• Nenhum resultado encontrado

Chargino and neutralino production in the 3-3-1 supersymmetric model in e(-)e(-) scattering

N/A
N/A
Protected

Academic year: 2017

Share "Chargino and neutralino production in the 3-3-1 supersymmetric model in e(-)e(-) scattering"

Copied!
16
0
0

Texto

(1)

Chargino and neutralino production in the 3-3-1 supersymmetric model in e

À

e

À

scattering

M. Capdequi-Peyrane`re and M. C. Rodriguez*

Physique Mathe´matique et The´orique, CNRS-UMR 5825 Universite´ Montpellier II, F-34095, Montpellier Cedex 5, France

~Received 21 June 2001; published 21 December 2001!

The goal of this article is to derive the Feynman rules involving single charginos, neutralinos, double charged gauge bosons, and sleptons in a 3-3-1 supersymmetric model. Using these Feynman rules we calculate the production of double charged charginos with neutralinos and also the production of a pair of single charged charginos, both in an electron-electron linear collider.

DOI: 10.1103/PhysRevD.65.035001 PACS number~s!: 12.60.Jv, 13.85.Lg

I. INTRODUCTION

The standard model is exceedingly successful in describ-ing leptons, quarks, and their interactions. Nevertheless, the standard model is not considered as the ultimate theory since neither the fundamental parameters, masses and couplings, nor the symmetry pattern are predicted. Even though many aspects of the standard model are experimentally supported to a high degree of accuracy, the embedding of the model into a more general framework is to be expected. The possi-bility of a gauge symmetry based on the symmetry SU(3)C

^SU(3)L^U(1)N~3-3-1! @1#is particularly interesting,

be-cause it explains some fundamental questions that have not been eluded in the context of the standard model@2#.

Recently one of us proposed the supersymmetric exten-sion of the 3-3-1 model@2#; in this kind of model if we want to remain in a perturbative regime at all energies, then we need, in a natural way, a broken supersymmetry at a TeV scale, and the lightest scalar boson has an upper limit, which is 124.5 GeV for a given set of parameters at the tree level. We must remember that in the minimal supersymmetric stan-dar model~MSSM!the bound using radiative corrections to the mass of the lightest Higgs scalar is 130 GeV@3#. On the other hand, no direct observation of a Higgs boson has been made yet, and current direct searches made at the CERN

e1e2 collider accelerator leads to the condition M

h

.113 GeV@4#in the MSSM.

Linear colliders would be most versatile tools in experi-mental high-energy physics. A large international effort is currently under way to study the technical feasibility and physics possibilities of linear e1e2 colliders in the TeV range. A number of designs have already been proposed

@Next Linear Collider ~NLC!, Japan Linear Collider ~JLC!, DESY TeV Energy Superconducting Linear Accelerator TESLA, CERN Linear Collider CLIC, VLEPP, . . .#and sev-eral workshops have recently been devoted to this subject. They can provide not only e1e2 collisions and high

lumi-nosities, but also very energetic beams of real photons. One could thus exploit gg, e2g, and even e2e2 collisions for

physics studies.

The last exciting prospects have prompted a growing number of theoretical studies devoted to the investigation of the physics potential of such e2e2 accelerator experiments.

Of course, in the realm of the standard model this option is not particularly interesting because Mo”ller scattering and bremsstrahlung events are mainly observed. However, it is just for that reason that e2e2 collisions can provide crucial

information on exotic processes, in particular on processes involving lepton and/or fermion number violation. Therefore, new perspectives emerge in detecting new physics beyond the standard model in processes having nonzero initial elec-tric charge ~and nonzero lepton number! like in electron-electron e2e2process.

In this paper we will explicitly work out two e2e2

pro-cesses and we will show the difference between the MSSM and the 3-3-1 supersymmetric model in the chargino produc-tion. This paper is organized as follows. The model is out-lined in Sec. II, where leptons, sleptons, scalars, higgsinos, gauge bosons, and gauginos are defined. We derive the mass spectrum in Sec. III, while the interactions are in Sec. IV. In order to calculate cross sections, we derive the Feynman rules in the Sec. V, while the productions of charginos and neutralinos are worked out in Sec. VI. Our conclusions are given in Sec. VII.

The Lagrangian is given in Appendix A, while in Appen-dix B we show the mass matrices of the charginos and neu-tralinos. The procedure to write two-component spinors in terms of four-component spinors is given in Appendix C. The differential cross sections of the processes we have cal-culated are given in the Appendix D.

II. PARTICLE CONTENT

First of all, let us outline the model, following the nota-tion given in@2#. We are writing here the particle content that we are using in this study, so it means that we are not going to discuss quarks and squarks.

The leptons and sleptons are given by

Ll5~nlllc!L t , ˜L

l5~˜nll˜ l˜c!L t , l

5e,m,t. ~2.1!

The scalars of our theory are *Permanent address: Instituto de Fı´sica Teo´rica, Universidade

Es-tadual Paulista, Brazil.

(2)

h5

S

h0

h12

h21

D

, r5

S

r1 r0 r11

D

, x5

S

x2 x22

x0

D

,

S5

S

s1

0 h21

A

2

h12

A

2

h21

A

2

H111 s2 0

A

2

h12

A

2

s2 0

A

2

H222

D

, ~2.2!

the higgsinos, the superpartners of the scalars, are defined as

h ˜5

S

h ˜0

h ˜ 1 2

h ˜ 2 1

D

, ˜r5

S

r ˜1

r ˜0

r ˜11

D

, x˜5

S

x ˜2

x ˜22

x ˜0

D

,

S ˜5

S

s ˜ 1 0 ˜h2

1

A

2

h ˜ 1 2

A

2

h ˜ 2 1

A

2

111 s ˜ 2 0

A

2

h ˜ 1 2

A

2

s ˜ 2 0

A

2

222

D

. ~2.3!

