• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número5"

Copied!
6
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

In

vitro

alpha

glucosidase

inhibition

and

free-radical

scavenging

activity

of

propolis

from

Thai

stingless

bees

in

mangosteen

orchard

Boonyadist

Vongsak

a,∗

,

Sumet

Kongkiatpaiboon

b

,

Sunan

Jaisamut

a

,

Sasipawan

Machana

a

,

Chamnan

Pattarapanich

a

aFacultyofPharmaceuticalSciences,BuraphaUniversity,Chonburi,Thailand

bDrugDiscoveryandDevelopmentCenter,ThammasatUniversity,PathumThani,Thailand

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12April2015 Accepted6July2015 Availableonline26July2015

Keywords:

Alphaglucosidase

Freeradicalscavengingactivity Mangosteen

Propolis Stinglessbee

a

b

s

t

r

a

c

t

Thechemicalcomponentandbiologicalactivityofpropolisdependonfloraareaofbeecollectionand beespecies.Inthestudy,thepropolisfromthreestinglessbeespecies,LepidotrigonaventralisSmith,

LepidotrigonaterminataSmith,andTetragonulapagdeniSchwarz,wascollectedinthesameregionof mangosteengardenfromThailand.Totalphenoliccontent,alphaglucosidaseinhibitoryeffect,and free-radicalscavengingactivityusingFRAP,ABTS,DPPHassaysweredetermined.Themostpotentactivityof propolisextractwasinvestigatedforbioactivecompoundsandtheirquantity.TheethanolextractofT. pagdenipropolishadthehighesttotalphenoliccontent12.83±0.72gofgallicacidequivalentsin100g oftheextract,andthestrongestalphaglucosidaseinhibitoryeffectwiththeIC50of70.79±6.44␮g/ml. Thefree-radicalscavengingactivityevaluatedbyFRAP,ABTS,DPPHassaysshowedtheFRAPvalueof 279.70±20.55␮molFeSO4equivalent/gextractandtheIC50of59.52±10.76and122.71±11.76␮g/ml, respectively.Gamma-andalpha-mangostinfromT.pagdenipropolisextractwereisolatedand deter-minedforthebiologicalactivity.Gamma-mangostin exhibitedthestrongestactivityforbothalpha glucosidaseinhibitory effectand free-radicalscavengingactivity. UsingHPLC quantitativeanalysis method,thecontentofgamma-andalpha-mangostinintheextractwasfoundtobe0.94±0.01and 2.77±0.08%(w/w),respectively.ThesefindingssuggestedthatT.pagdenipropolismaybeusedasamore suitablerawmaterialfornutraceuticalandpharmaceuticalproductsandthesemangostinderivativesas markers.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Overproductionoffreeradicalspeciescanbedamagingtohost cellsandleadtovariousailmentssuchasinflammatory,agingand diabetes(Zhouetal.,2015).Inthecaseofdiabetes,alpha glucosi-daseisavitalenzymeessentialforcleavageofmaltosetoglucose fortheabsorptioninto theblood streamin thesmallintestine. Therefore,alphaglucosidaseinhibitorscouldregulateabnormally highstagesofplasmaglucoseaftercarbohydrateingestion(Ryu etal.,2011).Nowadays,␣-glucosidaseinhibitors,suchasacarbose, voglibose and miglitol, have been accepted for clinical use in the treatmentof type 2 diabetes. Nonetheless, some synthetic alphaglucosidase inhibitorshave undesirable side effects, such as abdominal cramping, flatulence and diarrhea (Zhang et al., 2015).Asaresult,manyscientistshaveturnedtheirattentionto

∗ Correspondingauthor.

E-mail:boonyadist@buu.ac.th(B.Vongsak).

natural alphaglucosidase inhibitors including mangosteen and beeproducts,whichareutilizedtodevelopnutraceuticalsorlead compoundsforantidiabeticmanagement(Matsuietal.,2004;Ryu etal.,2011;Juárez-Rojopetal.,2014).

