• Nenhum resultado encontrado

Comparison of gamma ray effects on EPROMs and E2PROMs

N/A
N/A
Protected

Academic year: 2017

Share "Comparison of gamma ray effects on EPROMs and E2PROMs"

Copied!
7
0
0

Texto

(1)

COM PAR I SON OF GAMMA RAY EF FECTS ON

EPROMs AND E

2

PROMs

by

Miloš VUJISI]

1

, Koviljka STANKOVI]

2

, and Aleksandra VASI]

3

Re ceived on Feb ru ary 15, 2009; ac cepted in re vised form on march 15, 2009

This pa per com pares the re li abil ity of stan dard com mer cial Eras able Pro gram ma ble Read Only Mem ory (EPROM) and Elec tri cally Eras able Pro gram ma ble Read Only Mem ory (E2PROM) com po nents ex posed to gamma rays. The re sults ob tained for

CMOS-based EPROM (NM27C010) and E2PROM (NM93CS46) com po nents pro

-vide the ev i dence that EPROMs have greater ra di a tion hard ness than E2PROMs.

More over, the changes in EPROMs are re vers ible, and af ter era sure and re pro gram -ming all EPROM com po nents re store their func tion al ity. On the other hand, changes in E2PROMs are ir re vers ible. The ob tained re sults are an a lyzed and in ter preted on the

ba sis of gamma ray in ter ac tion with the CMOS struc ture.

Key words: EPROM, E2PROM, gamma rays, ra di a tion hard ness

IN TRO DUC TION

The ma jor ad van tages of Elec tri cally Eras able Pro gram ma ble Read Only Mem ory (EEPROM or E2PROM) over Eras able Pro gram ma ble Read Only

Mem ory (EPROM) com po nents are the elim i na tion of UV erase equip ment and the much faster inthesys tem eras ing pro cess (mea sured in mil li sec onds com -pared with min utes for high-den sity EPROM). On the other hand, the ma jor draw back of E2PROMs is the

large size of their two tran sis tor mem ory cells com pared to sin gle tran sis tor cells of EPROMs [1]. Fol low ing the shift from NMOS to CMOS tran sis tor tech -nol ogy, pres ent day pro gram ma ble non-vol a tile

mem o ries are mostly CMOS-based, as it is the case with both mem ory mod els in ves ti gated in this pa per.

The in flu ence of neu tron dis place ment dam age, pri mar ily re flected in the change of the mi nor ity car -rier life time, is neg li gi ble in all MOS (Metal-Ox ide Semi con duc tor) struc tures, since their op er a tion is not sig nif i cantly af fected by the mi nor ity car rier life time. Other types of neu tron dam age, in clud ing sec ond ary ion iza tion and car rier re moval, are min i mal and in di -rect [2, 3].

CMOS struc ture is nat u rally im mune to al pha ra di a tion, due to the shal low well. The for ma tion of elec -tron-hole pairs by an al pha par ti cle will pri mar ily take place in the sub strate be low the well. The well forms an elec tri cal bar rier to the car ri ers, pre vent ing them from reach ing the gate and in flu enc ing tran sis tor op er a tion. Any car ri ers gen er ated in the well it self re com -bine quickly or get lost in the flow of majority carriers [1, 4].

Gamma ra di a tion may cause sig nif i cant dam age to pro gram ma ble mem o ries, de te ri o rat ing prop er ties of the ox ide layer, and has been there fore con sid ered in this paper.