To cancel chiral anomalies generated by these higgsinos we have to add the fieldsh˜

8

,r˜

8

,x˜

8

, and S˜

8

and their respective

scalars, see@2#.

When we break the 3-3-1 symmetry to the SU(3)C

^U(1)E M, the scalars get the following vacuum expectation

values ~VEVs!:

^

h

&

5

S

v

0

0

D

,

^

r

&

5

S

0

u

0

D

,

^

x

&

5

S

0

0

w

D

,

^

S

&

5

S

0 0 0

0 0 z

A

2

0 z

A

2 0

D

, ~2.4!

and similar expressions to the primed fields, where v

5vh/

A

2, u5vr/

A

2, w5vx/

A

2, z5vs

2/

A

2, v

8

5vh

8/

A

2, u

8

5vr

8/

A

2, w

8

5vx

8/

A

2, and z

8

5vs 2

8/

A

2. In the 3-3-1 supersymmetric model the bosons of the symmetry SU(3)Lare Va and their superpartners, the

gaugi-nos, arelAa, with a

51, . . . ,8. For the U(1)Nsymmetry, we have the boson V and its superpartner written as lB ~which we call gaugino too!.

In the usual 3-3-1 model@1#the gauge bosons are defined as

Wm6~x!52 1

A

2~Vm

1

~x!7iVm

2 ~x!!,

Vm6~x!52 1

A

2~Vm

4

~x!6iVm5~x!!,

Um66~x!52 1

A

2~Vm

6

~x!6iVm7~x!!,

Am~x!5 1

A

114t2@~Vm

3

~x!2

A

3Vm8~x!!t1Vm#,

Zm0~x!52 1

A

114t2

F

A

113t

2V

m

3

~x!1

A

3t 2

A

113t2Vm

8 ~x!

2

t

A

113t2Vm~x!

G

,

Z

8

m0~x!5 1

A

113t2~Vm

8

~x!1

A

3tVm~x!!, ~2.5!

where t[tanu5g

8

/g where g

8

and g are the gauge coupling constants of U(1) and SU(3), respectively. We can define the charged gauginos, in analogy with the gauge bosons, in the following way

lW6~x!

52 1

A

2~ lA

1

~x!7ilA2~x!!,

lV6~x!

52

A

1

2~ lA

4

~x!6ilA5~x!!,

lU66~x!

52

1

A

2~ lA

6

~x!6ilA7~x!!. ~2.6!

III. MASS SPECTRUM

The higgsino mass term comes fromLH M T, see Eq.~A7!, the gauginos mass term is given byLG M T, see Eq.~A8!and the mixing term between gauginos and higgsinos is given by

L

HH˜ V˜

scalar

(3)

A. Double charged chargino

Doing the calculations we obtain the mass matrix of the double charged charginos in the following1way:

Lmassdouble52mllU22l

U

11

2m2r˜r

8

22˜r112mx

2˜x

22˜x

8

112mS

2 ~1

8

22H˜ 1 11

1222

8

211!

2ig

S

r11

2w

8

x˜

8

11

2

z

A

2H

˜ 1 11

1

z

8

A

2H

˜

8

2 11

D

l

U

22

2ig

S

x22

2u

8

˜r

8

22

2

z

A

2H

˜ 2 22

1

z

8

A

2H

˜ 1

8

22

D

l

U

11

1

f1v

3 x˜

22˜r11

2

f3

3 ux˜

22H˜ 1 11

2

A

2f3 3 zx˜

22˜r11

2

f3

3 wH˜2

22˜r11

1

f1

8

v

8

3 x˜

8

11˜r

8

22

2

f3

8

3 u

8

x˜

8

11H˜

8

1 22

2

A

2

f3

8

3 z

8

x˜

8

11˜r

8

222f3

8

3 w

8

8

2

11r˜

8

221H.c., ~3.1!

which can be written in analogy with the MSSM,2 see Ap-pendix B 1, as follows

L mass double

5221~ C66!tY66C661H.c. ~3.2!

The double chargino mass matrix is diagonalized using two rotation matrices, A and B, defined by

x ˜

i

11

5Ai jCj11, x˜

i

22

5Bi jC22j , i, j

51, . . . ,5,

~3.3!

where A and B are unitary matrices such that

MDCC5B*TA21, ~3.4!

the matrix T is defined in Eq.~B3!. To determine A and B, we note that

MDCC

2

5ATtTA215B*TTt~B*!21, ~3.5!

which means that A diagonalizes TtT while B diagonalizes

TTt.

We define the following Dirac spinors to represent the mass eigenstates:

C~x˜

i

11!

5~x˜

i

11˜¯x

i

22!t, Cc~x˜ i

22!

5~˜x

i

22x˜¯

i

11!t,

~3.6!

wherex˜

i

11 is the particle andx˜

i

22is the antiparticle~we are

using the same notation as in@5#!.

B. Single Charged Chargino

We can write the mass matrix of the charged chargino in the following way

Lmasssingle52ml~ lV2lV11lW2lW1!2

mh

2 ~h˜12h˜1

8

11h˜2

8

2h˜21!2 mr

2˜r

8

2˜r12mx

2 ˜x

2˜x

8

12mS

2 ~˜h12˜h1

8

11˜h2

8

2˜h21!