Naturalproductsfrombeeshavebeenextensivelyemployed sinceancienttimebecauseofitsbroadpharmacologicalactivity (Dantasetal., 2014; Kustiawanetal., 2014).Propolisis oneof thebeeproductsthatexhibitsnumerousbiologicalactivitiessuch as antioxidant,anti-inflammatory, antitumor, antiviral, antibac-terial, antifungal,antidiabetic activitiesandis alsolistedin the LondonPharmacopoeiasandChinesePharmacopoeias(Sforcinand Bankova,2011;Zhangetal.,2015).However,thechemicaland bio-logicalactivitiesofpropolisvarydependingonbeespeciesandthe floraatsiteofbeecollection.Forinstance,propolisfromEurope andNorthAmericaregions’maincompoundscomprisesmostly fla-vanones,flavones,cinnamicacidsandtheiresters,whilethatfrom Brazilcomprisesmainlyprenylatedp-coumaricacids,diterpenic acids(Bankova,2005;Sforcin,2007).Also,differentracesof hon-eybeescollectedatthesameareademonstratedvaryingpotency.

http://dx.doi.org/10.1016/j.bjp.2015.07.004

(2)

Apismelliferacaucasicashowedasuperiorantibacterialactivityto ApismelliferacarnicaandApismelliferaanatolica;stinglessbees– Trigonaincisa,Timiaapicalis,Trigonafusco-balteataandTrigona fus-cibasis–fromIndonesiarevealeddifferentdegreesofcytotoxicity (SiliciandKutluca,2005;Kustiawanetal.,2014).

Stinglessbees, whose propolis is utilized for medicinal and nutraceuticalpurposes,arealargegroupofeusocialinsectthatplay apartinplantpollinationintropicalregions(Choudharietal.,2012; daCunhaetal.,2013).InThailandandIndia,stinglessbee propo-lisispopularlyappliedforthetreatmentofmaladiessuchasacne, diabetesandinflammation(Umthongetal.,2011;Choudharietal., 2012).Antimicrobial,antiproliferativeandantioxidantactivitiesof severalspeciesofstinglessbeepropoliswerealsoinvestigated(da Cunhaetal.,2013;Dutraetal.,2014).Nevertheless,thestudyof propolisfromThaistinglessbees,(LepidotrigonaventralisSmith, Lepidotrigonaterminata Smith,and TetragonulapagdeniSchwarz (Apidae)),whicharecommerciallycultivatedinartificialhivesin fruitgardensand marketedin severalpreparationsinThailand, islimited.Thus, theobjective ofthepresentworkwasto com-parealphaglucosidaseinhibitoryeffectandfree-radicalscavenging activityofpropolisfromthreestinglessbeespeciesinthesame areaofThaimangosteenorchard.Theactivecompoundsfromthe speciesthatdemonstratedthestrongest activitywereidentified andquantified.

Materialsandmethods

Chemicalproducts

1,1-Diphenyl-2-picrylhydrazyl(DPPH) radical, 2,2′

-azino-bis-(3-ethylbenzothiazoline-6-sulfonicacid)diammoniumsalt(ABTS), 2,4,6-Tris(2-pyridyl)-s-triazine(TPTZ),␣-glucosidasefrom

Saccha-romycescerevisiae,acarbose, 4-nitrophenyl␣-d-glucopyranoside (pNPG), iron(III)chloride hexahydrate, ferrous sulfate, iron(II) sulfate heptahydrate, were obtained from Sigma–Aldrich® (St. Louis,MO, USA), aluminum chloride, acetic acid, ascorbic acid, Folin–Ciocalteureagent,gallicacidwerepurchasedfromMerck® (Darmstadt,Germany). Sodiumbicarbonateand potassium per-sulfate werepurchased fromAjax Finechem® (NSW, Australia). Allreagentswereofanalyticalgrade.Deionizedwaterwas puri-fiedbyUltraClearTMsystem(SiemenWaterTechnologiesCorp®). Ethanol,ethylacetate,dichloromethane,hexane,formicacidand HPLCgrademethanolwerepurchasedfromLabscan®(Thailand). Standardgamma-mangostin(1)and alpha-mangostin(2)purity morethan98%werepurchased fromChengduBiopurify Phyto-chemicalsLtd,Sichuan,China.

Propolissampleandpreparation

PropolisofLepidotrigonaventralisSmith,Lepidotrigonaterminata Smith,and TetragonulapagdeniSchwarzwerecollectedfroman apiaryinthemangosteengardeninDecemberfromMakham dis-trict,Chanthaburiprovince,easternofThailandin2014,andkept inthedarkat4◦Cuntiluse.Thestinglessbeeswereidentifiedby

Dr.ChamaInson,DepartmentofEntomology,Facultyof Agricul-ture,KasetsartUniversity.Thevoucherspecimens(Lepidotrigona ventralisNo.1214001,Lepidotrigonaterminata No.1214003,and TetragonulapagdeniNo. 1214003) weredeposited at Faculty of PharmaceuticalSciences,BuraphaUniversity,Thailand.