EX PER I MEN TAL PRO CE DURE

The ex am i na tion of EPROM and E2PROM ra di

-a tion h-ard ness w-as c-ar ried out in -a co b-alt-60 (60Co)

gamma ra di a tion field at the Vin~a In sti tute of Nu clear Sci ences, Bel grade, Ser bia. The ab sorbed dose de -Nu clear Tech nol ogy & Ra di a tion Pro tec tion

Sci en tific pa per

UDC: 539.125.52:621.3.037.3

BIBLID: 1451-3994, 24 (2009), 1, pp. 61-67 DOI: 10.2298/NTRP0901061V

1

Fac ulty of Elec tri cal En gi neer ing, Uni ver sity of Bel grade

73, Bulevar Kralja Aleksandra, 11000 Bel grade, Ser bia

2Radiation and Environmental Pro tec tion De part ment,

Vin~a In sti tute of Nu clear Sci ences P. O. Box 522, 11001 Bel grade, Ser bia

3

Fac ulty of Me chan i cal Engineering, Uni ver sity of Bel grade

16, Kraljice Marije, 11120 Bel grade, Ser bia

(2)

pend ence of the changes in the mem ory sam ples caused by ir ra di a tion was mon i tored.

The 60Co source was man u fac tured at Harwell

Lab o ra tory. The air kerma rate was mea sured at var i -ous dis tances from the source with a Baldwin-Farmer ion iza tion cham ber. The ab sorbed dose was spec i fied by chang ing the du ra tion of ir ra di a tion and the dis -tance be tween the source and the ex am ined mem ory sam ples. The ab sorbed dose in Si was cal cu lated from the ab sorbed dose in air, by us ing the ap pro pri ate mass en ergy-ab sorp tion co ef fi cients for an av er age en ergy of 60Co gamma quanta equal to 1.25 MeV. Mass en

-ergy-ab sorp tion co ef fi cients for sil i con and air – menSi(1.25 MeV) = 0.02652 cm2/g, m

enAIR(1.25 MeV) =

0.02666 cm2/g – were ob tained from the NIST ta bles

[5].

The test ing was per formed on the sam ples of COTS (Com mer cial Of The Shelf) EPROMs and E2PROMs. The EPROMs used for the in ves ti ga tions

were NM27C010 com po nents, with 1.048.576bit stor -age ca pac ity, or ga nized as 128K-words of 8 bits each, in a 32-Lead PLCC pack age. The E2PROM sam ples used

were NM93CS46 com po nents, with 1024-bit stor age ca pac ity, or ga nized as a 64 ´ 16-bit ar ray, pack aged in an 8-pin DIP chip car rier. Forty sam ples were used for both EPROM and E2PROM test ing, on the ba sis of

which the av er age re sults pre sented in the pa per were ob tained. All tests were per formed at the room tem per a -ture (25 ºC). The ir ra di a tion of a 40-sam ple batch was con ducted in con sec u tive steps, cor re spond ing to the in crease of the to tal ab sorbed dose. The dose in cre ment was 30 Gy per ir ra di a tion step for EPROMs and 50 Gy for E2PROMs.

All mem ory lo ca tions (cells) were ini tially writ -ten into a logic ‘1’ state, cor re spond ing to an ex cess amount of the elec tron charge stored on the float ing gate. This state has been shown to be more ra di a tion sen si tive than the ‘0’ state, re spond ing with a greater thresh old volt age shift for the same ab sorbed dose [6]. The ef fects of gamma ra di a tion were ex am ined in terms of the num ber of “faults” in mem ory sam ples fol low ing the ir ra di a tion. A fault is de fined by the change of a mem ory cell logic state as a con se quence of ir ra di a tion. The con tent of all mem ory lo ca tions was ex am ined af ter each ir ra di a tion step, whereby the num ber of read logic ‘0’ states equaled the num ber of faults.

Al though ion iz ing ra di a tion ef fects in MOS struc tures are gen er ally dose-rate de pend ent, ef fects in EPROM and E2PROM cells don’t de pend on the dose

rate. Ra di a tion in duced charge changes on the float ing gate oc cur ex tremely fast, and so are in phase with any in ci dent ra di a tion pulse [7].

RE SULTS AND DIS CUS SION

The plots pre sented in the pa per are based on the mean val ues taken for over 40 sam ples. Both the dif

-fer en tial and ag gre gate rel a tive change of the num ber of faults with the ab sorbed dose in EPROM sam ples is shown in fig. 1 (a) and (b). First faults, of the or der of 2%, ap peared at 1120 Gy. The num ber of faults in creased with the rise of the ab sorbed dose. At dose val -ues above 1240 Gy, sig nif i cant changes in mem ory con tent were ob served.

