnichenko, S.N. Mordik, V.V. Olshansky, K.N. Stepanov, V.E. Storizhko, B. Sulkio-Cleff, V.I. Voznyy, Nucl. Instrum. Meth. B 201, 630 (2003). 7. V.I. Voznyy, V.I. Miroshnichenko, S.N. Mordyk,

A.G. Nagornyy, D.A. Nagornyy, V.E. Storizhko, D.P. Shulha, Probl. At. Sci. Tech. Ser.: Plasma Physics10 No1, 209 (2005).

8. V. Miroshnichenko, S. Mordyk, D. Shulha, V. Storizhko, V. Voznyy, Nucl. Instrum. Meth. B 260, 39 (2007). 9. S. Mordyk, V. Miroshnichenko, D. Shulha, V. Storizhko,

Rev. Sci. Instrum. 79, 02B707 (2008).

10.V. Voznyi, J. Nano-Electron. Phys. 2 No2, 75 (2010).

11. . . , . . , . . ,

. . , . . , . . ,

. . , а а а вац .6 No5, 38 (2010). 12.M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma

Discharges and Materials Processing. (New York: Wiley:

1994).

13.B.H. Wolf, Handbook of Ion Sources. (Boca Raton: CRC Press: 1995).

Referências

Documentos relacionados

Since increasing the applied current density means a higher energy consumption, the current density of 3 amperes (A) was selected for the next experiments using the DC

In the present work, we have studied the profile of the argon beam produced from the glow discharge ion source and determined the sputtering yield with the aid of the differ-

Exames evidenciaram imunoglobulina monoclonal IgG/kappa e mielograma confirmou o diagnóstico de mieloma múltiplo.Foram encontrados nove casos de plasmocitoma

The model includes the formation of primary electrons and positive ions by chemiionisation, electron attachment to neutral gas species, ion-ion recombination, interaction of

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from

A vontade de agir e de contribuir para as mudanças que defendia como fundamentais para a construção de um novo país e de uma nova política, fizeram com que António Ferro se fosse

In this study, diurnal, seasonal, solar activity and latitudinal variations of ion temperature, and its relationship with corresponding ion density over the Indian low and equa-

In the case of automobiles and smart grids, new energy storage devices necessitate both the attributes of lithium ion batteries, allowing high energy density, and