Propolisfromdifferentbeespecies(10g)wasseparatelycleaned andcutintosmallpiecesandwasthensonicatedwith80%ethyl alcohol (200ml) at 40◦C for 30min. The suspension was

cen-trifugedat3000×gfor5minat20◦C.Thesupernatantwaskept

whilethepelletwasre-extractedusingthesameprocedure.The supernatantswere pooled together and evaporated in a rotary

evaporator.Eachextractwasdewaxedbysonicationwith100mlof hexaneat40◦Cfor20minandcentrifugedat2000×gfor5minat

20◦C.Thesupernatantwasdiscardedwhilethecruderesiduewas

keptandstoredinthedarkat0◦C.

Separationofactivecompounds

Thepropolisextractthatexhibitedthestrongestactivitywas selectedtoseparatethebioactivecompounds.Thecruderesidue wassubjectedtocolumnchromatography(3cm×20cm,silicagel (0.063–0.200mm,Merck 7734))with20% ethyl acetatein hex-aneasamobilephase.Thesub-fractionswerepooledtogetherto obtaintwomainfractionsasmonitoredbythin-layer chromatog-raphy.Thefirstfractionwassubjectedtopreparativethin-layer chromatography(pTLC)with50%ethylacetate/hexanetoobtain compound1.ThesecondfractionwasalsoappliedtopTLCwith dichloromethane (triplerun)asa mobilephase to obtain com-pound2.Eachpurecompoundwasdissolvedin99.98%CDCl3orin 99.8%methanol-d4(ca.5mgin0.7ml)andtransferredinto5mm NMRsample tube(Promochem,Wesel,Germany). Spectrawere recordedbytheBrukerTopspinsoftwareonaBrukerAVANCE400 spectrometer(Bruker,Rheinstetten,Germany).

Biologicalassay

Determinationofcontentsoftotalphenoliccompounds

TotalphenoliccontentwasdeterminedusingFolin–Ciocalteu reagentfollowing methoddescribed by Vongsak etal. (2013b). Eachsample(1000␮g/ml),200␮lwasmixedwith500␮lofthe Folin–Ciocalteureagent(diluted1:10withdeionizedwater)and 800␮lof sodiumbicarbonatesolution(7.5%,w/v). Themixture wasallowedtostandatroomtemperaturefor30minwith inter-mittentshaking.Theabsorbancewasmeasuredat765nmusinga UV–Visiblespectrophotometer(Hitachi®,Japan).Thesame proce-durewasrepeatedforthegallicacidstandardsolution(500,250, 125, 62.5,31.25and 0␮g/ml)and thequantificationwasmade basedonastandardcurvegeneratedwithofgallicacid.Thecontent oftotalphenoliccompoundswascalculatedasmean±SD(n=3) andexpressedasgramsofgallicacidequivalents(GAE)in100gof theextract.

Alphaglucosidaseinhibitionassay

The ␣-glucosidase inhibitory activity was carried out spec-trophotometricallyusingpNPG assubstrate (Zhouet al.,2015). Samples, standard solutions (gamma- and alpha-mangostin) or positive control(acarbose) withdifferentconcentrations (50␮l,

Tables 1and 3), ␣-glucosidase (50␮l,2unit/ml)and phosphate buffer (50␮l, pH 7.0) were mixed and pre-incubated at 37◦C for 10min, and then pNPG (50␮l,20mM) was added to start thereaction.Afterincubationat37◦Cfor30min,theabsorbance

was measured at 405nm using UV–Visible microplate reader (Metertech®

, Taiwan). The percent inhibition of ␣-glucosidase activitywascalculatedasfollows:

Inhibition(%)=(A1−A2)

A1 ×

100,

whereA1 istheabsorbanceofcontrol,andA2 istheabsorbance ofsamples.Theextentofinhibitionwasexpressedasmean±SD (n=3)oftheenzymaticactivity(IC50).

