• Nenhum resultado encontrado

Arq. NeuroPsiquiatr. vol.41 número3

N/A
N/A
Protected

Academic year: 2018

Share "Arq. NeuroPsiquiatr. vol.41 número3"

Copied!
13
0
0

Texto

(1)

MORPHOMETRY STUDY ON PRE- AND POST-HATCHING

NERVE CELL BODIES OF LUMBAR SPINAL GANGLIA OF

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

GALLUS DOMESTICUS

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CLAUDIO A. FERRAZ DE CARVALHO * CIRO F. DA SILVA **

BONFIN A. SILVA JUNIOR *** M. VILMA DE ARAUJO ****

The migration of the spinal ganglion neuron mother cells in the chick

embryo, from the neural crest towards the lateral part of the neural tube,

occurs during the first 2 1/2 days of incubation

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 8 , 5 9 , 6 0 , 6 1 .

T

w o

different regions

(ventrolateral and dorsomedial) can be described in the ganglion whose cells

present distinct morphological, as well as functional features

2 2

. Similar aspects

are described in humans by McKinniss

3 4

. But, as the smaller-sized cells of

the dorsomedial region present a higher growing rate than those of the

ventro-lateral region, no histological distinction between the two regions may be

observed after the 15th day of incubation. The ultrastructure of adult spinal

ganglion neurons has been studied extensively by different authors

1 , 1 0 , 2 4 , 4 2 , 5 0 , 5 1 ^

as well as their differentiation in G.

domesticus

4 3 , 4 6 , 5 7: U

p to the 5th day of

incubation the neuroblasts present scarce cytoplasm with few ribosomes and

scanty developed RER; later on they start to show all the features of mature

cells, i.e. well developed RER and Golgi complex, many mitochondria, and free

ribosomes. Environmental influences acting on the spinal ganglion neuron were

studied in embryos submitted to limb excision and grafts in order to analyse,

for example, the influence of the innervation field on the number of sensory

neurons

2 6

.

The present paper reports a morphometric study looking for quantitative

modifications of the fine structure of these neurons at six different ages,

ranging from the 10th day of incubation to the 120th post-hatching day. W e

estimated the nuclear and cytoplasmic volumes and for the latter the relative

volumes of hyaloplasm (including free ribosomes) inside and outside the Nissl

bodies, RER, SER, mitochondria dense bodies and Golgi complex, the

surface--to-volume ratio, and total surface of the organelles.

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(2)

M A T E R I A L A N D M E T H O D S

L u m b a r spinal g a n g l i a of

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G. domesticus ( H y b r o ) on the 10th a n d 18th d a y s of

i n c u b a t i o n a n d 8th, 35th, 61st a n d 120th p o s t - h a t c h i n g d a y s w e r e u s e d . T h e g a n g l i a v/ere r e m o v e d f r o m the h a t c h e d c h i c k s i m m e d i a t e l y a f t e r e t h e r a n e s t h e s i a a n d f r o m the e m b r y o s a f t e r d e c a p i t a t i o n . G a n g l i a f r a g m e n t s w e r e f i x e d b y 2 . 0 % g l u t e r a l d e h y d e in O.IM c a c o d y l a t e b u f f e r ( p H 7.2; 480 m O s m ) até 4 . 0 C f o r 2h a n d p o s t f i x e d f o r l h b y

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 % o s m i u m t e t r o x i d e in 0.05M p h o s p h a t e b u f f e r w i t h 123 m g / m l s u c r o s e at

<ioC. A f t e r a q u i c k r i n s e in p h o s p h a t e b u f f e r , the f r a g m e n t s w e r e d e h y d r a t e d with c t h a n o l p r o p y l e n e o x i d e a n d e m b e d d e d in a r a l d i t e .

T h e d i a m e t e r o f 200 nuclear t r a n s e c t i o n s ( f o r each a n i m a l ) o f spinal g a n g l i a n e u r o n s w e r e m e a s u r e d w i t h a filar m i c r o m e t r i c e y e p i e c e ( K p l x 8 , w i t h an oil i m m e r s i o n o b j e c t i v e xlOO) in O.S^m m e t h y l e n e b l u e — a z u r I I stained s e c t i o n s *. C o n s i d e r i n g the n e u r o n nuclei as h a v i n g a s p h e r i c a l s h a p e , the m e a n r a d i u s w a s e s t i m a t e d b y the B a c h

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 m e t h o d . T h e c o r r e s p o n d i n g n u m e r i c a l p r o c e s s i n g s w e r e p e r f o r m e d b y a s u i t a b l y

p r o g r a m m e d HP-9810A e l e c t r o n i c c a l c u l a t o r . T h e a b s o l u t e n u c l e a r v o l u m e s w e r e finally o b t a i n e d f r o m the f o r m u l a f o r the s p h e r e .

T h e relative v o l u m e o f c y t o p l a s m w a s evaluated in 100 m i c r o s c o p i c fields f o r each animal, c o u n t i n g p o i n t s l y i n g o n nuclei a n d c y t o p l a s m w i t h a Z e i s s 100point i n t e -g r a t i n -g ( K p l x 8 ) a n d oil i m m e r s i o n o b j e c t i v e (xlOO). T h e s e d a t a a n d t h o s e of t h e n u c l e a r v o l u m e e n a b l e d u s t o o b t a i n t h e a b s o l u t e c y t o p l a s m i c v o l u m e .