1ig

S

vh˜212w

8

˜x

8

12

z

22

1

D

l

V

2

1ig

S

wx˜22v

8

h˜

8

2 2

1z2

8

˜h2

8

2

D

lV1

2ig

S

r12v

8

h˜

8

1 1

1z2

8

˜h1

8

1

D

lW2

2ig

S

vh˜122u

8

r˜

8

22

z

2˜h12

D

lW12

f1u

3 x˜

2˜h 2 1

1

f1w

3 h˜12r˜12 f1

8

u

8

3 h˜2

8

2˜x

8

11 f1

8

w

8

3 ˜r

8

2h˜ 1

8

1

2

f3u

3

A

2x

˜2h˜ 2 1

2

f3w

3

A

2h

˜ 1 2˜r1

2

f3

8

u

8

3

A

2x

˜

8

1˜h 2

8

22f3

8

w

8

3

A

2 h

˜ 1

8

1˜r

8

21H.c., ~3.7!

but Eq. ~3.7!, see Appendix B 2, takes the form

Lmasssingle521

2~ C

6!tY6C61H.c. ~3.8!

1

Here we are considering the conservation of the quantum numberF, defined asF5L1B, where L is the lepton number and B is the

baryon number, then f2, f2850 @2#.

(4)

The chargino mass matrix is diagonalized using two rota-tion matrices, D and E, defined by

x ˜

i

1

5Di jC1j , x˜i25Ei jC2j , i, j51, . . . ,8. ~3.9! Then we can write the diagonal mass matrix (D and E are unitary!as

MSCC5E*XD21, ~3.10! the matrix X is defined in Eq. ~B8!.

As in the previous subsection we will define the following Dirac spinors:

C~x˜

i

1!

5~x˜

i

1x˜¯

i

2!t, Cc~x˜ i

2!

5~x˜

i

2x˜¯

i

1!t, ~3.11!

where x˜

i

1 is the particle and ˜x

i

2 is the antiparticle. This

structure is the same as in the chargino sector of the MSSM

@5#.

C. Neutralino

For the neutralino case we have

L mass neutralino

52

ml

2 ~ lA

3

lA31lA8lA8!2m

8

2 lBlB2

mh

2 h˜

0h˜

8

0

2m2r˜r0r˜

8

0

2m2x˜x0x˜

8

0

2m2S~s˜ 1

8

0 s ˜ 1 0

1s˜ 2

8

0 s ˜ 2 0

!2ig

8

A

2~wx

˜0

2ur˜0

1u

8

˜r

8

0

2w

8

x˜

8

0!l

B2

ig

A

2

S

ur

˜0

2vh˜01v

8

h˜

8

02u

8

˜r

8

01

z

2s˜2 0

2

z

8

2s˜2

8

0

D

lA32 ig

A

6

S

2wx

˜0

2ur˜0

2vh˜01u

8

˜r

8

0

1v

8

h˜

8

022w

8

˜x

8

01

z

2s˜2 0

2

z

8

2s˜2

8

0

D

lA81f1

3 ~ux˜

0h˜0

2vx˜0˜r02wh˜0˜r0!1

f1

8

3 ~u

8

x˜

8

0h˜

8

0

2v

8

x˜

8

0˜r

8

02w

8

h˜

8

0˜r

8

0!

2 f3

3

A

2~ux

˜0s˜ 2 0

1r0s˜ 2 0

12zx˜0˜r0!

2

f3

8

3

A

2~u

8

x

˜

8

0s˜ 2

8

0

1w

8

˜r

8

0s˜ 2

8

0

12z

8

x˜

8

0˜r

8

0!

1H.c. ~3.12!

Equation~3.12!can be put in the following form, see Appen-dix B3:

Lmassneutralino521

2~ C

0!tY0C0

1H.c. ~3.13!

The neutralino mass matrix is diagonalized by a 13313 rotation matrix N, a unitary matrix satisfying

MN5N*Y0N21, ~3.14!

and the mass eigenstates are

x ˜

i

0

5Ni jCj

0

, j51, . . . ,13. ~3.15!

We can define the following Majorana spinor to represent the mass eigenstates

C~˜x

i

0 !5~x˜

i

0˜¯x

i

0

!t. ~3.16!

In supersymmetric left-right models, there are double charged higgsinos too@6#. There and in the present model the diagonalization of the chargino and neutralino sectors are numerically performed.

D. Sleptons

We can write the slepton mass term as

Lmassslepton5LSMT1LFslepton1LDslepton

52m˜˜n

2 n ˜

l

*n˜

l

2

S

L214ml 2

9

D

*2

S

m˜R

2

1

4ml2

9

D

c*c

1LR2 ~l˜ l˜c2l˜c**!, ~3.17!

where

m ˜

n ˜

2

5mn˜

2

1z

2

12v22u22w2

6 ,

L25m21l22

v21

z222~w22v22u2!

12 ,

R25mc 2

1l22v21

z2

22~u2

22w2

2v2!

12 ,

LR2 59m4 l

FS

mS

A

21

f3uw

9z

D

2 4

(5)

Performing the diagonalization we find the following states:

S

12 22

D

5

S

cosuf sinuf

2sinuf cosuf

D

S

l˜c*

D

,

~11 21!5~* l˜c!

S

cosuf 2sinuf sinuf cosuf

D

,

~3.19!

where the mixing angle is given by

tan 2uf5 2m˜LR2

m ˜

L

2

2R2, ~3.20!

and the masses of these states are

m1,22 54ml 2

9 1

1

2@m˜L

2

1R26

A

~L22R2!2

14m˜LR4 #.

~3.21!

Substituting the diagonal slepton states, given in Eq.

~3.19!, in Eq. ~3.17!, we obtain the following diagonal La-grangian:

Lmassslepton52m˜˜n˜nl*˜nl2m1211122m222122. ~3.22! We wish to stress that the slepton sector of this model is the same as in the MSSM @5#.

E. Neutral gauge bosons

The gauge mass term is given by LHHVVscalar , see Eq. ~A6!, which we can divided in LmasschargedandLmassneutral.

The neutral gauge boson mass is given by

Lmassneutral5

~

V3m V8m Vm

!

M2

S

V3m

V8m

Vm

D

, ~3.23!

where

M25g 2

2

S

~v21u21z2!