Changes in EPROMs proved to be re vers ible, i. e. af ter UV era sure and re pro gram ming all EPROM com po nents be came func tional again – con sec u tive eras ing, writ ing and read ing of the pre vi ously ir ra di -ated sam ples was ef fi ciently per formed sev eral times.

A re peated ir ra di a tion pro ce dure of EPROM sam -ples, fol low ing era sure and re pro gram ming to ‘1’ state, pro duced faults al ready at 220 Gy, with sig nif i cant fail -ures in mem ory con tent oc cur ring above 310 Gy, as shown in fig. 2 (a) and (b). The lower thresh old of fault oc cur rence upon re peated ir ra di a tion tes ti fies of the cu -mu la tive na ture of ra di a tion ef fects.

The dif fer en tial and ag gre gate rel a tive change of the num ber of faults with the ab sorbed dose in ir ra di -ated E2PROM sam ples is shown in fig. 3 (a) and (b). First faults ap peared at 900 Gy, prov ing E2PROMs to

be more sen si tive to gamma ra di a tion than EPROM com po nents. With fur ther dose in crease, the num ber of faults also in creased. More over, the changes in

(3)

E2PROMs ap peared to be ir re vers ible. The ir re vers

-ibil ity of ra di a tion dam age in E2PROMs was es tab

lished based on the fact that the stan dard era sure pro -ce dure was un able to erase the con tents of any of the ir ra di ated mem ory sam ples.

In CMOS EPROMs and E2PROMs, uti liz ing ei

-ther N-well or P-well tech nol ogy, the dual polysilicon gate, con sist ing of the con trol and the float ing gate, re -sides over an N-chan nel tran sis tor. The polysilicon layer float ing gate, in su lated from the con trol gate above it and the sil i con chan nel be low it by the gate ox ide, is used to store the charge and thus main tain a log i -cal state. The charge is stored on the float ing gate through the hot elec tron in jec tion from the chan nel in EPROMs, and through the cold elec tron tun nel ing from the drain in E2PROMs. The stored charge de ter -mines the value of the tran sis tor thresh old volt age, mak ing the mem ory cell ei ther ‘on’ or ‘off’ at the read -out [1].

Pass ing through the gate ox ide (SiO2), gamma ra -di a tion breaks Si–O and Si–Si co va lent bonds, cre at ing elec tron/hole pairs. The num ber of gen er ated elec -tron/hole pairs de pends on the gate ox ide thick ness. The re com bi na tion rate of these sec ond ary elec trons and holes de pends on the in ten sity of the elec tric field in the ir ra di ated ox ide, cre ated by the charge stored at the

float ing gate, and mod u lated by the change in the charge car rier con cen tra tion and their sep a ra tion within the ox ide. The greater the elec tric field, the larger the num ber of car ri ers evad ing re com bi na tion. In ci dent gamma pho tons gen er ate rel a tively iso lated charge pairs, and re com bi na tion is a much weaker pro cess than in the case of highly ion iz ing par ti cles.

Sec ond ary elec trons which es cape re com bi na tion are highly mo bile at the room tem per a ture. In the ‘1’ state of the mem ory cell, the ex cess amount of the elec -trons stored on the float ing gate main tains an elec tric field in both ox ide lay ers, that swiftly drives the sec ond ary elec trons away from the ox ide to the sil i con sub -strate and the con trol gate. The di rec tion of the elec tron mo tion is gen er ally de pend ent on the gate volt age po -lar ity at the time of ir ra di a tion. The elec tron drift oc curs even with no ex ter nal volt age ap plied to the gate, due to work func tion po ten tials. The logic ‘1’ state (the ex cess amount of the neg a tive charge stored on the float ing gate) has been cho sen as the start ing state in this pa per, since it is more li a ble to fault oc cur rence. The en ergy band di a gram of the dual polysilicon gate when pro -grammed into the ex cess elec tron (logic ‘1’) state is shown in fig. 4. The di a gram also il lus trates the elec tric field di rec tion in the ox ide (SiO2) and the charge stored on the float ing gate.