T h e u l t r a s t r u c t u r a l m o r p h o m e t r i c e v a l u a t i o n s w e r e c a r r i e d o u t u s i n g an 84-segment

t e x t s y s t e m ( b a s e d on W e i b e l et al

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.rvs) s u p e r i m p o s e d in t w o o r t h o g o n a l d i r e c t i o n s o n

20 e l e c t r o n m i c r o p h o t o g r a p h s ** (x21,000) f o r each animal, taken at r a n d o m o v e r the g a n g l i a f r a g m e n t s .

T h e d a t a o b t a i n e d b y c o u n t i n g o f p o i n t s on c y t o p l a s m i c c o n s t i t u e n t s ( R E R , S E R , m i t o c h o n d r i a , d e n s e b o d i e s , O o l g i c o m p l e x a n d h y a l o p l a s m i n s i d e a n d o u t s i d e the NissI b o d i e s ) a n d i n t e r s e c t i o n s w i t h c o n t o u r s o f t r a n s e c t e d o r g a n e l l e m e m b r a n e s e n a b l e d

us t o e s t i m a t e t h e relative v o l u m e ( V . ) o f t h e s e c o n s t i t u e n t s , t h e s u r f a c e - t o - v o l u m e

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V I

ratio ( s / v ) and the total s u r f a c e (S ) o f the o r g a n e l l e s . . T h e f o l l o w i n g f o r m u l a s

1 i t o t

w e r e u s e d :

P . 4 . N 4 . N .

i i l V . = ; s . / v . « = ; S =

s

.. V ; S . = .

V I 1 1 t o t V I V I

P Z . P Z . P

t i t

w e r e P . = differential c o u n t i n g o f p o i n t s ; P^ = total n u m b e r o f p o i n t s ; N . == n u m b e r o f i n t e r s e c t i o n s o v e r t r a n s e c t e d o r g a n e l l e m e m b r a n e s ; Z — e n l a r g e m e n t f a c t o r ; S^. ~ s u r f a c e d e n s i t y ; V = c y t o p l a s m i c a b s o l u t e v o l u m e .

T h e mean values of 3 s p e c i m e n s used f o r e a c h a g e a r e p r e s e n t e d in t a b l e 1.

* P e r f o r m e d in a U l t r a t o m e L K B u i t r a m i c r o t o m e , d o n a t e d b y the F A P E S P ( P r o -c e s s o 70/1445).

(3)

R E S U L T S

T h e estimated d a t a a r e p r e s e n t e d in T a b l e 1 a n d , g r a p h i c a l l y in f i g u r e s 1 a n d 2. T h e c h a n g e s of t h e h i s t o l o g i c a l c h a r a c t e r i s t i c s o b s e r v e d in o u r m a t e r i a l a r e s i m i l a r t o t h o s e o b s e r v e d b y H a m b u r g e r a n d L e v i - M o n t a l c i n i

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 2 . On t h e 18th d a y o f i n c u b a t i o n

the t w o until then d i s t i n c t g r o u p s o f n e u r o n s a r e a l r e a d y i n t e r m i n g l e d , s h o w i n g d i f f e r e n t sizes a n d s t a i n i n g intensities ( F i g . 3 ) . A s o n e can s e e in t a b l e 1 and f i g u r e 1,

t h e m e a n cell v o l u m e i n c r e a s e s c o n s t a n t l y , p a r t i c u l a r l y b e t w e e n the 1st a n d the 2nd a g e s k e e p i n g the f o l l o w i n g p r o p o r t i o n s a m o n g t h e m s e l v e s : 1.0 : 13.5 : 12.5 : 24.1

: 23.8 : 30.2, r e s p e c t i v e l y on the 10th a n d 18th d a y s o f i n c u b a t i o n a n d o n t h e 8th, 35th, 61st, a n d 120th p o s t - h a t c h i n g d a y s . A p a r t i c u l a r l y intense i n c r e a s e b e t w e e n the 1st a n d the 2nd a g e s w a s o b s e r v e d f o r the r e l a t i v e a n d t h e a b s o l u t e c y t o p l a s m i c v o l u m e . T h e v a r i a t i o n s o f n u c l e a r v o l u m e o c c u r r e d a c c o r d i n g t o t h e f o l l o w i n g p r o p o r t i o n s : 1.0 : 3.5 : 2.4 : 3.5 : 3.0 : 2.6. T h e n u c l e a r c y t o p l a s m i c r a t i o d e c r e a s e d u n i f o r -m e l y : 16.3 : 3.1 : 2.2 : 1.7 : 1.4 : 1.0.

(4)
(5)

v a r i a t i o n s , d e c r e a s i n g s l i g h t l y o n t h e 120th d a y (8 ± 0.8 — 459 ± 76 — 473 ± 152 — 514 ± 134 — 518 ± 205 — 496 ± 62 ^ m S ) . O n t h e o t h e r h a n d , the a b s o l u t e v o

-l u m e o f S E R i n c r e a s e d d r a m a t i c a -l -l y (20 ± 5 — 213 ± 101 — 224 ± 125 — 579 ± 46 — 1,574 ± 218 — 1,478 ± 345 ^ m 3 ) . T h e relative v o l u m e o f G o l g l c o m p l e x

d e c r e a s e s f r o m t h e 2nd t o t h e 4th a g e , t h e n b e c o m i n g s t a b l e . T h e m i t o c h o n d r i a

( e x c e p t f o r t h e 120th d a y ) a n d d e n s e b o d i e s s h o w a p r o g r e s s i v e d e c r e a s e o f the s a m e p a r a m e t e r .