1

A

3~

v22u21z2! 22tu2

1

A

3~

v22u21z2!

1 3~v

2

1u214w21z2! 2t

A

3~u

2

12w2!

22tu2 2t

A

3~u

2

12w2! 4t2~u21w2!

D

, ~3.24!

with t5g

8

/g.

In the approximation that w2@v2, u2, and z2, the masses

of the neutral gauge bosons are: 0, MZ2, and MZ 8

2

, and the masses are given by

MZ

2 '1

2

g214g

8

2

g213g

8

2~

v21u21z21v

8

21u

8

21z

8

2!,

MZ

8

2 '1

3~g

2

13g

8

2!~2w212w

8

2!. ~3.25!

F. Charged gauge bosons

The charged gauge boson mass term,Lmassneutral, is

L mass charged

5MW2Wm2W1m1MV2Vm2V1m1MU2Um22U11m,

~3.26!

where

MU25g 2

4 ~vr

2

1v

x

2

14v

s2

2

1v

r8

2

1v

x8

2

14v

s

2

8

2 !,

MW25g 2

4 ~vh

2

1vr212vs 2

2

1v

h8

2

1v

r8

2

12v

s

2

8

2 !,

MV25g 2

4 ~vh

2

1v

x

2

12v

s2

2

1v

h8

2

1v

x8

2

12v

s

2

8

2 !.

~3.27!

Using MWgiven in Eq. ~3.27!and MZ in Eq.~3.25!we get the following relation:

MZ

2

MW2 5

114t2

113t25 1

12sin2uW

, ~3.28!

therefore we obtain

t2

5 sin

2u

W

124 sin2uW

. ~3.29!

(6)

IV. INTERACTIONS

In the previous section we have analyzed the physical spectrum of the model. Now we are going to get interactions between these particles. The procedure to write two-component spinors in terms of four-component spinors is given in Appendix C.

A. Lepton gauge boson interactions

We will define the following Dirac spinors for the leptons:

C~l!5~l l¯c!t, Cc~l!

5~lcl¯!t, C~n

l!5~nl0!t. ~4.1! The leptons and the gauge bosons are defined in the Eqs.~2.1!and~2.5!and using Eqs.~4.1!, we can rewrite Eq.~A3!as follows:

LllVlep52 g

A

2@C

¯c~l!gmLC~l!U m

11

1C¯c~l!gmLC~n

l!Vm11C¯~nl!gmLC~l!Wm11H.c.#

2 gt

A

114t2C

¯~l!gmC~l!A m2

g

2

A

114t2

113t2C

¯~nl!gmLC~n l!

F

Zm2

1

A

3 1

A

114t2Zm

8

G

2g4

A

114t

2

113t2

FS

21

114t2C

¯~l!gmC~l!

1C¯~l!gmg5C~l!

D

Z

m

1

S

2

A

3

A

114t2C

¯~l!gmC~l!

2 1

A

3 1

A

114t2C

¯~l!gmg5C~l!

D

Z

m

8

G

5LllVNC1LllVCC, ~4.2!

where t is defined in Eq.~3.29!, and L and R are the usual chiral projectors, see Eq.~C2!. Let us define also the following parameters:

e5 g sinu

A

113 sin2u, h~t!5114t 2, v

l52 1

h~t!,

al51, vl

8

52

A

3

A

h~t!, al

8

5

vl

8

3 , g

2

5

8GFMW2

A

2 . ~4.3!

Then we can now rewrite the neutral part of Eq.~4.2!:

LllVNC52eC¯~l!gmC~l!A m2

g

2

MZ

MW

C¯~nl!gmLC~n l!

3

F

Zm2 1

A

3 1

A

h~t!Zm

8

G

2 g

4

MZ

MW@C¯~l!g

m~

vl1alg5!

3C~l!Zm1C¯~l!gm~vl

8

1al

8

g

5!C~l!Z

m

8

#. ~4.4!

The charged part of Eq. ~4.2!is

LllVCC52 g

A

2@C

¯c~l!gmLC~l!U m

11

1C¯c~l!gmLC~n

l!Vm11C¯~nl!gmLC~l!Wm11H.c.#, ~4.5! where g is defined in Eq.~4.3!. The Lagrangian in the Eqs.~4.4!and~4.5!is the same that was shown in Ref.@1#.

B. CharginoneutralinoUÀ Àinteractions

(7)

LUx˜11x˜052

g

2$@WD3Lg mRU˜

2U˜¯cLgmRW˜

31

A

3~UDcLgmRW˜82WD8LgmRU˜!

1

A

2~TD50LgmRT˜

2 11

1TD40LgmRT˜

1 11

1TD2c11LgmRT˜

6 0

1TD1c11LgmRT˜

3 0

!1SD2c11LgmRS˜

4 0

1SD1c11LgmRS˜

3 0

1SD4 0

LgmRS˜

1 111SD

3 0

LgmRS˜

2 11#U

m

221H.c.%

52g2$$@~Ni1*2

A

3N*i2!Bj11

A

2~Ni8*Bj31Ni7*Bj2!1Ni12* Bj51Ni13* Bj4#C¯~˜x

i

0

!LgmRC~x˜ j

11!

1@Ai1*~

A

3Nj22Nj1!1

A

2~Ai3*Nj91A*i2Nj6!1Ai5*Nj131A*i4Nj12#C¯c~x˜i22!Lg mRC~x˜

j

0

!%Um221H.c.%.

~4.6!

In a similar way we get for the charginos

LUx˜1x˜152 g

A

2

FS

W

DcLgmRV˜

2VDcLgmRW˜

1TD2c1LgmRT˜

1 11TD

1

c1LgmRT˜

2 111

2SD1

c1LgmRS˜

2 111

2SD2

c1LgmRS˜

1 1

D

U

m

221H.c.