Fig ure 2. Av er age rel a tive change of the num ber of faults

vs. the ab sorbed dose in re pro grammed and re peat edly

ir ra di ated EPROM sam ples: (a) dif fer en tial, (b) ag gre -gate (Ntot = 1.048.576 bits, N0 = 0)

(4)

In ad di tion to elec tron/hole pair cre ation, sec -ond ary elec trons may pro duce de fects in the ox ide by way of im pact ion iza tion. Col lid ing with a bonded elec tron in ei ther an un strained sil i con-ox y gen bond (ºSi–O–Siº), a strained sil i con-ox y gen bond, or a strained ox y gen va cancy bond (ºSi–Siº), a sec ond ary elec tron may give rise to one of the hole trap ping com -plexes. In ter ac tion with an un strained sil i con-ox y gen bond gives rise to one of the en er get i cally shal low com plexes (ºSi–O· +Siº or ºSi–OSiº, where · de

-notes the re main ing elec tron from the bond). Strained sil i conox y gen bonds, dis trib uted mainly near the ox -ide/sub strate and ox ide/float ing gate in ter faces, are eas ily bro ken by the pass ing elec trons, giv ing rise to the amphoteric non-bridg ing ox y gen (NBO) cen ter (ºSi–O·) and the pos i tively charged ºSi+ cen ter

(known as the E¢

s cen ter). The col li sion of the sec ond

-ary elec tron with one of the strained ox y gen va cancy bonds, also con cen trated near the in ter faces, leads to the cre ation of the ºSi+ ·Siº cen ter (known as the E¢

g

cen ter). Hole traps gen er ated in the bulk of the ox ide are shal low, while the cen ters dis trib uted in the vi cin -ity of the in ter faces (NBO, E¢

s, E¢g and their vari ants)

act as deep hole traps at which the long-term trap ping of holes oc curs [8, 9]. The lat ter are re ferred to as in ter -face traps, sur -face states, or bor der traps [10].

While tra vers ing the ox ide, ra di a tion-gen er ated sec ond ary elec trons them selves cre ate ad di tional elec -tron/hole pairs. Some of the sec ond ary elec trons may be trapped within the ox ide, but this is a lowprob a bil ity event, due to their high mo bil ity and the low con -cen tra tion of elec tron trap ping sites in ther mally grown SiO2 [11].

The holes gen er ated in the ox ide by in ci dent gamma ra di a tion and through sec ond ary ion iza tion are far less mo bile than the elec trons. They are ei ther

trapped in the ox ide, or move to ward the float ing gate un der the in flu ence of the elec tric field in the logic ‘1’ state. Hole trans port through the ox ide oc curs by means of two mech a nisms: hop ping trans port via di -rect hole tun nel ing be tween lo cal ized trap sites, and trap-me di ated valence band hole conduction.

The prob a bil ity of holes mov ing through the ox -ide break ing un strained sil i con-ox y gen bonds is low. How ever, since hy dro gen at oms and hydroxyl groups are al ways pres ent in ther mally grown ox ides as im pu ri ties, mi grat ing holes may cre ate de fects by in ter act -ing with ei ther ºSi–H or ºSi–OH bonds, whereby hy -dro gen at oms and ions (Hº and H+) are re leased. Once

reach ing the ox ide/float ing gate in ter face, holes can break both strained sil i con-ox y gen bonds and strained ox y gen va cancy bonds, pro duc ing NBO, E¢

s, and E¢g

cen ters. Holes trapped at the ox ide/sub strate in ter face which re com bine with elec trons in jected from the sub -strate may pro duce an other kind of amphoteric de fect (Si3ºSi·, a sil i con atom at the in ter face back bonded to

three sil i con at oms from the float ing gate), called the

Pb0 cen ter [12-14].