T h e b e h a v i o r o f t h e h y a l o p l a s m i n s i d e a n d o u t s i d e t h e Nissl b o d i e s w i t h r e s p e c t

t o relative v o l u m e is t h e o p p o s i t e ; w i t h t h e e x c e p t i o n o f t h e 10th d a y o f i n c u b a t i o n ,

t h e r e l a t i v e v o l u m e o f N i s s l h y a l o p l a s m d r o p s , w h i l e t h e a b s o l u t e v o l u m e o f t h i s

c o n s t i t u e n t g r o w s until t h e 35th d a y , d e c r e a s i n g s l i g h t l y a f t e r w a r d s (194 ± 4 — 4,575

± 346 — 3,987 ± 189 — 7,882 ± 754 — 7,544 ± 344 — 7,252 ± 1,228 ^ m 3 ) . T h e

s u r f a c e - t o - v o l u m e r a t i o d r o p s s h a r p l y f o r all o r g a n e l l e s f r o m the 10th t o the 18th

d a y o f i n c u b a t i o n . A f t e r h a t c h i n g , a t e n d e n c y t o i n c r e a s e w a s o b s e r v e d . T o t a l s u r f a c e

a l s o g r o w s s h a r p l y b e t w e e n t h e f i r s t t w o a g e s . I n t e n s e g r o w t h o f t o t a l s u r f a c e of

S E R o n the 61st a n d 120th d a y is o b s e r v e d , t o g e t h e r w i t h a s l i g h t i n c r e a s e o f

t h o s e o f d e n s e b o d i e s a n d n o n e o f R E R b e t w e e n the last t w o a g e s , in spite o f the

g r e a t i n c r e a s e o f the a b s o l u t e c y t o p l a s m i c v o l u m e . H o w e v e r , the c h a n g e s in total

s u r f a c e c a n b e b e t t e r u n d e r s t o o d in t e r m s o f v a r i a t i o n s o f t h e m e m b r a n e s u r f a c e t o

-- c y t o p l a s m i c v o l u m e r a t i o s ( SA 7 V ) ( t a b l e 2 ) . T h e s e s e q u e n c e s s h o w a d e c r e a s e o f

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

tot

m e m b r a n e / ^ m 3 o f c y t o p l a s m f r o m t h e 10th t o t h e 18th d a y s of i n c u b a t i o n . A f t e r

h a t c h i n g , the r a t i o i n c r e a s e s f o r m i t o c h o n d r i a , G o l g i c o m p l e x , a n d p a r t i c u l a r l y f o r

S E R , in t h e last t w o a g e s , w h i l e it d e c r e a s e s f o r d e n s e b o d i e s a n d alternates f o r R E R

(6)
(7)

Regarding neuron growth in the spinal ganglia of

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G. domesticus,

our

findings are equivalent to those of Olivo et a l .

4 0

; these authors found a

marked growth during the embryonic period which decreases immediately after

hatching, while increasing progressively even after 6 months. W e observed

significant growth in cell volume between the 1st and 2nd ages, with a slight

decrease on the 8th post-hatching day and continuous growth during all

other ages.

Except for the last age, the positive ratio between nuclear and cell body

sizes observed by H a t a i

2 3

was confirmed by our findings. Based on L e v i ' s

3 0

suggestions, Donaldson and N a g a s a k a

1 2

and Ohta et a l .

3 9

correlated cell size

and innervation field during the post-natal development, in order to explain

the continuous growth of the sensory neurons, months after hatching. It is

generally assumed that the control the periphery exerts on differentiating

ganglia is chemical in nature and is transmitted to the cell bodies by retrograde

axonal flow in peripheral nerve fibers

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 6 , 2 7 , 3 6 .

Concerning the cytoplasmic constituents specifically, Fujita and F u j i t a

1 0

,

Pannese

4 6

»

4 7

and T e n n y s o n

5 7

studied the development of the various organelles

(RER, SER, Golgi complex) from the neuroblastic to the neuronal period,

re-porting a particularly intense increase in number of the mitochondria

4 7

. Our

estimates regarding the organelle development of the cell body start during

the neuronal period. W e observed an increase in the relative volume of RER

and Golgi complex during the incubation periods, a decrease in those of SER

and dense bodies, and no modification in mitochondria.

According to Pannese et a i .

4 4

»

4 5

the acetylcholinesterase (AChE) activity

increases considerably in the pseudounipolar nerve cell when compared to the

primitive neuroblast, being parallel to the development of RER and the Golgi

complex. AChE-activity in sensory ganglia cells could be considered as one

of the most important events characterizing their biochemical differentiation. A

relationship between the increase in AChE and the development of RER would

be supported by our morphometric data and Giacobini et al.'s

2 0

findings; they

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(8)

pointed out an activity raise from the 6th to the 12th day of incubation, a

progressive decrease to the minimum value by the time of hatching, and a

slight increase in the following two days.

The opposite bahavior of the RER and SER concerning the relative volume

could be dependent on the specific role of this kind of cell. The proteins

synthesized by the neuron would be greatly used for the biochemical turnover

of cell body constituents and of the axon

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I «

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I1 T ^ D.

On the other hand, the Nissl

bodies ergastoplasm differs cleary from that of the high-production

protein--exporting gland cells. Palay and P a l a d e

4 2

and Peters et al.