G

5 g

A

2

FS

Di1*Ej22Di2*Ej11Di4*Ej31Di3*Ej41 1

2Di7*Ej81 1

2Di8*Ej7

D

C¯c~x˜i2!Lg mRC~x˜

j

1!U

m

221H.c.

G

. ~4.7!

C. Lepton slepton charginoneutralinointeractions

The interactions between lepton slepton chargino~neutralino!are given by

Ll l˜x˜5$2g cosufAiC¯~x˜i0!LC~l!2g sinufAi1C¯~l!RCc~x˜i22!12l3sinuf@Ai5*C¯c~x˜i22!LCc~l!1Ni8*C¯~˜xi0!LC~l!#%11

1$g sinufAi*C¯~˜xi

0

!LC~l!2g cosufAi1C¯~l!RC c~x˜

i

22!

12l3cosuf@Ai5*C¯ c~x˜

i

22!LCc

~l!1Ni8*C¯~x˜

i

0

!LC~l!#%21

1

H

2g2l3

A

2 @Ei8*C

¯~x˜

i

1!LC~l!

1Di7*C¯c~x˜ i

2!LCc

~l!1

A

2Ni7*C¯~x˜

i

0

!LC~nl!#

J

˜nl1H.c., ~4.8!

where Ai5(Ni1*/

A

21Ni2*/

A

6).

V. FEYNMAN RULES

In the previous section we got the interaction Lagrangians, mainly the following vertices: lepton-lepton-gauge boson; chargino-chargino ~neutralino!-gauge boson; slepton-lepton-chargino~neutralino!.

In the Table I we give the Feynman rules for the interac-tions mentioned above, and we have defined the following operators:

Oi j15Ai1*~

A

3Nj22Nj1!1

A

2~Ai3*Nj91Ai2*Nj6!1Ai5*Nj13

1Ai4*Nj12, ~5.1!

Oi j252

S

Di1*Ej22Di2*Ej11Di4*Ej31Di3*Ej41 1 2Di7*Ej8

112Di8*Ej7

D

. ~5.2!

To derive the differential and total cross sections, we will assume that the mass of the lightest particle of this model coincides with the mass parameter coming from the MSSM.

In Table II we shown two different solutions got in mSUGRA @7#, and they are the values that we used in our calculations.

VI. APPLICATIONS

In this section, we will perform the calculation of differ-ential and total-cross-sections of the lightest single charged chargino, double charged chargino, and neutralino, in e2e2

scattering. First we present the chargino production. In the two subsections below, we neglect the electron mass and we assume that electrons have energy E/2. We will consider that P1 and P2are the four momenta of the

incom-ing electrons while K1 and K2 are the four momenta of the outgoing particles.

A. Charginos production eÀeÀ

\x˜Àx˜À

(8)

We have calculated the differential cross section, see Eq.

~D1!, and the total cross section, and we have displayed sev-eral plots of the total cross section with MU>0.5 TeV and

A

s50.5,1.0, and 2.0 TeV.

The plots show that outside the U resonance, the total-cross-section is of the order of pb, like in the MSSM @8#. This result is displayed in Figs. 2, 3, and 4.

B. Double chargino and neutralino production eÀeÀ

\x˜À Àx˜0

Considering the Table I, we have at the tree level nine diagrams for this process, see Fig. 5. In the supersymmetric

left-right model @6# the production of a double charged higgsino occurs via a selectron exchange in the t-channel, like in the third diagram of Fig. 5.

As in the previous subsection, we have calculated the dif-ferential cross section, see Eq.~D2!, and the total cross sec-tion. We have done several plots using Mx0, M

1, and Ml˜2,

given in Table II, and MU50.5 TeV. Some of our results are shown in Figs. 6, 7, and 8.

VII. CONCLUSIONS

Because of the low level of standard model backgrounds, the total-cross-section s'1023 nb at

A

s5500 GeV @9#,

e2e2 collisions are an appropriate reaction for discovering TABLE I. Feynman rules derived from Eqs.~4.5!,~4.6!,~4.7!,

and~4.8!.

Vertices Feynman rules

l2l2U22

2 ig

A

2Cg

m L

x

˜ j

22x˜

i 0

U22 ig

2Oij 1

Cgm R

x

˜ i

2x˜

j

2U22 ig

2Oij 2

CgmR

12l2˜x

i

22 22il3Ai5sinufR

22l2˜xi22 22il3Ai5cosufR 12l2˜x

i 0

i

F

g

S

Ni1

A

21

Ni2

A

6

D

cosufR2l3 2

A

2sinufNi8R

G

22l2˜x

i 0

i

F

g

S

Ni1

A

21

Ni2

A

6

D

sinufR1l3 2

A

2cosufNi8R

G

11l2˜xi 0

i

F

g

S

Ni1*

A

21

Ni2*

A

6

D

cosufL2l3 2

A

2sinufNi8*L

G

21l2˜xi 0

i

F

g

S

Ni1*

A

21

Ni2*

A

6

D

sinufL1l3 2

A

2cosufNi8*L

G

11l2˜xi22 2igAi1sinufRC 21l2˜xi22 2igAi1cosufRC n

˜

ll2x˜i2 2il3 2

A2

Di7*L

n

˜ l *l2x˜

i

2

2il3 2

A

2Di7R

TABLE II. Mass values of the lightest chargino and neutralino, sleptons, and of the sneutrino at electroweak scale corresponding to the mSUGRA solution.

@GeV# RR1: tanb53 RR2: tanb530

x

˜

1

6 128 132

x

˜

1

0 70 72

e ˜ L

2 176 217

e ˜ R

2 132 183

n

˜ 166 206

FIG. 1. Feynman diagrams for the process e2e2→x˜2x˜2.

FIG. 2. Total cross section e2e2˜x2˜x2at

A

s50.5 TeV and

(9)

and investigating new physics at linear colliders.