Ferricreducingantioxidantpower(FRAP)assay

(3)

600nmusingUV–Visiblemicroplatereader(Metertech®,Taiwan). Ferroussulfate(FeSO4·7H2O,2.0,1.0,0.5,0.25,0.125,0.063mM) wasusedasreferencestandardandtheresultswereexpressedas ␮molFe2+equivalent/gextract.Standardsolutions(gamma-and alpha-mangostin)andpositivecontrol(ascorbicacid)weretreated under thesame conditionas thesamples,and then mean±SD (n=3)wascalculated.

ABTSradicalscavengingassay

ABTSradicalscavengingactivitywasmeasuredbythemethod describedbyAl-Mansoubetal.,2014.ABTSradicalcation(ABTS•+) solutionwaspreparedbymixing14mMABTSand4.9mM potas-sium persulfate solutions in equal volume. The solution was allowedtoreactinthedarkatroomtemperaturefor16–20hbefore use.Then,1mlofthesolutionwasdilutedwith40mlethanolto yieldworkingABTSsolutionwithanabsorbanceof0.70±0.02at 734nm.To750␮lABTSworkingsolution,750␮ltestsampleswere added.Theabsorbanceofeachsolutionwasdeterminedat734nm usingUV–Visiblespectrophotometer(Hitachi®,Japan)after6min. Thecorresponding blankreadingswere alsotaken andpercent inhibitionwasthencalculatedasfollows:

Inhibition(%)=(A1A−A2)

1 ×

100,

whereA1istheabsorbanceofcontrol,andA2istheabsorbanceof samples.Eachdeterminationwasdoneintriplicate,andthe aver-ageIC50 value wascalculatedas mean±SD. Standard solutions (gamma-andalpha-mangostin)andpositivecontrol(ascorbicacid) weretreatedunderthesameconditionsasthesamples.

DPPH-scavengingassay

The free radical scavenging activity of the extracts, stan-dard solutions (gamma- and alpha-mangostin) and positive control (ascorbic acid) was investigated using 1,1-diphenyl-2-picrylhydrazyl(DPPH)radicalscavengingmethod(Vongsaketal., 2013b).Atotalof750␮loftheextractorstandard/positive con-trolwasaddedto750␮lofDPPHinmethanolsolution(152␮M). Afterincubationat37◦Cfor20min,theabsorbanceofeachsolution

wasdeterminedat517nmusingUV–Visiblespectrophotometer (Hitachi®, Japan). The corresponding blank readings were also takenandpercentinhibitionwasthencalculatedasfollows:

Inhibition(%)=(A1−A2)

A1 ×

100,

whereA1istheabsorbanceofcontrol,andA2istheabsorbanceof samples.Eachdeterminationwasdoneintriplicate,andtheaverage IC50valuewascalculatedasmean±SD.

Determinationofbioactiveconstituentcontents

Thepropolisextractwiththehighestactivitywasselectedfor investigatingthequantityofbioactivecompoundsusingvalidated HPLCmethod(Vongsaketal.,2014).Theinstrumentusedwasan Agilent1260Series®

(AgilentTechnologies)equippedwitha1260 QuatpumpVLquaternarypump,1260ALSautosampler,1260TCC columnthermostat,and1260DADVLdiodearraydetector.The chromatographicseparationwascarriedoutonaHypersilBDS® C18column(4.6mm×100mmi.d.,3.5␮m)withaC18guard col-umn.Themobilephaseswere(A)0.2%formicacidinwaterand(B) methanol.Gradientelutionwasused:75%BinAto90%BinAfor 10min;90%BinAto100%Bfor5min;100%Bfor10min.The col-umnwasre-equilibratedwith75%BinAfor10minpriortoeach analysis.Theflowratewas1.0ml/minat25◦C.UV–Visdetector

wasmonitoredatthewavelengthof245nmandinjectionvolume was5␮lforallsamplesandstandards.

T.pagdenisamplewaspreparedbyaccuratelyweighing30mg

ofextractanddissolvinginmethanol(5ml).Toenablecomplete Table

(4)

Table2

NMRdataforcompounds1and2.