Ra di a tion pro duced bulk de fects may them selves mi grate in the strained re gion near ei ther the ox -ide/float ing gate or the ox ide/sub strate in ter face and re sult in the for ma tion of in ter face traps [15, 16].

An other mech a nism of in ter face trap buildup in -cludes hy dro gen at oms and ions re leased by the holes in the ox ide. Hy dro gen at oms and ions dif fuse and drift to ward the ox ide/float ing gate in ter face. When an H+ ion ar rives at the in ter face, it picks up an elec tron from the float ing gate, be com ing a highly re ac tive hy -dro gen atom H°, which is able to pro duce in ter face traps [17, 18].

In ter face traps may also be gen er ated through di -rect in ter ac tion of in ci dent gamma pho tons [19, 20].

Holes not trapped in the ox ide are in jected into the float ing gate, re duce the net amount of the elec tron charge stored on it, and thereby de crease the thresh old volt age of the cell’s NMOS tran sis tor. The trap ping of holes oc curs mostly at the ox ide/float ing gate in ter -face, where the con cen tra tion of deep hole traps is high. The pos i tive charge of these trapped holes will tend to mask the neg a tive elec tron charge on the float ing gate, again re duc ing the tran sis tor thresh old volt age. Thus, the trapped and the in jected holes both pro -duce a neg a tive thresh old volt age shift.

The small ox ide thick ness gives rise to the con -sid er able fluc tu a tion of the ab sorbed en ergy, di rectly in flu enc ing the num ber of faults in the ex am ined sam ples. More over, the amount of ra di a tionin duced de -fects act ing as elec tron and hole traps is a com plex func tion of the gate ox ide ma te rial, as well as of the dop ing and pro cess ing meth ods used in se cur ing the ox ide onto the sil i con sur face. These are the rea sons for the ob served vari a tion in the num ber of faults among the ex am ined mem ory sam ples.

(5)

An other ef fect caused by gamma ra di a tion is elec tron emis sion from the float ing gate. This kind of emis sion is the ba sis for stan dard EPROM era sure by UV ra di a tion. Dur ing the ir ra di a tion, gamma pho tons cause elec trons to be emit ted over the float ing gate/ox -ide po ten tial bar rier. Once in the ox -ide, elec trons are swept to the sub strate or the con trol gate by the elec tric field. The loss of elec trons from the float ing gate causes the ad di tional de crease of the thresh old volt age [21, 22].

The net ef fect of charge trap ping in ox ide and at ox ide/float ing gate in ter faces, as well as of float ing gate hole in jec tion and elec tron emis sion, is the change of the NMOS tran sis tor thresh old volt age. The ra di a tion in duced change of the thresh old volt age may af fect the mem ory cell logic state at the read out. The thresh old volt age VT is, hence, the key pa ram e ter of the mem ory cell state. Mod el ing the charge stored at the NMOS float ing gate as the charge on a par al lel plate ca pac i tor, the thresh old volt age can be ex pressed as

VT =VT0+qsd e

(1)

where VT0 is the ini tial tran sis tor thresh old volt age due

to pro cess ing, qs – the float ing gate sur face charge den

-sity, d – the ox ide thick ness be tween the con trol and float ing gate, and e – the ox ide di elec tric con stant. This model dis re gards the de pend ence of the thresh old volt -age on the ac tual po si tion of the trapped charge sheet within the ox ide. The in flu ence of gamma ir ra di a tion on pro gram ma ble mem o ries is man i fested through the change of the net gate sur face charge den sity. The thresh old volt age as a func tion of the ab sorbed dose can be rep re sented by the em pir i cal re la tion

VT( )D =VTeq +(VT0-VTeq)e–aD

(2)

where a is a con stant de pend ent on the type and en ergy level den sity of the traps in the ox ide, and VTeq – the

thresh old volt age at ex tremely high doses (also called the ra di a tion sat u ra tion volt age), when an equi lib rium of the dom i nant pro cesses caus ing the change of the gate sur face charge den sity – hole trap ping, hole in jec tion, elec tron emis sion, and elec tronhole re com bi na -tion – is achieved.