We have shown in this work that the production of single charged charginos have more contributions in this model than in the MSSM. Although in the MSSM the chargino pairs can be only produced through e2e2 collisions by

sneutrino exchanges in the u and t channels, in the 3-3-1 supersymmetric model we also have a s channel contribution due to the exchange of U22. This new contribution induces

a peak at

A

s.MU, where MUis the mass of this boson, and gives a clear signal. Near the resonance the dominant term in the total-cross-section is given by uO2u2(mx˜1

4

28sm˜x1 2

14s2) coming from the U contribution. The total-cross-section outside the U resonance has the same order of mag-nitude than the cross section in the MSSM, as we should expected, because in this case we do not have an enhance-ment due to the s- channel contribution.

It was also shown that in this model we have double charged charginos, which are not present in the MSSM

framework. Therefore, it is a very useful way to distinguish the 3-3-1 supersymmetric model from the MSSM, and also from the usual 3-3-1 model because in this case we do not have double charged leptons. We have considered the double chargino mass in the range 700<Mx˜11<800 GeV, and we

could get cross section of the order of pb outside the U resonance, while in the resonance we have an enhancement in the cross section. We believe that these new states can be discovered, if they really exist, in linear colliders like NLC, JLC, TESLA, CLIC or VLEPP.

ACKNOWLEDGMENTS

This research was financed by Fundac¸a˜o de Amparo a` Pesquisa do Estado de Sa˜o Paulo ~M.C.R.!. One of us

~M.C.R.! would like to thank the Laboratoire de Physique Mathe´matique et The´orique~Montpellier!for its kind hospi-tality and also G. Moultaka for useful discussions.

FIG. 3. Total cross section e2e2˜x2˜x2at

A

s51.0 TeV and

Di75102

1

, O25102 1

.

FIG. 4. Total cross section e2e2˜x2˜x2at

A

s52.0 TeV and

Di751, O251021.

FIG. 5. Feynman diagrams for the process e2e2x˜22˜x0

and i51,2.

FIG. 6. Total cross section e2e2x˜22x˜0at

A

s

(10)

APPENDIX A: LAGRANGIAN

With the fields introduced in Sec. II, we can built the following Lagrangian @2#

L331S5LSUSY1Lsoft ~A1!

where

LSUSY5Llepton1Lgauge1Lscalar, ~A2!

is the supersymmetric part whileLsoftbreaks supersymmetry. Now we are going to present all terms in the Lagrangian of the model, which we have used in this work.

1. Lepton Lagrangian

In the LLeptonterm, the interactions between leptons and

gauge bosons are given in components by

LllVlep5g

2¯Ls¯ mlaLV

m a

, ~A3!

where la are the usual Gell-Mann matrices.The next parts we are interested in are lepton-slepton-gaugino interactions:

L

l l˜V˜

lep

52 ig

A

2~L

¯la˜Ll¯ A a

2LDlaLl A a

!. ~A4!

2. Gauge Lagrangian

The part we are interested inLgaugeis the interaction be-tween higgsino and gauge boson; that is

LllgaugeV 52ig fabcl¯

A al

A bsmV

m

c , ~A5! where fabc are the structure constants of the gauge group

SU(3).

3. Scalar Lagrangian

In the scalar sector, we are interested in the following three terms:

L

HH˜ V˜

scalar

52

A

ig

2@hDl ahl¯

A a

2h¯lah˜l A a

1rDlar¯l A a

2¯rla˜rl A a

1xDlaxl¯ A a

2x¯la˜xl A a

1SDlaSl¯ A a

2¯Sla˜Sl A a

2hD

8

l*ah

8

¯l

A a

1h¯

8

l*ah˜

8

lAa

2rD

8

l*ar

8

¯l

A a

1¯r

8

l*a˜r

8

lAa

2xD

8

l*ax

8

l¯

A a

1¯x

8

l*ax˜

8

lAa

2SD

8

l*aS

8

l¯

A a

1¯S

8

l*a˜S

8

lAa]2ig

8

A

2@rDrl

¯B2¯r˜rlB2xDx¯lB1x¯˜xlB2rD

8

r

8

¯lB1¯r

8

˜r

8

lB1xD

8

x

8

¯lB2x¯

8

˜x

8

lB#,

L

H ˜ H˜ V

scalar

5g2@hDs¯mlah˜

1rDs¯mla˜r

1xDs¯mlax˜

1SDs¯mla˜S

2hD

8

s¯ml*ah˜

8

2rD

8

s¯ml*ar˜

8

2xD

8

s¯ml*a˜x

8

2SD

8

s¯ml*a˜S

8

#Vm

a

1g2

8

@rDs¯m˜r

2xD¯smx˜

2rD

8

s¯m˜r

8

1xD

8

s¯mx˜

8

#Vm,

FIG. 8. Total cross section e2e2x˜22x˜0at

A

s

52.0 TeV and X1cosuf5X2cosuf5X3sinuf5X4sinuf51022, O151022.

FIG. 7. Total cross section e2e2→x˜22˜x0

(11)

LHHVVScalar51

4@g

2V

m

aVbmh¯lalbh

1g2VmaVbm¯rlalbr

1g2VmaVbm¯xlalbx

1g2VmaVbm¯h

8

l*al*bh

8

1g2VmaVbm¯r

8

l*al*br

8

1g2VmaVbmx¯

8

l*al*bx

8

1g2VmaVbm~ lika¯Sk j1ljk a

S ¯ki!~ l

ik a

Sk j1ljk a

Ski!

1g2VmaVbm~ lik*a

S ¯

k j

8

1l*jka

S ¯

ki

8

!~ lik*a

Sk j

8

1l*jka

Ski

8

!1g

8

2VmVm¯rr1g

8

2VmVm¯xx12gg

8

Vm a

Vm~¯rlar!