4 8

have reported

numerous free ribosomes among the ER-cysternae; the membrane-attached

ribosomes do not present a uniform distribution pattern along the cysternae

and it is not difficult to demonstrate a continuity of RER with SER in nerve

cells. More than 9 8 % of the proteins of nerve endings would be synthesized

by RER, reaching the nerve endings by fast axonal flow where SER

plays the most important role. The increase of relative volume and total surface

of SER in the cell body seems to emphasize this role.

As a consequence of the diffuse character and continuity with RER and

cell surface, the SER would be the ideal structure for a fast spread of substances

from the site of their synthesis or capture. According to different authors

the proteins, glycoproteins, or phospholipids would be transported by the SER

from the cell body to the nerve endings

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6,8,9,14,15,17,18,33,53,56.

SER is involved

in the origin of microvesicles and the transport of substances to mitochondria

and axolemma (including the presynaptic plasma membrane

1 3 , 1 4 , 1 7 ) a n

d from

the perikaryon towards the a x o n

1 4

. SER is also an important pathway for

substance transport from the nerve endings towards the cell b o d y

3 7

'

5 4

. The

changes of relative volume of Golgi complex and RER are similar. The Golgi

complex of the nerve cell plays an important role in the synthesis of

glyco-p r o t e i n s

5

'

2 5

'

3 8

.

4 1

.

5 5

. On the other hand changes of relative volume of

mitochon-dria are slight, when compared to the other constituents. Apparently the

mitochondria are distributed at random in the perikaryon among the Nissl

bodies in the so-called 'Plasmastrassen'

1

or ' r o a d s '

7

where they seem to move

4 9

,

probably aided by microtubuli and microfilaments

3

. These considerations

suggest uniform physiological role of mitochondria in different cell parts. Under

the designation 'dense bodies' we can consider different structures such as

the lysosomal complex, melanin (neuromelanin) and lipofuscin-containing

pigment bodies; however, they are related to one another and to mitochondria,

Golgi complex and R E R

4 8

.

In sensory ganglia cells literature data refer to an age-associated increase

in lipofuscin b o d i e s

2 1

'

3 5

'

5 2

and l y s o s o m e s

3 2

and the presence of very scarce

melanin granules

4

*

1 1

. According to our findings the dense bodies in G.

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

do-mesticus showed a gradual and constant decrease of relative volume at least

for the period between the 10th day of incubation and the 120th post-hatching

(9)

S U M M A R Y

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A cytomorphometric study was performed in lumbar spinal ganglia neurons

of

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Gallus domesticus

on the 10th and 18th incubation days and 8th, 35th, 61st,

and 120th post-hatching days. The absolute volume of nucleus and relative

volume of cytoplasm were respectively estimated by the B a c h

2

caryometric

method and by point-counting volumetry, carried out in 0.5

ζψξωϖυτσρθπονµλκϕιηγφεδχβαΖΨΞΩςΥΤΣΡΘΠΟΝΜΛΚϑΙΗΓΦΕ∆ΧΒΑ

m

m thick araldite

sections. The relative volume, the surface-to-volume ratio and the total surface

of RER, SER, mitochondria, dense bodies, Golgi complex and the relative volume

of hyaloplasm inside and outside the Nissl bodies were estimated from

electronmicrographs by the Weibel et a l .

5 8

method. T h e conclusions w e r e :

a) there was an increase of the cell volume and a decrease of the

nucleo-cytoplasmic ratio, particularly between the first two ages; b ) the relative

volumes of RER and SER change inversely with respect to each other: the

RER increases before hatching, decreasing progressively afterwards; the changes

of relative volume of dense bodies are similar to those of the RER, and the

mitochondria show relatively small variations concerning the same parameter;

c ) the relative volume of hyaloplasm inside the Nissl bodies decreases while

those outside increases; d ) the surface-to-volume ratio drops sharply for all

organelles from the 10th to the 18th day of incubation; after hatching, a

tendency to increase is observed; e) the membrane surface-to-cytoplasmic

volume ratio decreases for all organelles from the 10th to the 18th day of

incubation; after hatching, this ratio increases slightly for mitochondria and

Golgi complex, sharply for SER, dropping for dense bodies. The RER values

alternate regularly.

R E S U M O

Estudo morfométrico sobre corpos de células nervosas de gânglios espinais

lombares de

Gallus domesticus

antes e depois da eclosão.

Foi realizado estudo citomorfométrico em neurônios de gânglios espinais

lumbares de

Gallus domesticus

no 10º e 18º dias de incubação e no 8º, 35º, 61º

e 120º dias após a eclosão. Os volumes absoluto do núcleo e relativo do

citoplasma foram estimados, respectivamente, pelo método cariométrico de

B a c h

2

e pela volumetria de contagem de pontos, em cortes de araldite de

0.5

m

m. O volume relativo, a relação superfície/volume e a superfície total do

RER e SER, mitocôndria, corpos densos, complexo de Golgi e volume relativo

de hialoplasma, no interior e fora dos corpos de Nissl, foram estimados a

partir de eletron-micrografias, pelo método de Weibel et a l .