Compounds 1HNMR 13CNMR

Gamma-mangostin(1) (400MHz,CDCl3/methanol-d4),ı(ppm)=6.65(s,1H,ArH), 6.20(s,1H,ArH),5.28–5.23(m,2H,vinylic-H×2),4.13(d, J=6.61Hz,2H,allylic-H),3.34(d,J=7.06Hz,2H,allylic-H), 1.82(s,3H,CH3),1.78(s,3H,CH3),1.66(s,2×3H,2×CH3)

(100MHz,CDCl3/methanol-d4),ı(ppm)=182.3(C O), 161.4(ArC-OAr),160.3(ArC-OH),154.9(ArC-OAr),152.9 (ArC-OH),150.6(ArC-OH),139.9(ArC-OH,132.4(ArC), 132.3[CH C(CH3)2],128.1[CH C(CH3)2],122.8(CH C), 122.3(CH C),111.6(ArC),109.6(ArC),103.4(ArC),100.2 (ArCH),92.3(ArCH),25.7(2×CH3),25.6(CH2),21.3(CH2), 17.9(CH3),17.6(CH3)

Alpha-mangostin(2) (400MHz,CDCl3),ı(ppm)=13.80(s,1H,OH),6.86(s,1H, ArH),6.32(s,1H,ArH),6.28(s,1H,OH),6.11(s,1H,OH), 5.34–5.28(m,2H,vinylic-H×2),4.12(d,J=6.20Hz,2H, allylic-H),3.83(s,3H,OCH3),3.48(d,J=7.12Hz,2H, allylic-H),1.87(s,3H,CH3),1.86(s,3H,CH3),1.80(s,3H, CH3),1.72(s,3H,CH3)

(100MHz,CDCl3),ı(ppm)=182.1(C O),161.6(ArC-OAr), 160.7(ArC-OH),155.8(ArC-OAr),155.1(ArC-OH),154.5 (ArC-OH),142.6(ArC-OCH3),137.1(ArC),135.7 [CH C(CH3)2],132.1[CH C(CH3)2],123.2(CH C),121.4 (CH C),112.3(ArC),108.4(ArC),103.7(ArC),101.5(ArCH), 93.3(ArCH),62.0(OCH3),26.6(CH2),25.8(CH3),25.7 (CH3),21.5(CH2),18.2(CH3),17.9(CH3)

dissolution,each sample wassonicatedfor 60min.Priortothe injection,eachsolutionwasfilteredthrougha0.22␮mnylon

mem-branefilter.

Stocksolutionsofstandardcompounds(1)and(2)were pre-paredbyaccuratelyweighing and dissolvingthecompounds in methanoltoobtainthefinalconcentrationof1000␮g/ml.

Work-ingsolutionsofstandard compoundswereobtainedbydiluting thestockstandardsolutionswithmethanoltoachievethedesired concentrations.Calibrationcurveswereconstructedfromthepeak areaversustheamountofthestandardsbyleastsquare regres-sionacrosstherangeof0.78–100␮g/mlfor compounds(1)and

1.5–1000␮g/mlforcompound(2).

Statisticalanalysis

Theresultswerereportedasmean±standard deviation(SD) (n=3).Theaveragecontentsoftotalphenolics,FRAPvalues and IC50ofthedifferentpropolisbeespeciesextractwerestatistically investigatedusingone-wayanalysisofvariance(ANOVA)withleast significantdifference(LSD)bySPSSforWindows®16.0.A statis-ticalprobability(pvalue)less than0.05indicated astatistically significantdifferencebetweengroups.

Resultsanddiscussion

Phenoliccompounds aretheprincipal bioactive materialsin propoliswhichhavebeenreportedtohavenumerous pharmaco-logicaleffects,includinganti-oxidationandanti-diabetes(Matsui et al., 2004). Total phenolic contents in various stingless bees propolis extracts are presented in Table 1. T. pagdeni propolis extractpromotedsignificantlyhigher contentoftotal phenolics than propolisextract of other species. Totalphenolics in these differentpropolisextractsrangedfrom2.16to12.83gGAE/100g extract.Theresultsindicatedthepossibleinfluencesofdiverse stin-glessbeespeciesondifferentcontentsofphenolicsinpropolis.The alphaglucosidaseinhibitoryeffectofvariouspropolisextractsis

displayedinTable1.TheIC50 valuesofpropolisextractsranged from70.79to469.66␮g/mlagainstbaker’syeastalpha glucosi-dase,andthatofT.pagdenipropolisextractwassignificantlylower than155.82␮g/mlofacarbose,apositivecontrol.Thus,T.pagdeni propolisextractpossessedthehighestinhibitoryeffectonalpha glucosidasecomparedtotheotherspeciesandpositivereference. Thiseffectwaspossiblyduetophytochemicals,whichinclude phe-noliccompoundssuchasxanthonesandphenolicacids(Ryuetal., 2011).