22gg

8

VmaVm~x¯lax!

1g

8

2VmVmr¯

8

r

8

1g

8

2VmVmx¯

8

x

8

12gg

8

Vm a

Vm~¯r

8

l*ar

8

!22gg

8

VmaVm~¯x

8

l*ax

8

!].

~A6!

4. Superpotential

The terms of interest in this case are

LH M T52mh

2 h˜ih˜i

8

2

mr 2 r˜i˜ri

8

2

mx 2 x˜i˜xi

8

2

mS

2˜Si j˜Sji

8

1H.c.,

LF51

3@3l1eFL˜ LL˜1l2e~2FLh1Fh!

1l3~2FLS1FS!1f1e~Frxh1rFxh1rxFh!

1f2~2FhhS1hhFS!1f3~FrxS1rFxS1rxFS!

1f1

8

e~Fr8x

8

h

8

1r

8

Fx8h

8

1r

8

x

8

Fh8!

1f2

8

~2Fh8h

8

S

8

1h

8

h

8

FS8!

1f3

8

~Fr8x

8

S

8

1r

8

Fx8S

8

1r

8

x

8

FS8!#1H.c.,

LHH˜ H˜52 1

3@f1e~˜rx˜h1rx˜h˜1˜rxh˜!

1f2~˜hh˜ S1hh˜ S˜1h˜h˜S!1f

3~r˜˜ Sx 1rx˜ S˜1˜rx˜S!

1f1

8

e~˜r

8

x˜

8

h

8

1r

8

x˜

8

h˜

8

1r˜

8

x

8

h˜

8

!

1f2

8

~h˜

8

h˜

8

S

8

1h

8

h˜

8

˜S

8

1h˜

8

h

8

S˜

8

!

1f3

8

~˜r

8

˜x

8

S

8

1r

8

˜x

8

˜S

8

1˜r

8

x

8

˜S

8

!#1H.c. ~A7!

5. Soft term

The soft term of this model is

LG M T521

2

F

mla

(

51 8

~ lA a

lA a

!1m

8

lBlB1H.c.

G

,

Lscalar52mh2h†h

2mr2r†r

2mx2x†x

2mS2Tr~SS!

2mh

8

2 h

8

h

8

2mr

8

2 r

8

r

8

2mx

8

2 x

8

x

8

2mS

8

2

Tr~S

8

S

8

!1~k1ei jkrixjhk1k2hihjSi j

1k3xirjSi j

1k1

8

ei jkri

8

x

8

jh

8

k1k2

8

hi

8

hj

8

S

8

i j

1k3

8

xi

8

rj

8

S

8

i j

1H.c.!,

LS M T52mL2˜L1z0

(

i51 3

(

j51 3

~L˜iL˜jSi j1LDiLDjSi j*!.

~A8!

APPENDIX B: THE MASS MATRICES

In this appendix we display the mass matrices of the charginos and neutralinos.

1. Double charged chargino

Introducing the notation

c115~2il

U

11˜r11˜x

8

11H˜ 1 11H˜

8

2 11!t,

c22

5~2ilU22˜r

8

22x˜22H˜

8

1 22H˜

2 22!t,

and

C665~c11c22!t, ~B1!

we can write Eq. ~3.1!as follows:

Lmassdouble521

2~ C

66!tY66C661H.c., ~B2!

where

Y665

S

0 T

t

T 0

D

, ~B3!

(12)

T5

1

2ml 2gu gw

8

gz

A

2 2

gz

8

A

2

gu

8

mr

2 2

S

f1

8

v

8

3 2

A

2

f3

8

3 z

8

D

0

f3

8

3 w

8

2gw 2

S

f1v

3 2

A

2

f3

3 z

D

mx 2

f3

3 u 0

2gz

8

A

2

0 f3

8

3 u

8

mS

2 0

gz

A

2

f3

3 w 0 0

mS

2

2

. ~B4!

The matrix Y66 in Eq. ~3.2!satisfies the following rela-tion:

det~Y662lI!5det

FS

2

l Tt

T 2l

DG

5det~ l 2

2TtT!,

~B5!

so we only have to calculate TtT to obtain the eigenvalues.

Since TtT is a symmetric matrix,l2must be real, and

posi-tive because Y66 is also symmetric.

2. Single charged chargino

Introducing the notation

c15~2il

W

1

2ilV1h˜ 1

8

1h˜ 2

1˜r1x˜

8

1h˜ 1

8

1˜h 2 1!t,

c25~2il

W

2

2ilV2h˜ 1 2h˜

2

8

2˜r

8

2x˜2˜h 1 2˜h

2

8

2!t, and

C65~c1c2!t, ~B6! Equation~3.7!takes the form

Lmassunique521

2~ C

6!tY6C61H.c., ~B7!

where

Y65

S

0 Xt

X 0

D

, ~B8!

with

X5

¨

2ml 0 gv

8

0 2gu 0 2

gz

8

2 0

0 2ml 0 2gv 0 gw

8

0 2

gz

2

2gv 0

mh

2 0 2

f1w

3 0 0 0

0 gv

8

0

mh

2 0

f1

8

u

8

3 0 0

gu

8

0 2f1

8

w

8

3 0

mr

2 0 0 0

0 2gw 0 f1u

3 0

mx

2 0 0

2gz2 0 0 0 f3w

3

A

2

0 mS

2 0

0 gz

8

2 0 0 0

f3

8

u

8

3

A

2

0 mS

2

(13)

The matrix X satisfies the same properties as the matrix T@Eq.~B5!#.

3. Neutralinos

Introducing the notation

C0

5~2ilA3

2ilA8

2ilBh˜0h˜

8

0˜r0˜r

8

0˜x0x˜

8

0s˜ 1 0s˜

1

8

0s˜ 2 0s˜

2

8

0 !t, Equation~3.12!takes the following form:

Lmassneutralino521

2~ C

0!tY0C0

1H.c., ~B10!

where

(14)

with

A5f1

v

3 1

A

2

f3

3 z, B5

f1

8

v

8

3 1

A

2

f3

8

3 z

8

. ~B12!