5 8

. As conclusões

(10)

diminui, enquanto o situado no interior, aumenta; d ) a relação

superfície/vo-lume decresce muito para todas as organelas, do 10º para o 18º dia de incuba¬

ç ã o ; após a eclosão foi observada tendência à elevação; e) a relação superfície

de membrana volume citoplasmático cai para todas as organelas, do 10º para

o 18º dia de incubação; após a eclosão, esta relação diminui levemente para

mitocôndrias e complexo de Golgi, fortemente para o SER, caindo, também,

para corpos densos. Os valores do RER alternam-se, regularmente.

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R E F E R E N C E S

1. A N D R E S , K . H . — U n t e r s u c h u n g e n u e b e r d e n F e i n b a u v o n S p i n a l g a n g l i e n . Z. Z e l l f o r s c h . 55:1, 1961.

2. B A C H , G. — U e b e r d i e B e s t i m m u n g v o n c h a r a k e r i s t i s c h e n G r u p e n einer K u g e l v e r ¬ t e i l u n g a u s d e r V e r t e i l u n g d e r S c h n i t t k r e i s e . Z. W i s s . M i k r o s k o k . m i k r o s k . T e c h .

65:285, 1963.

3. B A R O N D E S , S. H . — A x o p l a s m i c t r a n s p o r t : a r e p o r t o f a n N R P w o r k s e s s i o n . N e u r o s c . R e s . P r o g . B u l l . 5:307, 1967.

4. B E A V E R , D . L . ; M O S E S , H . L . & G A N O T E , C. E. — E l e c t r o n m i c r o s c o p y o f the t r i g e m i n a l g a n g l i o n . I I . A u t o p s y s t u d y o f h u m a n g a n g l i a . A r c h . P a t h o l . 79:557, 1965. 5. B E N N E T T , G . ; L E B L . O N D , C. P . & H A D D A D , A . — M i g r a t i o n o g g l y c o p r o t e i n

f r o m t h e G o l g i a p p a r a t u s t o t h e s u r f a c e o f v a r i o u s cell t y p e s a s s h o w n b y r a d i o -a u t o g h -a p h i c -a f t e r l -a b e l e d f u c o s e i n j e c t i o n i n t o r -a t s . J . cell. B i o l . 60:258, 1974. 6. B E N N E T T , G . ; DI G I A M B E R A R D I N O , L . ; K O E N I G , H . L. & D R O Z , B. — A x o n a l

m i g r a t i o n o f p r o t e i n a n d g l y c o p r o t e i n t o n e r v e e n d i n g s . I I . R a d i o a u t o g r a p h i c a n a l y s i s o f the r e n e w a l o f g l y c o p r o t e i n s in n e r v e e n d i n g s o f c h i c k e n c i l i a r y g a n g l i o n a f t e r i n t r a c e r e b r a l i n j e c t i o n o f ( 3 H ) f u c o s a a n d ( 3 H ) g l u c o s a m i n e . B r a i n

R e s . 60:129, 1973.

7. B U N G E , M . B . ; B U N G E , R . P . ; P E T E R S O N , E. R . & M U R R A Y , M . R . — A l i g h t a n d e l e c t r o n m i c r o s c o p e s t u d y o f l o n g - t e r m o r g a n i z e d c u l t u r e s o f r a t d o r s a l r o o t g a n g l i a . J . cell. B i o l . 32:439, 1967.

8. B Y E R S , M . R . — Structural c o r r e l a t e s o f r a p i d a x o n a l t r a n s p o r t : e v i d e n c e that m i c r o t u b u l e s m a y n o t b e d i r e c t l y i n v o l v e d . B r a i n R e s . 75:97, 1974.

9. C U É N O D , M . ; B O E S C H , J . ; M A R K O , P . ; P E R I S I C , M . ; S A N D R I , C. & S C H O N ¬ B A C H . J . — C o n t r i b u t i o n s o f a x o p l a s m i c t r a n s p o r t t o s y n a p t i c s t r u c t u r e s a n d f u n c t i o n s . I n t . J . N e u r o s c i . 4:77, 1972.

10. D A W S O N , F . M . ; H O S S A C K , J . & W Y B U R N , G. M . — O b s e r v a t i o n s o n t h e N i s s l ' s s u b s t a n c e , c y t o p l a s m i c f i l a m e n t s a n d t h e n u c l e a r m e m b r a n e o f spinal g a n g l i o n cells. P r o c . R . S o c . L o n d . ( B i o l ) 144:132, 1955.

11. D E C A S T R O , F . — S e n s o r y g a n g l i a o f t h e cranial a n d spinal n e r v e s . N o r m a l a n d p a t h o l o g i c a l .

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In P e n f i e l d , W . ( e d . ) — C y t o l o g y a n d C e l l u l a r P a t h o l o g y o f t h e

N e r v o u s S y s t e m . V o l . 1. H o e b e r , N e w Y o r k , 1932.

12. D O N A L D S O N , H . H . & N A G A S A K A , G. — O n t h e i n c r e a s e in the d i a m e t e r s of n e r v e cell b o d i e s a n d o f t h e f i b e r s a r i s i n g f r o m t h e m d u r i n g t h e l a t e r p h a s e s o f g r o w t h ( a l b i n o r a t ) . J . c o m p . N e u r o l . 29:529, 1918.

13. D R O Z , B . ; K O E N N I G , H . L . ; D I G I A M B E R A R D I N O , L . ; C O U R A U D , J . Y . ; C H R E T I E N , M . & S O U Y R I , F . — T h e i m p o r t a n c e o f a x o n a l t r a n s p o r t a n d e n d o -p l a s m i c r e t i c u l u m i n the f u n c t i o n o f c h o l i n e r g i c s y n a -p s e in n o r m a l a n d -p a t h o l o g i c a l c o n d i t i o n . P r o g . B r a i n R e s . 49:23, 1979.