Free radicals canbe deleterious tocells and lead tovarious chronicdiseasessuchasdiabetes,arthritis,andasthma(Vongsak etal.,2013a).Thefreeradicalscavengingactivityofstinglessbees propolis extractswas determined onthe basis of the scaveng-ingactivityofFRAP,ABTSandDPPHassays(Table1).Theresults showedthattheextractspossessedreducingactivityintherange of 61.14–279.70␮mol FeSO4 equivalent/g extract while that of ascorbicacidwas7698.02␮molFeSO4 equivalent/gextract.The extractswereabletoscavengeABTSandDPPHradical,especially thatofT.pagdenipropolis.ItpromotedstrongerABTSandDPPH radicalscavengingactivity thanthe otherextractswith IC50 of 59.52and122.71␮g/ml,respectively,whileascorbicacid,a pos-itivereference,showedtheactivityatIC50of6.07and7.33␮g/ml, respectively.Theseexperimentsindicatedthatalphaglucosidase inhibitionandfree-radicalscavengingactivityofpropolisextracts fromT.pagdeniexhibitedstrongeractivitythanthatofL.ventralis andL.terminata.Thus,T.pagdenipropolisextractwasselectedto identifyandquantifythebioactivecompounds.

Gamma-mangostin(1)andalpha-mangostin(2)wereseparated and identified as the active constituents in T. pagdenipropolis extractfrommangosteenorchard(Table2).Inalphaglucosidase inhibitionassay,eachcompounddemonstratednoteworthyalpha glucosidaseinhibitoryeffect(IC504.22and29.27␮M)while acar-bosedisplayedtheIC50of241.36␮M(Table3).Thesechemicals werepreviouslyreportedinseedcasesofGarciniamangostanaand hadbeenreportedtodisplayalphaglucosidaseinhibitoryeffect (Ryu etal.,2011).In regardstofreeradicalscavengingactivity,

Table3

ThecontentsofbioactivecompoundsandtheirbiologicalactivitiesinTetragonulapagdenipropolisextractfrommangosteenorchard.

Bioactivecompounds Contentsofmajor compoundsin80% ethanolicextracts(%w/w)*

Alphaglucosidase inhibitoryassay IC50(␮M)*

FRAPassay(␮molFeSO4

equivalent/gramextract)*

ABTSassay IC50(␮M)*

DPPHassay IC50(␮M)*

Gamma-mangostin(1) 0.94±0.01 4.22±0.58a 5366.82±54.71a 160.92±1.23a 39.94±1.16a

alPha-mangostin(2) 2.77±0.08 29.27±7.02c 15.32

±3.89c n.d. n.d.

Dissimilarlettersinthesamecolumnindicatesignificantlydifferentforeachparameteratp<0.05usingone-wayanalysisofvariance(ANOVA)withleastsignificantdifference (LSD).

* Expressedasmean±SD(n=3),n.d.=notdetectable.Inalphaglucosidaseinhibitoryassay,theconcentrationsofgamma-mangostin(1)were12.5,6.25,3.125,1.56,0.77

and0␮g/ml,whilealpha-mangostin(2)were100,50,25,12.5,6.25and0␮g/ml.InABTSassayandDPPHassaytheconcentrationsofgamma-andalpha-mangostinwere

(5)

mU 700

600

500

400

300

200

100

0

0 2.5 5 7.5 10 12.5 15 17.5

(1)

(2)

20 22.5 min

Fig.1.HPLCfingerprintsofTetragonulapagdenipropolisextractfrommangosteenorchardinThailand,gamma-mangostin(1)andalpha-mangostin(2).

gamma-mangostin(1)exhibitedastrongactivitycomparableto thatofascorbicacidintheDPPHassaywhilealpha-mangostin(2) showedweaktonon-detectableactivityinABTSandDPPHassays (Table3).

RO

HO O

OH O

OH

1R=H

2R=CH3

HPLCwasusedtoquantifybioactivecompounds,gamma-and alpha-mangostinintheT.pagdenipropolisextractbecauseofthe strongestactivities.Thismethodhasbeenvalidatedforits linear-ity,precision,andaccuracy(Vongsaketal.,2014).Theamountsof bioactivecompounds,gamma-mangostin(1)andalpha-mangostin (2),intheT.pagdenipropolisextractwere0.94and2.77%(w/w), respectively (Table 3) at retention times of 7.46and 9.98min, respectively (Fig. 1), respectively, in theHPLC fingerprints.The presenceofthesemangostinderivativesisconsideredtobevital forthealphaglucosidaseinhibitoryeffectofT.pagdenipropolis.