UV pho tons with the en ergy lower than the bandgap of sil i con di ox ide (»9 eV) are in ca pa ble of cre at ing elec tronhole pairs in the ox ide, but are ca pa -ble of ex cit ing elec trons from the sil i con sub strate into the ox ide where they re com bine with the trapped holes [23]. The ir ra di a tion of EPROMs by UV light dur ing era sure par tially re duces the ra di a tion-in duced trapped charge from the pre vi ous ex po sure to gamma pho tons. This light-in duced an neal ing of trapped holes can ac count for the ob served re vers ibil ity of changes in EPROMs.

The cu mu la tive na ture of gamma ra di a tion ef fects ob served in EPROM com po nents can be at trib

uted to the fact that not all holes trapped at ra di a tion in -duced in ter face states are an nealed dur ing UV era sure at the am bi ent tem per a ture.

Since the E2PROM eras ing pro cess in volves no

UV ir ra di a tion, there can be no lightin duced an neal -ing of trapped holes in these com po nents. The ther mal an neal ing of holes trapped at deep in ter face traps is not ev i dent at am bi ent tem per a tures. The cur rent-in duced an neal ing of trapped holes, due to re com bi na tion of holes with elec trons be ing driven from the float ing gate to the drain, could be ex pected to oc cur dur ing E2PROM elec tri cal era sure. How ever, this kind of an

neal ing is known to re quire much lon ger time com -pared to the du ra tion of a stan dard E2PROM eras ing

pro ce dure [24, 25]. On the whole, no sig nif i cant an -neal ing of trapped holes oc curs in E2PROMs, and

hence ra di a tion-in duced changes in these com po nents ap peared ir re vers ible on the time scale of the ex per i -ments per formed in this pa per (~10 hours).

The higher sen si tiv ity of the tested E2PROM com

-po nents to gamma ra di a tion is a con se quence of a more pro nounced ra di a tion in duced elec tron emis sion from the float ing gate over the thin ox ide re gion (»10 nm) be tween the float ing gate and the drain, due to a lower po -ten tial bar rier [2].

CONCLUSIONS

This pa per pres ents the re sults of the ex am i na tion of pro gram ma ble ROMs’ ra di a tion hard ness. The in flu -ence of 60Co gamma ra di a tion was tested on EPROM

and E2PROM com po nents. EPROM com po nents ex

-hib ited higher ra di a tion re li abil ity than E2PROMs. Sig

-nif i cant faults in EPROM and E2PROM com po nents

ap peared at 1240 Gy and 900 Gy, re spec tively. Changes in EPROMs are re vers ible, and af ter eras ing and re pro gram ming, all EPROM com po nents re stored their func tion al ity. The re vers ibil ity of changes in EPROMs is at -trib uted to the par tial light-in duced an neal ing of trapped holes dur ing UV era sure. Due to the cu mu la tive ra di a tion ef fects, first fail ures of the pre vi ously ir ra di -ated EPROMs ap pear at sig nif i cantly lower doses. On the other hand, E2PROM changes are ir re vers ible. All

ob served phe nom ena have a plau si ble the o ret i cal ex -pla na tion, based on the in ter ac tion of gamma rays with the ox ide layer of mem ory cell MOS tran sis tors. The in -flu ence of gamma ra di a tion is ba si cally man i fested through the change of the net float ing gate sur face charge den sity, and con se quently of tran sis tor thresh old volt age.