(11)

15. D R O Z , B . ; K O E N I G , H . L . & R A M B O U R G , A . — T r a n s p o r t i n t r a c y t o p l a s m i q u e d e m a c r o m o l é c u l e s et r é t i c u l u m e n d o p l a s m i q u e l i s s e : c a s d u f l u x a x o n a l r a p i d e . J . M i c r o s c . 20:45, 1974.

16. D R O Z , B . ; K O E N I G , H . L . & DI G I A M B E R A R D I N O , L . — A x o n a l m i g r a t i o n o f p r o t e i n a n d g l y c o p r o t e i n s t o nerve e n d i n g s . I R a d i o a u t o g r a p h i c a n a l y s i s of the r e n e w a l o f p r o t e i n s in n e r v e e n d i n g s o f c h i c k c i l i a r y g a n g l i o n a f t e r i n t r a c e r e b r a l inject4ion o f ( H 3 ) l y s i n e . B r a i n R e s . 60:93, 1973.

17. D R O Z , B. — R e n e w a l o f s y n a p t i c p r o t e i n s . B r a i n R e s . 62:383, 1973.

18. D R O Z , B. & K O E N I G , H . L . — L o c a l i z a t i o n o f p r o t e i n m e t a b o l i s m in n e u r o n .

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In

L a j t h a A . ( e d . ) — P r o t e i n M e t a b o l i s m o f t h e N e r v o u s S y s t e m . P l e n u m P r e s s , N e w Y o r k , 1970.

19. F U J I T A , H . & F U J I T A , S. — E l e c t r o n m i c r o s c o p i c s t u d i e s o n n e u r o b l a s t d i f f e -r e n t i a t i o n in t h e c e n t -r a l n e -r v o u s s y s t e m o f d o m e s t i c f o w l . Z. Z e l l f o -r s c h . 60:463, 1963. 20. G I A C O B I N I , G . ; M A R C H I S I O , P . C ; G I A C O B I N I , E . & K O S L O W , S. H . —

D e v e l o p m e n t a l c h a n g e s o f c h o l i n e s t e r a s e s a n d m o n o a m i n e o x i d a s e in c h i c k e m b r y o spinal a n d s y m p a t h e t i c g a n g l i a . J . N e u r o c h e m . 17:1177, 1970.

21. G L E E S , P . & G O P I N A T H , G. — A g e c h a n g e s in t h e c e n t r a l l y a n d p e r i p h e r a l l y l o c a t e d s e n s o r y n e u r o n s in rat. Z. Z e l l f o r s c h . 141:285, 1973.

22. H A M B U R C E R , V . & L E V I - M O N T A L C I N I , R . — P r o l i f e r a t i o n , d i f f e r e n t i a t i o n a n d d e g e n e r a t i o n i n t h e spinal g a n g l i a o f the c h i c k e m b r y o u n d e r n o r m a l a n d e x p e -r i m e n t a l c o n d i t i o n s . J . e x p . Z o o l . 111:457, 1949.

23. H A T A I , S. — A s t u d y o f the d i a m e t e r s of the cells a n d nuclei in the s e c o n d c e r v i c a l s p i n a l g a n g l i o n o f t h e a d u l t a l b i n o rat. J . c o m p . N e u r o l . 17:469, 1907. 24. H E S S , A . — T h e f i n e s t r u c t u r e o f n e r v e c e l l s a n d f i b e r s n e u r o g l i a a n d s h e a t h s

o f t h e g a n g l i o n c h a i n in t h e c o c k r o a c h (Periplaneta americana). J . b i o p h y s . b i o c h e m .

C y t o l . 4:731, 1958.

25. H O L T Z M A N , E . ; T E I C H B E R G , S.; A B R A H M S , S. J . ; C I T K O W I T Z , E . ; C R A I N , S. M . ; K A W A I , N. & P E T E R S O N , E. R . — N o t e s o n s y n a p t i c vesicles a n d r e l a t e d s t r u c t u r e s , e n d o p l a s m i c r e t i c u l u m , l y s o s o m e s a n d p e r o x i s o m e s in n e r v o u s tissue a n d a d r e n a l m e d u l l a . J . H i s t o c h e m . C y t o c h e m . 21:349, 1973.

26. H U G H E S , A . F . & C A R R , V . M c M . — T h e i n t e r a c t i o n o f p e r i p h e r y a n d c e n t e r in the d e v e l o p m e n t o f d o r s a l r o o t g a n g l i a . In J a c o b s o n M . — H a n d b o o k o f S e n s o r y

P h y s i o l o g y : D e v e l o p m e n t of S e n s o r y S y s t e m s . V o l . I X . S p r i n g e r , N e w Y o r k , 1978.

27. H U G H E S , A . F . — T h e g r o w t h o f e m b r y o n i c n e u r i t e s . A s t u d y o n c u l t u r e s o f c h i c k neural t i s s u e s . J . A n a t . 87:150, 1953.

28. J O H N S T O N , M . C. — A r a d i o a u t o g r a p h i c s t u d y o f the m i g r a t i o n a n d rate o f cranial n e u r a l c r e s t cells i n the c h i c k e m b r y o . A n a t . R e c . 156:143, 1966.