Inconclusion,thestudyprovidesdatatosupporttheusageof differentstinglessbeepropoliscultivatedinmangosteenorchard asrawmaterialfornaturalantioxidantandanti-diabeticagents. Based on this study, the propolis extract of T. pagdeni should beutilizedasabettersourceofrawmaterialforalpha glucosi-dase inhibitory effect and anti-oxidativepurposes than others. Themangostinderivatives,especiallygamma-mangostin,themost activeagent,couldpossiblybeappliedasmarkersfor standardiza-tion.

Authors’contributions

BVcontributionincludedcollectingsamples,designingand per-forminglaboratorywork,analyzingtheresults,andpreparingthe paper. SK contribution included HPLC analysis. SJ contribution includedtheisolationandpurificationofthecompounds.SMand CPcontributionincludedcollectionofsamplesandsupervisionof thelaboratorywork.Alltheauthorshavereadthefinalmanuscript andapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

ThisworkwassupportedbytheHigherEducationResearch Pro-motionandNationalResearchUniversityprojectofThailand,Office oftheHigherEducationCommission.

TheauthorsalsowouldliketothankFacultyofPharmaceutical Sciences,BuraphaUniversityforfinancialsupportand Mr.Wisit Tanooard,Ms.NipathaIssaroaswellasThailocalbeekeeperofKon ChanChannarong(stinglessbee)inChantaburiprovince,Thailand forfacilitiesandpropoliscollection.WealsothankDrug Discov-eryandDevelopmentCenter,ThammasatUniversityforlaboratory facilitiesandMr.PanuponKhumsupanforhiskindproofreadingof themanuscript.

References

Al-Mansoub,M.A.,Asmawi,M.Z.,Murugaiyah,V.,2014.Effectofextraction sol-ventsandplantpartsusedontheantihyperlipidemicandantioxidanteffects ofGarciniaatroviridis:acomparativestudy.J.Sci.FoodAgric.94,1552–1558.

Bankova,V.,2005.Chemicaldiversityofpropolisandtheproblemofstandardization. J.Ethnopharmacol.100,114–117.

Choudhari,M.K.,Punekar,S.A.,Ranade,R.V.,Paknikar,K.M.,2012.Antimicrobial activityofstinglessbee(Trigonasp.)propolisusedinthefolkmedicineof West-ernMaharashtra,India.J.Ethnopharmacol.141,363–367.

daCunha,M.G.,Franchin,M.,deCarvalhoGalvao,L.C.,deRuiz,A.L.,deCarvalho, J.E.,Ikegaki,M.,deAlencar,S.M.,Koo,H.,Rosalen,P.L.,2013.Antimicrobialand antiproliferativeactivitiesofstinglessbeeMeliponascutellarisgeopropolis.BMC ComplementAltern.Med.13,23.

Dantas,C.G.,Nunes,T.L.G.M.,Nunes,T.L.G.M.,daPaixão,A.O.,Reis,F.P.,Júnior,W.d.L., Cardoso,J.C.,Gomes,M.Z.,Gramacho,K.P.,2014.Pharmacologicalevaluationof beevenomandmelittin.Rev.Bras.Farmacogn.24,67–72.

Dutra,R.P.,Abreu,B.V.,Cunha,M.S.,Batista,M.C.,Torres,L.M.,Nascimento,F.R., Ribeiro,M.N.,Guerra,R.N.,2014.Phenolicacids,hydrolyzabletannins,and antioxidantactivityofgeopropolisfromthestinglessbeeMeliponafasciculata Smith.J.Agric.FoodChem.62,2549–2557.

Juárez-Rojop, I.E., Tovilla-Zárate, C.A., Aguilar-Domínguez, D.E., Fuente, L.F.R.-d.l.,Lobato-García, C.E.,Blé-Castillo, J.L.,López-Meraz,L.,Díaz-Zagoya,J.C., Bermúdez-Oca ˜na,D.Y.,2014.Phytochemicalscreeningandhypoglycemic activ-ityofCaricapapayaleafinstreptozotocin-induced diabeticrats.Rev.Bras. Farmacogn.24,341–347.