APPENDIX C: CONNECTION BETWEEN THE TWO- AND FOUR- COMPONENT SPINORS

In this appendix we show the procedure to write two-component spinors in terms of four-two-component spinors.

1. Weak eigenstates

The weak interaction eigenstates are:

5

S

2 ilU11 l

U

22

D

,

c

5

S

2ilU22

l

U

11

D

,

T ˜ 1 115

S

˜r

11

rD

8

22

D

, ˜T1

c115

S

˜r

8

22

rD11

D

,

T ˜ 2 11

5

S

x

˜

8

11

xD22

D

, ˜T2

c11

5

S

x

˜22

xD

8

11

D

,

S ˜ 1 11

5

S

111

HD

8

122

D

, S ˜ 1

c11

5

S

8

122

HD111

D

,

S ˜ 2 11 5

S

H ˜

8

2 11

HD222

D

, S ˜ 2

c11

5

S

222

HD

8

211

D

,

5

S

2 ilW1 l

W

2

D

,

c

5

S

2ilW2

l

W

1

D

,

V

˜5

S

2ilV 1

lV2

D

, V˜c5

S

2 ilV2 il¯V1

D

, T ˜ 1 1 5

S

h ˜

8

1 1

hD12

D

, ˜T1

c1 5

S

h ˜ 1 2

hD

8

11

D

,

T ˜ 2 1 5

S

h ˜ 2 1

hD

8

22

D

, ˜T2c15

S

h ˜

8

2 2

hD21

D

,

T ˜ 3 1

5

S

r

˜1

rD

8

2

D

, 3

c1

5

S

r

˜

8

2

rD1

D

,

T ˜ 4 15

S

x˜

8

1

xD2

D

, 4

c15

S

x˜ 2

xD

8

1

D

,

S ˜ 1 1 5

S

h ˜ 1 2

hD

8

11

D

, S ˜ 1 c1 5

S

h ˜

8

1 1

hD12

D

,

S ˜ 2 1 5

S

h ˜ 2 1

hD

8

22

D

, S ˜ 2 c1 5

S

h ˜

8

2 2

hD21

D

,

35

S

2ilA3 l

A

3

D

, 85

S

2ilA8 l

A

8

D

,

B

˜5

S

2ilB il¯B

D

,

T ˜ 1 0

5

S

h

˜0

hD0

D

, 2 0

5

S

h

˜

8

0

hD

8

0

D

, 3 0

5

S

r

˜0

rD0

D

,

T ˜ 4 0

5

S

r

˜

8

0

rD

8

0

D

, 5 0

5

S

x

˜0

xD0

D

,

T ˜ 6 0

5

S

x

˜

8

0

xD

8

0

D

, ˜S1 0

5

S

s

˜ 1 0

sD10

D

, ˜S2 0

5

S

s

˜

8

1 0

sD

8

10

D

,

S ˜ 3 0 5

S

s ˜ 2 0

sD2 0

D

, ˜S4

0 5

S

s ˜

8

2 0

sD

8

2

0

D

. ~C1!

With the states defined in Eqs.~C1!we get the following identities that allow us to write the two-component spinors in terms of the four-component weak eigenstates

lU22sm¯l A

3

52UDLgmRW˜

3,

lU11sm¯l A

3

52UDcLgmRW˜

3,

lA8sm¯l U

11

52WD8LgmRU˜c,

lU11sm¯l A

8

52UDcLgmRW˜

8,

x

˜

8

11smxD

8

0

52TD3

c11LgmRT˜

6 0

,

r

˜11smrD0

52TD1c11LgmRT˜

3 0,

x

˜0smxD2252TD 5 0

LgmRT˜

2 11,

r ˜

8

0smrD

8

2252TD 4 0

LgmRT˜

1 11,

s ˜

8

2 0smHD

8

12252SD4 0

LgmRS˜

1 11,

111smsD

2 0

52SD1c11LgmRS˜

3 0,

H ˜

8

2 11smsD

8

2 0

52SD2c11LgmRS˜

4 0 , s ˜ 2 0smHD

2 22

52SD30LgmRS˜

2 11,

lV2sml¯ W

1

52VDLgmRW˜c, l W

1sml¯ V

2

52WDcLgmRV˜ ,

h ˜ 2 1smhD

1 2

52TD2c1LgmRT˜

Referências

Documentos relacionados

A elaboração desse instrumento requer diversas etapas, neste estudo pretende-se desenvolver uma destas etapas, que inclui o levantamento do número de

(MT, kgha -1 ), massa de folhas (MF, kgha -1 ), massa de colmos (MC, kgha -1 ), massa de material morto (MM, kgha -1 ), porcentagem de folhas (%F) e porcentagem de

Legs with coxa, tro- chanter, femur and tibia yellow; fore tarsus slightly brown and mid and hind tarsi brown; fore tibia with 1 strong posterior seta on middle third; 1 dor-

Segundo Martha (2010) tanto no Método dos Deslocamentos quanto no Método das Forças, para solução de uma estrutura, é necessário se considerar três condições básicas:

• Durante a década de 1970 , o conceito de hiperligações foi posteriormente refinado e estendido por pesquisadores da Xerox PARC , que foram além da interface de texto, usando

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Contudo, não se encontra na literatura muitas pesquisas que tratem da comparação da pressão perineal e graduação da força muscular dos músculos do assoalho pélvico

Bastos (1997) expõe que o liberalismo, doutrina que apregoa o sistema capitalista, foi firmado a partir da Livre Iniciativa, que por sua vez está intrinsicamente ligada à liberdade de