29. K O E N I G , H . L . ; D I G I A M B E R A R D I N O , L . & B E N N E T T , G. - - R e n e w a l of p r o t e i n s a n d g l y c o p r o t e i n s o f s y n a p t i c c o n s t i t u e n t s b y m e a n s o f a x o n a l t r a n s p o r t .

B r a i n R e s . 62:413, 1973.

30. L E V I , G. — I g a n g l i c e r e b r o s p i n a l e . Studi d i i s t o l o g i a c o m p a r a t a e di i s t o g e n e s i . A r c h ital. A n a t . E m b r i o l 7: ( s u p p l e m e n t o ) 1, 1908.

31. L E V I , G. — S t u d i s u l l a g r a n d e z z a d e l l e c e l l u l e : R i c e r c h e c o m p a r a t i v e s u l l a g r a n d e z z a d e l l e c e l l u l e dei m a m m i f e r i . A r c h . ital. A n a t . E m b r i o l . 5:291, 1906.

32. L I E B E R M A N , A . R . — T h e a x o n r e a c t i o n : a r e v i e w o f t h e p r i n c i p l e f e a t u r e s of p e r i k a r y a l r e s p o n s e s t o a x o n i n j u r y . In P f e i f f e r C. C. a n d S m y t h i e s J . R . —

I n t e r n a t i o n a l R e v i e w o f N e u r o b i o l o g y . V o l 14. A c a d e m i c P r e s s , L o n d o n , 1971. 33. M A R K O V , D . ; R A M B O U R G , A . & D R O Z , B. — S m o o t h e n d o p l a s m i c r e t i c u l u m

(12)

34. M c K I N N I S S , M . E. — T h e n u m b e r of g a n g l i o n c e l l s in the d o r s a l r o o t g a n g l i a o f t h e s e c o n d a n d t h i r d cervical n e r v e s in h u m a n f e t u s e s of v a r i o u s a g e s . A n a t . R e c . 65:255, 1936.

35. M O S E S , H . L . ; B E A V E R , D . L. & G A N O T E , C. E. — E l e c t r o n m i c r o s c o p y of the t r i g e m i n a l g a n g l i o n : c o m p a r a t i v e u l t r a s t r u c t u r e . A r c h . P a t h o l , 79:541, 1965. 36. N A K A I , J . — D i s s o c i a t e d d o r s a l r o o t g a n g l i a in tissue c u l t u r e . A m e r . J . A n a t .

99:81, 1956.

37. N A U T A , H . J . W . ; K A I S E R M A N — A B R A M O F , I. R . & L A S E K , R . J . — E l e c t r o n m i c r o s c o p i c o b s e r v a t i o n s o f h o r s e r a d i s h p e r o x i d a s e t r a n s p o r t e d f r o m the c a u d o p u ¬ t a m e n t o t h e s u b s t a n t i a n i g r a in the r a t : p o s s i b l e i n v o l v e m e n t o f the a g r a n u l a r r e t i c u l u m . B r a i n R e s . 85:373, 1975.

38. N O V I K O F F , P . M . ; N O V I K O F F , A . B . ; Q U I N T A N A , N. & H A U W , J . J . — G o l g i a p p a r a t : s, G E R L a n d l y s o s o m e s o f n e u r o n s in rat d o r s a l r o o t g a n g l i o n , s t u d i e s

b y t h i c k s e c t i o n a n d thin section c y t o c h e m i s t r y . J . cell. B i o l . 50:859, 1971.

39. O H T A , M . ; O F F O R D , K . & D Y C K , P . J . — M o r p h o m e t r i c evaluation o f first sacral g a n g l i a o f m a n . J . n e u r o l . Sci. 22:73, 1974.

40. O L I V O , O. M . ; P O R T A , E. & B A R B E R I S , L . — M o d a l i t à di a c c r e s c i m e n t o d e l l e c e l l u l e e d e g l i o r g a n i . I V . M o d a l i t à di a c c r e s c i m e n t o d e l l e c e l l u l e dei g a n g l i spinali n e l p o l i o d u r a n t e la vita e m b r i o n a l e e p o s t n a t a l e . A r c h . ital. A n a t . E m b r i o l . 30:34, 1932.

41.

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

OS I N C H A K , J . — E l e c t r o n m i c r o s c o p i c localization o f a c i d p h o s p h a t a s e a n d t h y a m i n e

p y r o p h o s p h a t a s e a c t i v i t y in h y p o t h a l a m i c n e u r o s e c r e t o r y cells o f the rat. J . cell. B i o l . 21:35, 1964.

42. P A L A Y , S. L . & P A L A D E , G. E. — T h e fine s t r u c t u r e of n e u r o n s . J. b i o p h y s . b i o c h e m . C y t o l . 1:69, 1955.

43. P A N N E S E , E. — T h e h i s t o g e n e s i s o f the spinal g a n g l i a . A d v . A n a t . E m b r y o l . cell. B i o l . 47:6, 1974.

44. P A N N E S E , E . ; L U C I A N O , L . ; I U R A T O , S. & R E A L E , E. — T h e localization of a c e t y l c h o l i n e s t e r a s e a c t i v i t y in the spinal g a n g l i a o f the a d u l t f o w l s t u d i e d b y e l e c t r o n m i c r o s c o p e h i s t o c h e m i s t r y . H i s t o c h e m i s t r y 39:1, 1974.

45. P A N N E S E , E . ; L U C I A N O , L . ; I U R A T O , S. & R E A L E , E. — Cholinesterase a c t i v i t y in spinal g a n g l i a n e u r o b l a s t s : a h i s t o c h e m i c a l s t u d y at the e l e c t r o n m i c r o s c o p e . J . u l t r a s t r u c t . R e s . 36:46, 1971.

46. P A N N E S E , E. — D e v e l o p m e n t a l c h a n g e s of the e n d o p l a s m i c r e t i c u l u m a n d r i b o -s o m e -s in n e r v e cell-s o f t h e -spinal g a n g l i a o f the d o m e -s t i c f o w l . J. c o m p . N e u r o l .

132:331, 1968.

47. P A N N E S E , E. — E x p a n s i v e g r o w t h o f the n u c l e a r e n v e l o p e a n d f o r m a t i o n o f m i t o c h o n d r i a in g a n g l i o n i c n e u r o b l a s t . Z. Z e l l f o r s c h . 72:295, 1966.

48. P E T E R S , A . ; P A L A Y , S. L. & W E B S T E R , H . d e F. — T h e F i n e S t r u c t u r e of the N e r v o u s S y s t e m : the N e u r o n s a n d S u p p o r t i n g Cells. W . B. S a u n d e r s Co., P h i l a d e l p h i a , 1976.

49. P O M E R A T , C. M . ; H A N D E L M A N , W . J . ; R A I B O R N , C. W . & M A S S E Y , J . F.

— D y n a m i c activities o f n e r v o u s t i s s u e in vitro.

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In H y d é n , H . — T h e N e u r o n .

E l s e v i e r , A m s t e r d a m , 1967.

50. R O S E N B L U T H — S u b s u r f a c e c i s t e r n s a n d t h e i r r e l a t i o n s h i p t o the n e u r o n a l p l a s m a m e m b r a n e . J . cell. B i o l . 13:405, 1962.

51. R O S E N B L U T H , J . — T h e f i n e s t r u c t u r e o f a c o u s t i c g a n g l i a in the rat. J . cell. B i o l . 12:329, 1962.

52. S A M O R A J S K I , T . ; O R D Y , J. M. & R A D Y - R E I M E R , P . — L i p o f u c s i n p i g e m e n t a c c u m u l a t i o n in the n e r v o u s s y s t e m o f a g e i n g m i c e . A n a t . R e c . 160:555, 1968. 53. S C H O N B A C H , J . ; S C H O N B A C H , C. & G U É N O D , M . — R a p i d p h a s e of a x o p l a s m i c

(13)

54. S O T E L O , C. & R I C H E , D . — T h e s m o o t h e n d o p l a s m i c r e t i c u l u m a n d the r e t r o g r a d e a n d fast o r t h o g r a d e t r a n s p o r t - of h o r s e r a d i s h p e r o x i d a s e in the n i g r o s t r i a t o - n i g r a l l o o p . A n a t . E m b r y o l . 146:209, 1974.

55. S O T E L O , C. & P A L A Y , S. L. — A l t e r e d a x o n s a n d a x o n t e r m i n a l s in the lateral v e s t i b u l a r n u c l e u s of the r a t : p o s s i b l e e x a m p l e of a x o n a l r e m o d e l l i n g . L a b . I n v e s t . 25:653, 1971.

56. T A X I , J . & S C T E L O , C. — C y t o l o g i c a l a s p e c t s of the a x o n a l m i g r a t i o n of c a t e -c h o l a m i n e s a n d o f s t o r a g e m a t e r i a l . B r a i n R e s . 62:431, 1973.

57. T E N N Y S O N , V . M. — E l e c t r o n m i c r o s c o p i c s t u d y of the d e v e l o p i n g n e u r o b l a s t o f the d o r s a l r o o t g a n g l i o n o f the r a b b i t e m b r y o . J . c o m p . N e u r o l . 124:267, 1965. 58. W E I B E L , E. R . ; K I S T L E R , G. S. & S C H E R L E , W . F. — P r a c t i c a l s t e r e o l o g i c a l

m e t h o d s f o r m o r p h o m e t r i c c y t o l o g y . J . cell. B i o l . 30:23, 1966.

59. W E S T O N , J . A . — T h e m i g r a t i o n a n d d i f f e r e n t i a t i o n o f neural c r e s t cells. A d v . M o r p h o l . 8:41, 1970.

60. W E S T O N , J. A . & B U T L E R , S. L. — T e m p o r a l f a c t o r s a f f e c t i n g localization of neural cells in c h i c k e n e m b r y o . D e v . B i o l . 14:246, 1966.

61. W E S T O N , J. A . — A r a d i o a u t o g r a p h i c a n a l y s i s of the m i g r a t i o n a n d localization

of t r u n k neural c r e s t cells in the c h i c k . D e v . B i o l . 6:279, 1963.

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Referências

Documentos relacionados

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Caso utilizado em neonato (recém-nascido), deverá ser utilizado para reconstituição do produto apenas água para injeção e o frasco do diluente não deve ser

Este modelo permite avaliar a empresa como um todo e não apenas o seu valor para o acionista, considerando todos os cash flows gerados pela empresa e procedendo ao seu desconto,

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

Do amor,&#34; mas do amor vago de poeta, Como um beijo invizivel que fluctua.... Ella

Considerando um conjunto de 21 tipos de rochas utilizadas como revestimento e subdivididas em quatro conjuntos por afinidade da composição mineral (rochas carbonáticas,