Kustiawan,P.M.,Puthong,S.,Arung,E.T.,Chanchao,C.,2014.Invitrocytotoxicityof Indonesianstinglessbeeproductsagainsthumancancercelllines.AsianPac.J. Trop.Biomed.4,549–556.

(6)

Ryu,H.W.,Cho,J.K.,Curtis-Long,M.J.,Yuk,H.J.,Kim,Y.S.,Jung,S.,Kim,Y.S.,Lee, B.W.,Park,K.H.,2011.␣-Glucosidaseinhibitionandantihyperglycemic activ-ityofprenylatedxanthonesfromGarciniamangostana.Phytochemistry72, 2148–2154.

Sforcin,J.M.,Bankova,V.,2011.Propolis:isthereapotentialforthedevelopmentof newdrugs?J.Ethnopharmacol.133,253–260.

Sforcin,J.M.,2007.Propolisandtheimmunesystem:areview.J.Ethnopharmacol. 113,1–14.

Silici,S.,Kutluca, S.,2005. Chemical compositionandantibacterial activityof propoliscollectedbythreedifferentracesofhoneybeesinthesameregion.J. Ethnopharmacol.99,69–73.

Umthong,S.,Phuwapraisirisan,P.,Puthong,S.,Chanchao,C.,2011.Invitro antipro-liferativeactivityofpartiallypurifiedTrigonalaevicepspropolisfromThailand onhumancancercelllines.BMCComplementAltern.Med.11,37.

Vongsak,B.,Gritsanapan,W.,Wongkrajang,Y.,Jantan,I.,2013a.Invitroinhibitory effectsofMoringaoleiferaleafextractanditsmajorcomponentson chemi-luminescenceandchemotacticactivityofphagocytes.Nat.Prod.Commun.8, 1559–1561.

Vongsak,B.,Sithisarn,P.,Mangmool,S.,Thongpraditchote,S.,Wongkrajang,Y., Grit-sanapan,W.,2013b.Maximizingtotalphenolics,totalflavonoidscontentsand antioxidantactivityofMoringaoleiferaleafextractbytheappropriateextraction method.Ind.CropsProd.44,566–571.

Vongsak,B.,Kongkiatpaiboon,S.,Machana,S.,Weerakul,T.,Pattarapanich,C., Lai-wattanaphaial,J.,Issaro,N.,2014.HPLCquantitativeanalysisofstinglessbee propolisextracts.In:BuraphaUniversityInternationalConference2014.Global WarmingandItsImpacts,ChonBuri,Thailand.

Zhang,H.,Wang,G.,Beta,T.,Dong,J.,2015.Inhibitorypropertiesofaqueousethanol extractsofpropolisonalpha-glucosidase.Evid.BasedComplementAltern.Med.,

http://dx.doi.org/10.1155/2015/587383,ArticleID587383.

Imagem

Fig. 1. HPLC fingerprints of Tetragonula pagdeni propolis extract from mangosteen orchard in Thailand, gamma-mangostin (1) and alpha-mangostin (2).

Referências

Documentos relacionados

A metodologia empregada se baseia nos estudos de fatores pedológicos condicionantes de propriedades dos solos importantes para o projeto e construção de obras de engenharia

Thus, this study aimed to determine the TAA of different Brazilian rice cultivars using DPPH and ABTS radical capture assays and the ferric reduction antioxidant power (FRAP)

ABSTRACT: The free radical scavenging activity (FRS) using 2,2-diphenyl-1-picrylhydrazyl (DPPH), the reducer power and the total phenolic concentration of extracts

Guião da Entrevista do Professor/Tutor..  Conhecer o processo de formação de um tutor online.  Perceber o papel do professor/tutor na análise, desenho, desenvolvimento,

phenol and flavonoid content, DPPH free radical scavenging capacity, nitric oxide activity, iron chelation activity, and reducing power activity.. Total phenol and flavonoid

Como objetivos específicos são considerados: avaliação da compliance das bordas do elemento micro a cada propagação de trinca; cálculo dos ciclos de carregamento para cada incremento

The antioxidant activity was investigated using four different assays: DPPH free radical scavenging activity micro assay using a 96-well plate, quantification of total phenolics

Moreover, the improvement of glycemic control in some patients with increased post-transplant time, reducing the dose of immunosuppressive drugs and other interventions