ACKNOWLEDGEMENT

(6)

REFERENCES

[1] Prince, B., Semi con duc tor Mem o ries, A Hand book of De sign, Man u fac ture and Ap pli ca tions, John Wiley & Sons, New York, USA, 1991

[2] Mes sen ger, G. C., Ash, M. S., The Ef fects of Ra di a -tion on Elec tronic Sys tems, Van Nostrand Reinhold, New York, USA, 1992

[3] Ma, T. P., Dressendorfer P. V., Ion iz ing Ra di a tion Ef -fects in MOS De vices and Cir cuits, John Wiley & Sons, New York, USA, 1989

[4] Srour, J. R., Ba sic Mech a nisms of Ra di a tion Ef fects on Elec tronic Ma te ri als, De vices and In te grated Cir -cuits, DNA-TR-82-20, New York, USA, 1982 [5] Hubbell, J. H., Selt zer, S. M., Ta bles of X-Ray Mass

At ten u a tion Co ef fi cients and Mass En ergyAb sorp -tion Co ef fi cients (Ver sion 1.4), Na -tional In sti tute of Stan dards and Tech nol ogy, Gaithersburg, Md., USA, 2004 (available on line:

http://phys ics.nist.gov/xaamdi)

[6] Snyder, E. S., McWhorter, P. J., Dellin, T. A., Sweetman, J. D., Ra di a tion Re sponse of Float ing Gate EEPROM Mem ory Cells, IEEE Trans ac tions on Nu clear Sci ence, 36 (1989), 6, pp. 2131-2139 [7] Osmokrovi}, P., Stojanovi}, M., Lon~ar, B.,

Kartalovi}, N., Krivokapi}, I., Ra dio ac tive Re sis -tance of El e ments for Over-Volt age Pro tec tion of Low-Volt age Sys tems, Nu clear In stru ments and Meth ods in Phys ics Re search B, 140 (1998), 1-2, pp. 143-151

[8] Risti}, G. S., Pejovi}, M. M., Jak{i}, A. B., Anal y sis of Postirradiation An neal ing of nChan nel Power Ver -ti cal Dou ble-Dif fused Metal-Ox ide-Semi con duc tor Tran sis tors, Jour nal of Ap plied Phys ics, 87 (2000), 7, pp. 3468-3477

[9] Risti}, G. S., Pejovi}, M. M., Jak{i}, A. B., PhysicoChem i cal Pro cesses in MetalOx ideSemi -con duc tor Tran sis tors with Thick Gate Ox ide dur ing High Elec tric Field Stress, Jornal of Non-Crystaline Sol ids, 353 (2007), 2, pp. 170-179

[10] Fleetwood, D. M., “Bor der Traps” in MOS De vices, IEEE Trans ac tions on Nu clear Sci ence, 39 (1992), 2, pp. 269-271

[11] Risti}, G. S., Pejovi}, M. M., Jak{i}, A. B., Mod el ling of Ki net ics of Cre ation and Passivation of In ter face Traps in Metal-Ox ide-Semi con duc tor Tran sis tors dur ing Postirradiation An neal ing, Jour nal of Ap plied Phys ics, 83 (1998), 6, pp. 2994-3000

[12] McLean, F. B., A Frame work for Un der stand ing Ra di a tionIn duced In ter face States in SiO2 MOS Struc -tures, IEEE Trans ac tions on Nu clear Sci ence, NS-27 (1980), pp. 1651-1657

[13] Lai, S. K., In ter face Trap Gen er a tion in SiO2 when Elec trons Are Cap tured by Trapped Holes, Jour nal of Ap plied Phys ics, 54 (1983), 5, pp. 2540-2545 [14] Shaneyfelt, M. R., Schwank, J. R., Fleetwood, D. M.,

Winokur, P. S., Hughes, K. L., Sex ton, F. W., Field De -pend ence of In ter face-Trap Buildup in Polysilicon and Metal Gate MOS De vices, IEEE Trans ac tions on Nu clear Sci ence, 37 (1990), pt. 1, pp. 1632-1640 [15] Vujisi}, M., Osmokrovi}, P., Lon~ar, B., Gamma Ir ra

di a tion Ef fects in Pro gram ma ble Read only Mem o -ries, Jour nal of Phys ics D, Ap plied Phys ics, 40 (2007), 18, pp. 5785-5789,

doi: 10.1088/0022-3727/40/18/041

[16] McGarity, J. M., Con sid er ation for Hard en ing MOS De vices and Cir cuits for Low Ra di a tion Doses, IEEE Trans ac tions on Nu clear Sci ence, 27 (1980), 6, pp. 1739-1744

[17] Pejovi}, M., Jak{i}, A., Risti}, G., The Be hav iour of Ra di a tionIn duced GateOx ide De fects in MOSFETs Dur ing An neal ing at 140 °C, Jornal of NonCrystaline Sol -ids, 240 (1998), 1-3, pp. 182-192

[18] Risti}, G. S., Pejovi}, M. M., Jak{i}, A. B., Nu mer i cal Sim u la tion of Cre ation-Passivation Ki net ics of In ter face Traps in Ir ra di ated nChan nel Power VDMOSFETs dur ing Ther mal An neal ing with Var i ous Gate Bi ases, Mi -cro elec tronic En gi neer ing, 40 (1998), 2, pp. 51-60 [19] Pejovi}, M., Risti}, G., Cre ation and Passivation of In

ter face Traps in Ir ra di ated MOS Tran sis tors dur ing An -neal ing at Dif fer ent Tem per a tures, SolidState Elec tron -ics, 41 (1997), 5, pp. 715-720

[20] Stankovi}, K., Vujisi}, M., In flu ence of Ra di a tion En ergy and An gle of In ci dence on the Un cer tainty in Mea sure ments by GM Coun ters, Nu clear Tech nol ogy & Ra -di a tion Pro tec tion, XXIII (2008), 1, pp. 41-42 [21] Wrobel, T. F., Ra di a tion Char ac ter iza tion of a 28C256

EEPROM, IEEE Trans ac tions on Nu clear Sci ence, 36 (1989), 6, pp. 2247-2251

[22] Ray mond, J. P., Petersen, E. L., Com par i son of Neu tron, Pro ton and Gamma Ray Ef fects in Semi con duc tor De -vices, IEEE Trans ac tions on Nu clear Sci ence, 34 (1987), 6, pp. 1621-1628

[23] Cellere, G., Larcher, L., Paccagnella, A., Visconti, A., Bonanomi, M., Ra di a tion In duced Leak age Cur rent in Float ing Gate Mem ory Cells, IEEE Trans ac tions on Nu -clear Sci ence, 52 (2005), 6, pp. 2144-2152

[24] Lelis, A. J., Boesch, Jr. H. E., Oldham, T. R., McLean, F. B., Re vers ibil ity of Trapped Hole Charge, IEEE Trans -ac tions on Nu clear Sci ence, 35 (1988), 6, pp. 1186-1191 [25] Cellere, G., Paccagnella, A., Larcher, L., Chimenton, A.,

(7)

Milo{ VUJISI], Koviqka STANKOVI], Aleksandra VASI]

PORE\EWE UTICAJA GAMA ZRA^EWA NA EPROM I E2PROM MEMORIJE

U ovom radu poredi se pouzdanost standardnih komercijalnih EPROM i E2PROM memorija

pri izlagawu gama zra~ewu. Rezultati dobijeni za EPROM (NM27C010) i E2PROM (NM93CS46)

komponente izra|ene u CMOS tehnologiji pokazuju da EPROM memorije poseduju ve}u radijacionu

otpornost od E2PROM memorija. Pored toga, promene nastale u EPROM-ima su reverzibilnog

karaktera i nakon brisawa i ponovnog upisa sve EPROM komponente su povratile funkcionalnost.

Nasuprot ovome, promene koje zra~ewe izaziva u E2PROM ~ipovima su trajne. Dobijeni rezultati su

analizirani i protuma~eni na bazi interakcije gama zra~ewa sa CMOS strukturom.

Imagem

Fig ure 3. Av er age rel a tive change of the num ber of faults vs . the ab sorbed dose in ir ra di ated E 2 PROM sam ples: (a) dif fer en tial,  (b)  ag gre gate  (N tot  = 1024 bits, N 0  = 0)
Fig ure  4. En ergy band di a gram of the dual polysilicon gate when pro grammed into the logic ‘1’ state

Referências

Documentos relacionados

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido