• Nenhum resultado encontrado

Yersinia pestis detection by loop-mediated isothermal amplification combined with magnetic bead capture of DNA

N/A
N/A
Protected

Academic year: 2021

Share "Yersinia pestis detection by loop-mediated isothermal amplification combined with magnetic bead capture of DNA"

Copied!
10
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Clinical

Microbiology

Yersinia

pestis

detection

by

loop-mediated

isothermal

amplification

combined

with

magnetic

bead

capture

of

DNA

Na

Feng

a,b

,

Yazhou

Zhou

b

,

Yanxiao

Fan

a,b

,

Yujing

Bi

b

,

Ruifu

Yang

b

,

Yusen

Zhou

a,b,∗

,

Xiaoyi

Wang

a,b,∗

aAnhuiMedicalUniversity,Anhui,People’sRepublicofChina

bBeijingInstituteofMicrobiologyandEpidemiology,StateKeyLaboratoryofPathogenandBiosecurity,LaboratoryofAnalytical Microbiology,Beijing,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22June2016 Accepted17March2017 Availableonline26August2017 AssociateEditor:RoxanePiazza

Keywords: Plague Yersiniapestis Loop-mediatedisothermal amplification Magneticbeads

a

b

s

t

r

a

c

t

Wedevelopedaloop-mediatedisothermalamplification(LAMP)assayforthedetectionofY. pestisbytargetingthe3asequenceonchromosome.All11speciesofthegenusYersiniawere usedtoevaluatethespecificityofLAMPandPCR,demonstratingthattheprimershadahigh levelofspecificity.ThesensitivityofLAMPorPCRwas2.3or23CFUforpureculture,whereas 2.3×104or2.3×106CFUforsimulatedspleenandlungsamples.Forsimulatedliversamples,

thesensitivityofLAMPwas2.3×106CFU,butPCRwasnegativeatthelevelof2.3×107CFU.

Aftersimulatedspleenandlungsamplesweretreatedwithmagneticbeads,thesensitivity ofLAMPorPCRwas2.3×103or2.3×106CFU,whereas2.3×105or2.3×107CFUformagnetic

bead-treatedliversamples.Theseresultsindicatedthatsomecomponentsinthetissues couldinhibitLAMPandPCR,andlivertissuesampleshadastrongerinhibitiontoLAMP andPCRthanspleenandlungtissuesamples.LAMPhasahighersensitivitythanPCR,and magneticbeadcaptureofDNAscouldremarkablyincreasethesensitivityofLAMP.LAMPis asimple,rapidandsensitiveassaysuitableforapplicationinthefieldorpovertyareas.

©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileirade Microbiologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Plague isazoonotic disease causedbyGram-negative bac-terium Yersinia pestis, which is occasionally transmitted to humansfromY.pestis-infectedrodentsviathebitesofinfected fleas.1 Y.pestisis thoughttohaveevolved from aserotype

O:1bstrain ofY.pseudotuberculosisabout 6000–10,000years

Correspondingauthors.

E-mails:yszhou@bmi.ac.cn(Y.Zhou),wgenome@163.com(X.Wang).

ago although these two species cause remarkably differ-ent diseases.2–3 Y.pestisis ahighly virulent and infectious

pathogen, and was classifiedas aCategory Apathogen by theU.S.CentersforDiseaseControlandPrevention.4

Histori-cally,Y.pestishasgivenrisetothreemajorplaguepandemics, leadingtomillionsofhumandeaths.Recently,theincreased outbreakofplaguearoundtheworldisreportedannuallyto

https://doi.org/10.1016/j.bjm.2017.03.014

1517-8382/©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeMicrobiologia.Thisisanopenaccessarticle undertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Table1–SequenceoftheprimersforLAMPandPCRreactions.

Primernames Type Sequence(5–3) Primerlength(bp)

3a-F3 Forwardouterprimer ACTACCATCCCCTCAAGGTT 20

3a-B3 Backwardouterprimer GAGGGCGTTTTGGTAGAGAA 20

3a-FIP Forwardinnerprimer CACCCGCGTTATCTCATCCCG-TTTTCGAGTAGGGTTAGGTGGGC 44

3a-BIP Backwardinnerprimer CATGGACGTATGGCGGGTCA-TTTTGTGATGCCGTCCAATGCA 42

3a-LF Forwardloopprimer ACCGCCATGAAATGGACAATG 21

theWorldHealthOrganization(WHO),andplaguewas clas-sifiedasare-emerginginfectiousdiseasebytheWHO.5–6In

addition,plaguehasbeenattractingaconsiderableattention becauseitscausativeagenthasalwaysbeenrecognizedasone oftheclassicalbiologicalwarfareorbioterrorismagents.7–8To

minimizethesethreats,developmentofarapidmethodfor thedetectionofY.pestisisessential.

Y. pestis was often detected by bacterial isolation and microscopyobservation,9phagelysisassay,10–11ELISAassays

basedonthedetectionofF1antigenandantibodiesagainst

Y.pestis,12–15 conventional PCR assays,16–18 real-time

quan-titative PCR assays,19–28 biosensors based on fiber-optic or

upconvertingphosphortechnology,29–31solid-phase

radioim-munoassaybasedon radiolabeled monoclonalantibodyfor thedetectionofplagueantigen.32Allthesemethodsare

play-inganimportantrole inthediagnosis ofplague, butthese methodseitheraretime-consumingandlaborious,orrequire expensiveequipmentandpersonnelwithahighlevelof tech-nicalexpertise.However,permanentsurveillanceofthefociof plaguelocatedinthepoorregionstopredictfutureepizootics inrodentsandexposureriskforhumansorinvestigationof samples suspectedof bioterrorism on site requires a sim-ple,rapidand efficientdiagnostic method. Acolloidalgold particles-based lateral-flow (LF)strip detection method for

Y.pestishasbeen developedbasedonantibodies toF1and LcrVproteins.33–34Thisdipsticktestisalow-cost,easy-to-use

andrapidscreeningmethodinthesurveillanceofplagueor investigationofsamplessuspectedofbioterrorismonsite,but nucleicacid-basedrapiddetectiontechnologycouldbeamore powerfulalternativefordetectingY.pestis.

Loop-mediatedisothermalamplification(LAMP) technol-ogy has received considerable attention because it allows efficientlyamplificationofDNAwithhighspecificityand sen-sitivityunder isothermalconditions of60–65◦C.TheLAMP reactioncanbeaccomplishedwithinlessthan1hbasedon asetoffourtosixprimersandtheBstDNApolymerasewith stranddisplacementactivity.35Themethodismoresuitable

forfieldapplications,especiallyinpovertyareas,becauseit doesnotrequirespecializedorexpensiveequipment,andonly asimpleandinexpensivewaterbathorheatingblockcan sat-isfyLAMPassay.36–37Inaddition,LAMPresultscanbereadby thenakedeye,orthelateralflowdipstick(LFD)under natu-rallight,whichmakesthedetectionresultseasytobejudged inthefield.Currently,theLAMPtechniquehasbeenwidely usedinthediagnosisofinfectiousdiseases,38anditismore

sensitiveindetectingbacteriacomparedtotheconventional polymerasechainreaction(PCR)method.39–40 Inthis study,

weconstructasimpleandrapidLAMPmethodfordetection ofY.pestisbasedonthespecificsequence3a(GenBank acces-sionno.AF350075)thatisaspecificfragmentlocatedon Y. pestischromosome foundby using acomparative genomic

method.41 Thespecificity of the method wasevaluated by

usingall11speciesofthegenusYersinia.Thesensitivitywas evaluatedbyusingY.pestispureculture,andsimulatedtissue samples, andmagneticbead-treatedsimulatedtissue sam-ples.

Materials

and

methods

Bacterialstrains,reagents,instrumentsandanimals Y.pestisEVvaccinestrain, Y.pseudotuberculosis,Y. enterocolit-ica,Y.frederiksenii,Y.intermedia,Y.kristensenii,Y.bercovieri,Y. mollaretii,Y.rohdei,Y.ruckeri,andY.aldovaewereusedto evalu-ate thespecificityofLAMPand PCR;10× thermopolbuffer, MgSO4 (100mM),and Bst DNAPolymerase, LargeFragment

(8000U/ml)were purchased from NEB(Beijing, China); Cal-ceinandreal-timeturbidity meterLA-320cwere purchased from EikenChinaCO., LTD.;TaqDNA polymerase(5U)and dNTPs(2.5mM)werepurchasedfromTaKaRa(Dalian,China); SM3-P100,amino-modifiedsilica-coatedmagneticbeads,was purchased formShanghai Allrun Nano Science & Technol-ogyCO.,LTD.BALB/cwereobtainedfromLaboratoryAnimal ResearchCenter,AcademyofMilitaryMedicalScience,China (licensed from the Ministry of Health in General Logistics DepartmentofChinesePeople’sLiberationArmy,PermitNo. SCXK-2007-004).TheprotocolswereapprovedbyCommittee oftheWelfareandEthicsofLaboratoryAnimals,Beijing Insti-tuteofMicrobiologyandEpidemiology.Theexperimentswere conductedstrictlyincompliancewiththeRegulationsofGood LaboratoryPracticefornonclinicallaboratorystudiesofdrug issuedbytheNationalScientificandTechnologicCommittee ofPeople’sRepublicofChina.

LAMPandPCRassays

ForLAMPreaction,asetoffiveprimerswasdesigned accord-ing to the published sequence of 3a in Y. pestis KIM D46 (GenBank accession no.: AF350075) using Primer Explorer version 4. A forward inner primer (FIP), a backward inner primer(BIP),twoouterprimers(F3and B3),andaloop for-ward primer (LF) were used for LAMP amplification. The sequencesoftheprimersareshowninTable1.LAMPreaction was performedinatotalvolumeof25␮Lmixture contain-ing 10× Thermopol buffer (2.5␮L), 100mM MgSO4 (1.5␮L),

2.5mMdNTPMix(14␮L),100mM3a-FIP(0.4␮L),100mM 3a-BIP(0.4␮L),10mM3a-F3(0.5␮L),10mM3a-B3(0.5␮L),10mM 3a-LF(0.2␮L),8000U/mLofBstDNAPolymerase,Large Frag-ment (1␮L), water (3␮L), template DNA (1␮L). The LAMP reactionwascarriedoutat65◦Cfor60minandinactivatedat 80◦Cfor5mininwaterbath.FordirectvisualdetectionofDNA

(3)

A

E

B

F

G

C

D

H

1.2 1.2 1.4 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Time (min) Time (min)

T urbidity (400nm) T urbidity (400nm) 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 10 10 1 2 3 5 5 6 6 7 7 8 8 9 9 10 10 1 2 3 4 1 2 3 4 5 6 7 8 9 10 4 10 11 11 11 11 11 12 12 12 12 13 13 14 5 6 7 8 9 10 1 2 3 4 11 12

Fig.1–Thesensitivity(A–D)oftheLAMPorPCRforthedetectionofY.pestisusingserialdilutionsofextractedDNA,andthe specificity(E–H)oftheLAMPorPCRforthedetectionofY.pestisusing20ngDNAfromeachbacteriumofthegenusYersinia.

(A)DetectionofLAMPproductswithareal-timeturbiditymeter.1–8:20ng–0.002pg;10:negativecontrol.(B)Visualizationof LAMPproductsstainedwithcalceinandinspectedundernaturallight.Tube1–9:20ng–0.0002pg;10:negativecontrol.(C) DetectionofLAMPproductswithagarosegelelectrophoresis.Lane1:marker;2–10:20ng–0.0002pg;11:negativecontrol.(D) ElectrophoreticanalysisofPCRproductswithagarosegel.Lane1:marker;2–10:20ng–0.0002pg;11:negativecontrol;12: marker.(E)DetectionoftheLAMPproductswithareal-timeturbiditymeter.1:Y.pestis;2:Y.pseudotuberculosis;3:Y. enterocolitica;4:Y.frederiksenii;5:Y.intermedia;6:Y.kristensenii;7:Y.bercovieri;8:Y.mollaretii;9:Y.rohdei;10:Y.ruckeri;11:Y. aldovae;12:negativecontrol.(F)VisualizationofLAMPproductsstainedwithcalceinandinspectedundernaturallight.Tube 1:Y.pestis;2:Y.pseudotuberculosis;3:Y.enterocolitica;4:Y.frederiksenii;5:Y.intermedia;6:Y.kristensenii;7:Y.bercovieri;8:Y. mollaretii;9:Y.rohdei;10:Y.ruckeri;11:Y.aldovae;12:negativecontrol.(G)DetectionofLAMPproductswithagarosegel electrophoresis.Lane1:marker;2:Y.pestis;3:Y.pseudotuberculosis;4:Y.enterocolitica;5:Y.frederiksenii;6:Y.intermedia;7:Y. kristensenii;8:Y.bercovieri;9:Y.mollaretii;10:Y.rohdei;11:Y.ruckeri;12:Y.aldovae;13:negativecontrol.(H)Electrophoretic analysisofPCRproductswith1.5%agarosegel.Lane1:marker;2:Y.pestis;3:Y.pseudotuberculosis;4:Y.enterocolitica;5:Y. frederiksenii;6:Y.intermedia;7:Y.kristensenii;8:Y.bercovieri;9:Y.mollaretii;10:Y.rohdei;11:Y.ruckeri;12:Y.aldovae;13: negativecontrol;14:marker.

amplification,1␮LofFluorescentDetectionReagent contain-ingcalcein(EIKENCHINACO.,LTD.)wasaddedtothereaction tubebeforetheLAMPreaction.Forapositivereaction,acolor changefromorangetogreenwasobservedthroughthenaked eyeundernaturallight,whereasanegativereactionmixture remained orange. Alternatively, specific DNA amplification wasmonitoredspectrophotometricallybyareal-time turbid-itymeter.Toconfirmthatcolorchangeinreactiontubesisa resultofDNAamplification,LAMPproductwasalsodetected by0.8% agarose gel electrophoresisand ethidiumbromide staining.

ConventionalPCRreactionwasperformedinatotal vol-ume of 25␮L mixture containing 10×buffer (3␮L), 2.5mM dNTPs(0.6␮L),10mM3a-F3(0.5␮L),10mM3a-B3(0.5␮L),5U

ofTaqDNApolymerase(0.1␮L),deionizedwater(15.3␮L)and template DNA (5␮L).F3 and B3 primers were usedfor the conventional PCR amplification(Table 1). Thereaction was subjectedtoaninitialdenaturationat95◦Cfor5min,followed by 35 cycles ofdenaturationat95◦C for30s, annealing at 56◦Cfor30s,extensionat72◦Cfor1minandafinal exten-sionat72◦Cfor5min.ThePCRproductswere analyzedby 1.5%agarosegelelectrophoresisandstainedwithethidium bromide.

ExtractionofbacterialgenomicDNA

Forpreparationofhigh-qualitygenomicDNA,Y.pestisEV vac-cinestrain andother bacteria werecultured inLuriabroth

(4)

1.2 1 0.8 0.6 0.4 0.2 0 -0.2 1.2 1.4 1.6 1 0.8 0.6 0.4 0.2 0 -0.2 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 1 2 1 3 4 3 5 6 5 7 8 7 2 4 6 8 9 10 9 10 11 12

Time (min) Time (min)

T urbidity (400nm) T urbidity (400nm)

A

E

B

F

C

D

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig.2–Thesensitivity(A–C)oftheLAMPandPCRforthedetectionofY.pestisbyusingtheDNAextractedcrudelyfrom serialdilutionsofbacterialsolutions,andthespecificity(D–F)oftheLAMPandPCRforthedetectionofY.pestisusing crudelyextractedDNAfromeachbacterium(2.3×107CFU)ofthegenusYersinia.(A)DetectionoftheLAMPproductswitha

real-timeturbiditymeter.1–9:2.3×107–2.3×10−1CFUofY.pestis;10:negativecontrol.(B)VisualizationofLAMPproducts

stainedwithcalceinandinspectedundernaturallight.Tube1–9:2.3×107–2.3×10−1CFUofY.pestis;10:negativecontrol.(C)

ElectrophoreticanalysisofPCRproductswithagarosegel.Lane1:marker;Lane2–10:2.3×107–2.3×10−1CFUofY.pestis;11:

negativecontrol;12:marker.(D)DetectionofLAMPproductswithareal-timeturbiditymeter.1:Y.pestis;2:Y.

pseudotuberculosis;3:Y.enterocolitica;4:Y.frederiksenii;5:Y.intermedia;6:Y.kristensenii;7:Y.bercovieri;8:Y.mollaretii;9:Y. rohdei;10:Y.ruckeri;11:Y.aldovae;12:negativecontrol.(E)VisualizationofLAMPproductsstainedwithcalceinand

inspectedundernaturallight.Tube1:Y.pestis;2:Y.pseudotuberculosis;3:Y.enterocolitica;4:Y.frederiksenii;5:Y.intermedia;6:

Y.kristensenii;7:Y.bercovieri;8:Y.mollaretii;9:Y.rohdei;10:Y.ruckeri;11:Y.aldovae;12:negativecontrol.(F)Electrophoretic analysisofPCRproductswithagarosegel.Lane1:marker;2:Y.pestis;3:Y.pseudotuberculosis;4:Y.enterocolitica;5:Y. frederiksenii;6:Y.intermedia;7:Y.kristensenii;8:Y.bercovieri;9:Y.mollaretii;10:Y.rohdei;11:Y.ruckeri;12:Y.aldovae;13: negativecontrol;14:marker.

(LB)at26◦Cand37◦C,respectively,andthencollectedby cen-trifugation.Thecollectedbacterialpelletwasresuspendedin SEbuffer(0.15MNaCl,0.1MEDTA-2Na·2H2O,adjustedtopH

8.0by10M HCl),addedtoafinal concentrationof2%SDS, andthenplacedinawaterbathat60◦Cfor10min.Then,an equalvolumeofphenol,chloroformandisoamylalcohol mix-ture(25:4:1)wasaddedandthesolutionwasmixedbyslowly inverting or rotatingto denature proteins, then to remove proteins.Theaqueousphase wasadded afinal concentra-tionof50–100␮g/mlofRNasetodegradeRNAsat37◦C for 30–60min.Then,anequalvolumeofchloroformwasadded, shakingvigorously.Theaqueousphasewasprecipitatedwith twotimesvolumeofethanol,andthentheDNAwasspooled outwithaglassrod,rinsedwith70%ethanol,anddriedinair. Finally,theDNAwasdissolvedintoTEbuffer(10mMTris–HCl, 1mM EDTA-2Na·2H2O, adjusted to pH 8.0 by 10M HCl)

foruse.

ForsimpleandrapidisolationofbacterialDNA,the bac-terialcells wereresuspended indeionized water,and then genomicDNAwasreleasedbyboilingthebacterial suspen-sionat100◦Cfor10min.Thesupernatantwascollectedand usedastheDNAtemplateinbothLAMPandconventionalPCR reactions.

CaptureofbacterialgenomicDNAbymagneticbeads

BacterialgenomicDNAwasreleasedbyboilingbacterial sus-pensionat100◦Cfor10min,300␮Lofthesupernatantwas mixed with the same volume of binding buffer [4M NaCl and20%polyethyleneglycol(PEG)8000],followedbyaddition of0.2mgmagneticnanoparticlesSM3-P100.Thesuspension wasvibratedvigorouslyfor15s,followedbystandingatroom temperaturefor5min.Themagneticbeadswerecollectedby usinganexternalmagnet,andthesupernatantwasdiscarded. Themagnetic pelletwas washed twotimes with200␮Lof 70% ethanol, and then driedcompletely atroom tempera-ture.Finally,themagneticpelletwasresuspendedin100␮L ofdeionizedwatertoeluteboundDNAatroomtemperature for5minwithcontinuousagitation.Thesupernatant contain-ingthegenomicDNAwasusedastheDNAtemplateinboth LAMPandconventionalPCRassays.

Preparationofsimulatedsamplesandmagneticbead captureofDNA

Thespleen,liverand lungswere collected asepticallyfrom pathogen-free BALB/c mice, and then blended with the

(5)

1.2 1 0.8 0.6 0.4 0.2 0 -0.2 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 1 2 1 2 3 4 3 4 5 6 5 6 7 8 7 8 9 10 9 10 5 6 7 8 9 10 1 2 3 4 1 2 3 4 5 6 7 8 9 10 5 6 7 8 9 10 1 2 3 4 11 12 5 6 7 8 9 10 1 2 3 4 11 12

A

E

B

F

C

D

Time (min) Time (min) T urbidity (400nm) Turbidity (400nm)

Fig.3–DetectionofY.pestisinsimulatedspleensamplesbyLAMPandPCR.ThesensitivityofLAMPorPCRwas

determinedbyusingtheDNAextractedbyboilingsimulatedspleensamplefor10min(A–C)orbyusingtheDNAcaptured bymagneticbeads(D–F).(A)DetectionofLAMPproductswithareal-timeturbiditymeter.1–8:2.3×100–2.3×107CFUofY. pestis;9:positivecontrol;10:negativecontrol.(B)VisualizationofLAMPproductsstainedwithcalceinandinspectedunder naturallight.Tube1–8:2.3×100–2.3×107CFUofY.pestis;9:positivecontrol;10:negativecontrol.(C)Electrophoretic

analysisofPCRproductswithagarosegel.Lane1:marker;Lane2–9:2.3×107–2.3×100CFUofY.pestis;10:positivecontrol;

11:negativecontrol;12:marker.(D)DetectionofLAMPproductswithareal-timeturbiditymeter.1–8:2.3×100–2.3×107CFU

ofY.pestis;9:positivecontrol;10:negativecontrol.(E)VisualizationofLAMPproductsstainedwithcalceinandinspected undernaturallight.Tube1–8:2.3×100–2.3×107CFUofY.pestis;9:positivecontrol;10:negativecontrol.(F)Electrophoretic

analysisofPCRproductswithagarosegel.Lane1:marker;Lane2–9:2.3×107–2.3×100CFUofY.pestis;10:positivecontrol

(20ngDNA);11:negativecontrol;12:marker.

appropriate volume of PBS buffer to prepare tissue homogenates. Y. pestis was cultured in LB, collected by centrifugation,andthenresuspendedindeionizedwaterto prepareserial10-folddilutionsofbacterialsuspension.The spleen,liverandlungtissuehomogenateswererespectively inoculatedwiththesame volumeofserial10-folddilutions ofbacterialsuspensiontoobtaindifferentconcentrationsof artificially contaminated samples (2.3×107–2.3×10−1CFU).

Noninoculated tissue homogenates were mixed with the same volume ofdeionized water tobe used asa negative control. Artificially contaminated samples for each tissue were boiledat100◦C for10min,and then centrifugatedat 10,000×gfor2min.Thesupernatantscanbedirectlyusedas theDNAtemplateinbothLAMPandconventionalPCRassays. The supernatants can be further used to isolate bacterial DNAbymagneticbeadsaccordingtotheprotocoldescribed above, and thenused inboth LAMP and conventional PCR assays.

DeterminationofLAMPorPCRsensitivity

ThesensitivityofLAMPorPCRforthedetectionofY.pestiswas evaluatedwiththehigh-qualitygenomicDNA.Serial10-fold dilutionsofDNAweremadeinsteriledeionizedwater,and usedastheDNAtemplatestoperformLAMPandPCRassays.

ThesensitivityofLAMPorPCRwasevaluatedwithY.pestis

pureculture.Serial10-folddilutionsofY.pestiscellsweremade insteriledeionizedwater,boiledat100◦Cfor10min,andthe supernatantswereusedforLAMPandconventionalPCR reac-tions.ThesensitivityofLAMPorPCRwasevaluatedwiththe simulatedsamplespreparedbyusingmousespleen,liverand lungs. Serial10-fold dilutionsofY.pestiscells were respec-tively spikedinto thesame volumeoftissuehomogenates, andboiledat100◦Cfor10min.Thesupernatantsweredirectly used for LAMP and PCR assays. In addition, the bacterial DNAwascapturedfromthesupernatantsbymagneticbeads, andthenusedtodeterminethesensitivityofLAMPandPCR assays.

EvaluationofspecificityofLAMPorPCR

ThespecificityofLAMP orPCRforthedetectionofY.pestis

wasevaluatedbyusingthehigh-qualitybacterialDNAs(20ng) from11speciesofbacteriainthegenusYersinia.Thespecificity oftheLAMPorPCRwasalsoevaluatedwithpureculturesfrom 11speciesofbacteriainthegenusYersinia.Eachbacteriumwas dilutedto107CFUinsteriledeionizedwater,boiledat100C

for10min,andthesupernatantswereusedforLAMPandPCR reactions.

(6)

T

urbidity (400nm)

T

urbidity (400nm)

Time (min) Time (min)

1 3 5 7 9 2 4 6 8 10 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 1.2 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 1 0.8 0.6 0.4 0.2 0 -0.2 1 3 5 7 9 2 4 6 8 10 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 11 12 5 6 7 8 9 10 1 2 3 4 11 12 5 6 7 8 9 10 1 2 3 4

A

E

B

F

C

D

Fig.4–DetectionofY.pestisinsimulatedliversamplesbyLAMPandPCR.ThesensitivityofLAMPorPCRwasdetermined byusingtheDNAextractedbyboilingsimulatedliversamplefor10min(A-C)orbyusingtheDNAcapturedbymagnetic beads(D–F).(A)DetectionofLAMPproductswithareal-timeturbiditymeter.1–8:2.3×100–2.3×107CFUofY.pestis;9:

positivecontrol;10:negativecontrol.(B)VisualizationofLAMPproductsstainedwithcalceinandinspectedundernatural light.Tube1–8:2.3×100–2.3×107CFUofY.pestis;9:positivecontrol;10:negativecontrol.(C)ElectrophoreticanalysisofPCR

productswithagarosegel.Lane1:marker;Lane2–9:2.3×107–2.3×100CFUofY.pestis;10:positivecontrol(20ngDNA);11:

negativecontrol;12:marker.(D)DetectionofLAMPproductswithareal-timeturbiditymeter.1–8:2.3×100–2.3×107CFUof Y.pestis;9:positivecontrol;10:negativecontrol.(E)VisualizationofLAMPproductsstainedwithcalceinandinspected undernaturallight.Tube1–8:2.3×100–2.3×107CFUofY.pestis;9:positivecontrol;10:negativecontrol.(F)Electrophoretic

analysisofPCRproductswithagarosegel.Lane1:marker;Lane2–9:2.3×107–2.3×100CFUofY.pestis;10:positivecontrol

(20ngDNA);11:negativecontrol;12:marker.

Results

ThesensitivityofdetectionofY.pestisbyLAMPandPCR assays

To determine the sensitivity of LAMP or PCR assay, serial 10-folddilutions of high-purityY.pestis DNAs were tested. TheresultsshowedthatthelowestdetectionlimitforLAMP was0.02ngofY.pestisDNAwhentheproductwasdetected bythenakedeye,areal-timeturbiditymeteroragarosegel electrophoresisandethidiumbromidestaining,whereasthe sensitivityforPCRwas0.2ngofY.pestisDNA(Fig.1A–D).These resultsindicatedthatLAMPhadahighersensitivitythanPCR forthedetectionofY.pestisDNA,andtwo LAMPdetection methodshadthesamesensitivity.WhenY.pestiswas deter-minedbyusingserial10-folddilutionsofbacterialsolution, thesensitivityforLAMPwas2.3CFUofY.pestiswhenthe prod-uctwasdetectedbyareal-timeturbiditymeter,thenakedeye undernaturallightoragarosegelelectrophoresis,whereasthe sensitivityforPCRwas23CFUofY.pestis(Fig.2A–D).Three LAMPdetectionmethodsalsohadthesamesensitivity,and hadahighersensitivitythanPCR.

ThespecificityofdetectionofY.pestisbyLAMPandPCR assays

TodeterminethespecificityforthedetectionofY.pestisby LAMPorPCRassay,11speciesofthegenusYersiniaweretested.

Whenthehigh-purityDNAsextractedfrom11speciesofthe genusYersiniawereusedforthedetectionofY.pestis, respec-tively,theLAMPproductwasonlydetectedinthereactiontube ofY.pestis,andnoLAMPampliconsappearedinthereaction tubesofotherYersiniastrains.Similarly,whenthehigh-purity DNAs extractedfrom 11 speciesofthe genusYersiniawere respectivelyusedtodetectY.pestisbyPCR,specificbandwas onlyobservedinY.pestisEVvaccinestrain(Fig.1D–F).When

Y. pestis was determined by using 107CFU of pure culture

from11speciesofthegenusYersinia,LAMPproductwasonly detectedinthereactiontubeofY.pestis,andnoLAMP ampli-consappearedinthereactiontubesofotherYersiniastrains. Similarly,when11speciesofthegenusYersiniawereusedto detectY.pestisbyPCR,specificbandwasonlyobservedinY. pestisEVvaccinestrain(Fig.2D–F).

DetectionofY.pestisinsimulatedsamplesbyLAMPand PCRassays

TodeterminethesensitivityforthedetectionofY.pestisin simulated spleen,liverand lung samplesbyLAMP or PCR. Artificiallycontaminatedspleen,liverandlungsamples con-tainingdifferentconcentrationsofY.pestiswerepreparedby mixing spleen,liverand lungtissuehomogenateswiththe samevolumeofserial10-folddilutionsofY.pestissuspension. Artificiallycontaminatedspleen,liverandlungsampleswere boiled for10min, and thenthe supernatants were directly

(7)

T

urbidity (400nm)

T

urbidity (400nm)

Time (min) Time (min)

1.2 1 0.8 0.6 0.4 0.2 0 -0.2 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 11 12 5 6 7 8 9 10 1 2 3 4 11 12 2 4 6 8 10 2 4 6 8 10 1 3 5 7 9 1 3 5 7 9

A

E

B

F

C

D

Fig.5–DetectionofY.pestisinsimulatedlungsamplesbyLAMPandPCR.ThesensitivityofLAMPorPCRwasdetermined byusingtheDNAextractedbyboilingsimulatedlungsamplesfor10min(A–C)orbyusingtheDNAcapturedbymagnetic beads(D–F).(A)DetectionofLAMPproductswithareal-timeturbiditymeter.1–8:2.3×100–2.3×107CFUofY.pestis;9:

positivecontrol;10:negativecontrol.(B)VisualizationofLAMPproductsstainedwithcalceinandinspectedundernatural light.Tube1–8:2.3×100–2.3×107CFUofY.pestis;9:positivecontrol;10:negativecontrol.(C)ElectrophoreticanalysisofPCR

productswithagarosegel.Lane1:marker;Lane2–9:2.3×107–2.3×100CFUofY.pestis;10:positivecontrol(20ngDNA);11:

negativecontrol;12:marker.(D)DetectionofLAMPproductswithareal-timeturbiditymeter.1–8:2.3×100–2.3×107CFUof Y.pestis;9:positivecontrol;10:negativecontrol.(E)VisualizationofLAMPproductsstainedwithcalceinandinspected undernaturallight.Tube1–8:2.3×100–2.3×107CFUofY.pestis;9:positivecontrol;10:negativecontrol.(F)Electrophoretic

analysisofPCRproductswithagarosegel.Lane1:marker;Lane2–9:2.3×107–2.3×100CFUofY.pestis;10:positivecontrol

(20ngDNA);11:negativecontrol;12:marker.

determinedbyLAMPandPCRassays,respectively.The sensi-tivityfortheartificiallycontaminatedspleenbyLAMPorPCR assaywas2.3×104 or2.3×106CFUofY.pestis,respectively.

TheLAMPassaywas100-foldmoresensitivethanPCRassay (Fig.3A–C).Thelowestdetectionlimitfortheartificially con-taminatedliversamplesbyLAMPwas2.3×106CFUofY.pestis,

butPCRassaydidn’tdetect2.3×107CFUofY.pestisinthe

sim-ulatedliversamples(Fig.4A–C).Thelowestdetectionlimitfor theartificiallycontaminatedlungsamplesbyLAMPandPCR assaywas2.3×104and2.3×106CFUofY.pestis,respectively.

TheLAMPassaywas100-foldmoresensitivethanPCRassay (Fig.5A–C).ToincreasethesensitivityforthedetectionofY. pestisinthe simulatedsamples,the supernatantsobtained byboilingtheartificiallycontaminatedspleen,liverandlung sampleswererespectivelymixedwiththemagneticbeadsto capturetheDNAsforLAMPandPCRassays.AftertheDNAs inthesimulatedspleensampleswerecapturedbymagnetic beads,thesensitivityforLAMPorPCRassaywas103or106CFU

ofY.pestis,respectively.LAMPassaywas1000-foldmore sen-sitive than PCRassay (Fig.3Eand F). Thelowestdetection limitfortheartificiallycontaminatedliverbyLAMPorPCRwas 2.3×105or2.3×107CFUofY.pestis.LAMPassaywas100-fold

moresensitivethanPCRassay(Fig.4EandF).Thesensitivity fortheartificiallycontaminatedlungsbyLAMPorPCRassay was103or106CFUofY.pestis.LAMPassaywas1000-foldmore sensitivethanPCRassay(Fig.5EandF).

Discussion

Y.pestisstrainsusuallycontainthreevirulenceplasmidspCD1, pMT1andpPCP1,ofwhichpCD1wasinheritedfromits ances-torY.pseudotuberculosis.Theplasmid pCD1 mainlyencodes typethreesecretionsystem(T3SS),whichplaysanessential roleinthepathogenesisofY.pestis.42–43 Thenewlyacquired

pPCP1 encodesasurfaceproteinase, plasminogenactivator (Pla), that isresponsible forthe increaseofthe pathogen’s invasive abilityinbubonic plague and thereplication ofY. pestisrapidlyinthelungs.44–45AnotherplasmidpMT1encodes

F1antigen,oneofthemajorprotectiveantigensinY.pestis,

andthemurinetoxin(Ymt)requiredforsurvivalofY.pestis

inthemidgutofflea.46Immunologicaldiagnosis ofY.pestis

was mainlybased onF1 antigenor its antibodies,but this methodcouldnotdetectthevirulentY.pestisstrainslacking F1antigen.47Inaddition,ourrecentstudiesfoundsome

nat-uralisolatesofY.pestiswithoneortwoplasmids.Bycontrast, thetargetgenesonchromosomemightbemorestable.Inthis study,weconstructedaLAMPmethodtodetectY.pestisbased onthe3asequenceonchromosome,whichmightrecognizea greateramountofsamplesthanpreviousstudies.Currently, therehavebeentworeportsthatdescribedthedetectionof

Y.pestisbyLAMP.48–49 Comparedwiththesetworeports,our

(8)

detectionofY.pestisDNA,butshowedahighersensitivitythan Dong’smethodforthedetectionofY.pestispureculture.All thesethreemethodshadahigherspecificity.However,thetwo previousreportsare basedonthetarget ofF1antigengene encodedonthepMT1forthedetectionofY.pestispureculture andhigh-qualitygenomicDNA.Evidently,thesetwomethods cannotdetectY.pestisstrainslackingF1antigenonthe plas-midpMT1,andaLAMPmethodisalsoneededtodetectY.pestis

inactualsamples.BasedontheLAMPmethodweconstructed inthisstudy,wedeterminedsimulatedspleen,liverandlung tissuesamplescombinedwithmagneticbeadcaptureofY. pestisDNA.

ThegenusYersiniacontains 11species,ofwhich Yersinia enterocolitica, Yersinia pseudotuberculosis and Y. pestis are pathogenic for humans and animals, whereas other eight species,formerlycalledY.enterocolitica-likeisolates, Yersinia frederiksenii, Yersinia intermedia, Yersinia kristensenii, Yersinia bercovieri,Yersiniamollaretii,Yersiniarohdei,Yersiniaruckeri,and

Yersiniaaldovaeareopportunisticpathogensmostlyfoundin theenvironment.1Toevaluatethespecificityoftheprimers

basedon the 3asequence forthedetection ofY.pestis, all 11 speciesofthe genus Yersinia,closely related organisms, weretestedintheexperiments.Theresultsshowedthatthe primersdesignedinthisstudyhadahighlevelofspecificity forY.pestisbyLAMPorPCR.However,inourrecentstudy, 3a-negativenaturalisolatesofY.pestiswere foundinDingbian County,ShaanxiProvince,China,50indicatingthata3a-based

LAMPorPCRmethodisalsonotreliableforthedetectionofY. pestis.Therefore,amulti-targetLAMPorPCRdetectionmethod shouldbedevelopedforthereliableidentificationofY.pestis

inthefuture.

TodeterminethesensitivityforthedetectionofY.pestis,we firstuseserial10-folddilutionsofhigh-qualityDNAtoperform LAMPorPCRassay.Theresultsshowedthatthelowest detec-tionlimitofLAMPorPCRassaywas0.02or0.2ngofY.pestis

DNA,indicatingthatLAMPassaywas10-foldmoresensitive thanconventionalPCRassay.Then,serial10-folddilutionsof

Y.pestispureculturewereusedtocrudelyextractDNAby boil-ing,andthendetectedbyLAMPandPCR.Theresultsshowed thatthesensitivityofLAMPorPCRassaywas2.3or23CFUofY. pestis,indicatingthatLAMPassaywas10-foldmoresensitive thanPCRassay.Inaddition,theresultsalsoshowedthatthe detectionofLAMPproductsbythenakedeyewasassensitive asthatbyareal-timeturbiditymeter.LAMPamplificationcan beaccomplishedwithin60minatanisothermaltemperature of65◦C.Therefore,LAMPassayisasimple,rapidand sensi-tivemethodsuitableforapplicationinthefield,especiallyin povertyareas.

ToevaluatethereliabilityforthedeterminationofY.pestis

byLAMPand PCRassaysinactualsamples,wedetermined

Y.pestisinthesimulatedspleen,liverandlungsamples.The resultsshowedthatthesensitivityofthreesimulated sam-plesweremuchlowerthanthatofY.pestispurecultureand DNA,indicatingthatsomecomponentsinthespleen,liverand lungtissuesmightinhibitLAMPandPCRreactions.Thisresult wassimilartothepreviousstudiesinwhichclinicalsamples, suchasserum,plasmaandurine,hadaninhibitiontoboth LAMPandPCRassay.51–52Inaddition,ourresultsalsoshowed

thatthesimulatedliversamplehadalowersensitivitythan thesimulatedspleenandlungsamplesforthedetectionofY.

pestisbyLAMPandPCR.Thisresultindicatedthattheremight bemorebioactivecomponentsinlivertissuethatcouldinhibit LAMPandPCRreactions.ComparedwithPCRforthe detec-tion of threesimulated samples,LAMP assaywas 100-fold moresensitivethanPCRassay,indicatingthatLAMPwasless affected byinhibitorysubstances presentinmouse spleen, liverandlungtissuesamplesthanPCR.LAMPisnotonlymore simple,rapidandsensitivethanPCR,butalsomoresuitable todetectspleen,liverandlungtissuesamplesthanPCR.

To further enhance the sensitivity for the detection of actualsamples,magneticbeadswereusedtocaptureY.pestis

DNAs from three simulatedsamples. Afterthe DNAswere capturedfromthesimulatedspleenandlungsampleswith magneticbeads, the sensitivityofthese twosampleswere increasedforthedetectionofY.pestisbyLAMP,butthe sensi-tivityofthesetwosampleswereunchangedforthedetection ofY.pestisbyPCR, andLAMP was1000-foldmoresensitive thanPCR.AftertheDNAswerecapturedfromsimulatedliver sampleswith magneticbeads, thesensitivity ofLAMP and PCRwereequallyincreased,andthesensitivityofLAMPwas 100-foldmoresensitivethanthatofPCR.Theseresults indi-catedthatmagneticbeadcaptureofDNAscouldremarkably increasethesensitivityofLAMPforthedetectionofY.pestis

inspleen,liverandlungtissuesamples.

Conflicts

of

interest

Theauthorsdeclarethattheyhavenocompetinginterests.

Acknowledgement

FinancialsupportforthisstudycamefromtheNational Nat-uralScienceFoundationofChina(31430006,81171529).

r

e

f

e

r

e

n

c

e

s

1.PerryRD,FetherstonJD.Yersiniapestis-etiologicagentof

plague.ClinMicrobiolRev.1997;10:35–66.

2.CuiY,YuC,YanY,etal.Historicalvariationsinmutation

rateinanepidemicpathogen,Yersiniapestis.ProcNatlAcad

SciUSA.2013;110:577–582.

3.AchtmanM,ZurthK,MorelliG,TorreaG,GuiyouleA,Carniel

E.Yersiniapestis,thecauseofplague,isarecentlyemerged

cloneofYersiniapseudotuberculosis.ProcNatlAcadSciUSA.

1999;96:14043–14048.

4.GreenfieldRA,BronzeMS.Preventionandtreatmentof

bacterialdiseasescausedbybacterialbioterrorismthreat

agents.DrugDiscovToday.2003;8:881–888.

5.Humanplague.Reviewofregionalmorbidityandmortality

2004–2009.WklyEpidemiolRec.2009;85:40–45.

6.StensethNC,AtshabarBB,BegonM,etal.Plague:past,

present,andfuture.PLoSMed.2008;5:e3.

7.RiedelS.Plague:fromnaturaldiseasetobioterrorism.Proc

(BaylUnivMedCent).2005;18:116–124.

8.InglesbyTV,DennisDT,HendersonDA,etal.Plagueasa

biologicalweapon:medicalandpublichealthmanagement.

WorkingGrouponCivilianBiodefense.JAMA.

2000;283:2281–2290.

9.GavalSR,ShrikhandeSN,MakhijaSK,TankhiwaleNS,

(9)

isolationandidentificationofYersiniapestis.IndianJMedSci.

1996;50:335–338.

10.NunesMP,SuassunaI.Bacteriophagespecificityinthe

identificationofYersiniapestisascomparedwithother

enterobacteria.RevBrasPesquiMedBiol.1978;11:359–363.

11.SergueevKV,HeY,BorschelRH,NikolichMP,FilippovAA.

RapidandsensitivedetectionofYersiniapestisusing

amplificationofplaguediagnosticbacteriophagesmonitored

byreal-timePCR.PLoSONE.2010;5:e11337.

12.ChanteauS,RahalisonL,RatsitorahinaM,etal.Early

diagnosisofbubonicplagueusingF1antigencaptureELISA

assayandrapidimmunogolddipstick.IntJMedMicrobiol.

2000;290:279–283.

13.ChanteauS,RahalisonL,RalafiarisoaL,etal.Development

andtestingofarapiddiagnostictestforbubonicand

pneumonicplague.Lancet.2003;361:211–216.

14.SplettstoesserWD,RahalisonL,GrunowR,NeubauerH,

ChanteauS.EvaluationofastandardizedF1capsular

antigencaptureELISAtestkitfortherapiddiagnosisof

plague.FEMSImmunolMedMicrobiol.2004;41:149–155.

15.Gomes-SoleckiMJ,SavittAG,RowehlR,GlassJD,BliskaJB,

DattwylerRJ.LcrVcaptureenzyme-linkedimmunosorbent

assayfordetectionofYersiniapestisfromhumansamples.

ClinDiagnLabImmunol.2005;12:339–346.

16.HinnebuschJ,SchwanTG.Newmethodforplague

surveillanceusingpolymerasechainreactiontodetect

Yersiniapestisinfleas.JClinMicrobiol.1993;31:1511–1514.

17.NorkinaOV,KulichenkoAN,GintsburgAL,etal.

DevelopmentofadiagnostictestforYersiniapestisbythe

polymerasechainreaction.JApplBacteriol.1994;76:

240–245.

18.TsukanoH,ItohK,SuzukiS,WatanabeH.Detectionand

identificationofYersiniapestisbypolymerasechainreaction

(PCR)usingmultiplexprimers.MicrobiolImmunol.

1996;40:773–775.

19.HigginsJA,EzzellJ,HinnebuschBJ,ShipleyM,HenchalEA,

IbrahimMS.5nucleasePCRassaytodetectYersiniapestis.J

ClinMicrobiol.1998;36:2284–2288.

20.IqbalSS,ChambersJP,GoodeMT,ValdesJJ,BrubakerRR.

DetectionofYersiniapestisbypesticinfluorogenic

probe-coupledPCR.MolCellProbes.2000;14:109–114.

21.LindlerLE,FanW,JahanN.Detectionof

ciprofloxacin-resistantYersiniapestisbyfluorogenicPCR

usingtheLightCycler.JClinMicrobiol.2001;39:3649–3655.

22.LoiezC,HerweghS,WalletF,ArmandS,GuinetF,CourcolRJ.

DetectionofYersiniapestisinsputumbyreal-timePCR.JClin

Microbiol.2003;41:4873–4875.

23.TomasoH,ReisingerEC,AlDahoukS,etal.Rapiddetection

ofYersiniapestiswithmultiplexreal-timePCRassaysusing

fluorescenthybridisationprobes.FEMSImmunolMed

Microbiol.2003;38:117–126.

24.ChaseCJ,UlrichMP,WasieloskiLP,etal.Real-timePCR

assaystargetingauniquechromosomalsequenceofYersinia

pestis.ClinChem.2005;51:1778–1785.

25.WoronAM,NazarianEJ,EganC,etal.Developmentand

evaluationofa4-targetmultiplexreal-timepolymerase

chainreactionassayforthedetectionandcharacterization

ofYersiniapestis.DiagnMicrobiolInfectDis.2006;56: 261–268.

26.SkottmanT,PiiparinenH,HyytiainenH,MyllysV,SkurnikM,

NikkariS.Simultaneousreal-timePCRdetectionofBacillus

anthracis,FrancisellatularensisandYersiniapestis.EurJClin MicrobiolInfectDis.2007;26:207–211.

27.TomasoH,JacobD,EickhoffM,etal.Preliminaryvalidation

ofreal-timePCRassaysfortheidentificationofYersinia

pestis.ClinChemLabMed.2008;46:1239–1244.

28.QuS,ShiQ,ZhouL,etal.AmbientstablequantitativePCR

reagentsforthedetectionofYersiniapestis.PLoSNeglTropDis.

2010;4:e629.

29.AndersonGP,KingKD,CaoLK,JacobyM,LiglerFS,EzzellJ.

Quantifyingserumantiplagueantibodywithafiber-optic

biosensor.ClinDiagnLabImmunol.1998;5:609–612.

30.YanZ,ZhouL,ZhaoY,etal.Rapidquantitativedetectionof

Yersiniapestisbylateral-flowimmunoassayand

up-convertingphosphortechnology-basedbiosensor.Sens

ActuatorsB.2006;119:656–663.

31.WeiH,ZhaoY,BiY,etal.DirectdetectionofYersiniapestis

fromtheinfectedanimalspecimensbyafiberoptic

biosensor.SensActuatorsB.2007;123:204–210.

32.SoergelME,SchafferFL,BlankHF.Solid-phase

radioimmunoassayfordetectionofplagueantigeninanimal

tissue.JClinMicrobiol.1982;16:953–956.

33.ThullierP,GuglielmoV,RajerisonM,ChanteauS.Short

report:Serodiagnosisofplagueinhumansandratsusinga

rapidtest.AmJTropMedHyg.2003;69:450–451.

34.AbbottRC,HudakR,MondesireR,BaetenLA,RussellRE,

RockeTE.Arapidfieldtestforsylvaticplagueexposurein

wildanimals.JWildlDis.2014;50:384–388.

35.NotomiT,OkayamaH,MasubuchiH,etal.Loop-mediated

isothermalamplificationofDNA.NucleicAcidsRes.

2000;28:E63.

36.ParidaM,PosadasG,InoueS,HasebeF,MoritaK.Real-time

reversetranscriptionloop-mediatedisothermal

amplificationforrapiddetectionofWestNilevirus.JClin

Microbiol.2004;42:257–263.

37.SavanR,KonoT,ItamiT,SakaiM.Loop-mediatedisothermal

amplification:anemergingtechnologyfordetectionoffish

andshellfishpathogens.JFishDis.2005;28:573–581.

38.MoriY,NotomiT.Loop-mediatedisothermalamplification

(LAMP):arapid,accurate,andcost-effectivediagnostic

methodforinfectiousdiseases.JInfectChemother.

2009;15:62–69.

39.HorisakaT,FujitaK,IwataT,etal.Sensitiveandspecific

detectionofYersiniapseudotuberculosisbyloop-mediated

isothermalamplification.JClinMicrobiol.2004;42:

5349–5352.

40.RanjbarR,AfsharD.Developmentofaloop-mediated

isothermalamplificationassayforrapiddetectionofYersinia

enterocoliticaviatargetingaconservedlocus.IranJMicrobiol.

2015;7:185–190.

41.RadnedgeL,Gamez-ChinS,McCreadyPM,WorshamPL,

AndersenGL.Identificationofnucleotidesequencesforthe

specificandrapiddetectionofYersiniapestis.ApplEnviron

Microbiol.2001;67:3759–3762.

42.CornelisGR.YersiniatypeIIIsecretion:sendintheeffectors.J

CellBiol.2002;158:401–408.

43.YangH,TanY,ZhangT,etal.Identificationofnovel

protein–proteininteractionsofYersiniapestistypeIII

secretionsystembyyeasttwohybridsystem.PLOSONE.

2013;8:e54121.

44.LathemWW,PricePA,MillerVL,GoldmanWE.A

plasminogen-activatingproteasespecificallycontrolsthe

developmentofprimarypneumonicplague.Science.

2007;315:509–513.

45.ZimblerDL,SchroederJA,EddyJL,LathemWW.Early

emergenceofYersiniapestisasasevererespiratorypathogen.

NatCommun.2015:1–10.

46.FelekS,MuszynskiA,CarlsonRW,TsangTM,HinnebuschBJ,

KrukonisES.PhosphoglucomutaseofYersiniapestisis

requiredforautoaggregationandpolymyxinBresistance.

InfectImmun.2010;78:1163–1175.

47.FriedlanderAM,WelkosSL,WorshamPL,etal.Relationship

betweenvirulenceandimmunityasrevealedinrecent

studiesoftheF1capsuleofYersiniapestis.ClinInfectDis.

1995;21(Suppl.2):S178–S181.

48.DongW,JieyingW,GuozhiW.Developmentofloop-mediated

isothermalamplificationmethodfordetectionofYersinia

(10)

49.NunesML,Mendes-MarquesCL,AlmeidaAMP,LealNC.The

developmentofaloop-mediatedisothermalamplification

(LAMP)procedureforplaguediagnostic.AmJAnalChem.

2014;5:1069–1077.

50.QiZ,WuY,LiY,etal.3a-NegativeYersiniaPestis,China.Infect

DisTranslMed.2015;1:61–62.

51.KanekoH,KawanaT,FukushimaE,SuzutaniT.Toleranceof

loop-mediatedisothermalamplificationtoaculturemedium

andbiologicalsubstances.JBiochemBiophysMethods.

2007;70:499–501.

52.NkouawaA,SakoY,LiT,etal.Evaluationofaloop-mediated

isothermalamplificationmethodusingfecalspecimensfor

differentialdetectionofTaeniaspeciesfromhumans.JClin

Referências

Documentos relacionados

Figure 1 - Schematic representation of the pgm locus of Yersinia pestis showing the results of PCR amplification of segments located in the high-pathogenicity island (HPI) and in

Os dados recolhidos em cada fase do processo vão sendo armazenados na base de dados e constituem um ativo importante da empresa no controlo dos prazos,

Neste sentido, o Estágio Profissionalizante do 6º ano, constituído pelos estágios parcelares de Medicina Interna, Cirurgia Geral, Pediatria, Saúde Mental, Medicina Geral e

Semiquantification by PCR, based on comparison between the intensities that correspond to the amplified products and a standard curve, plotted upon DNA amplification of samples with

The two points considered at the alternate sides, of the tangents through the diameter of the circle, and then the line joining these points divides the circle

SEM and HRTEM were used to investigate the microstructure in the samples and magnetic properties of the samples was studied at room temperature using a

restrictum , one of the main contaminating fungi of jet fuel, using loop-mediated isothermal amplification combined with a lateral flow dipstick, and then it was used

The structure of the remelting zone of the steel C90 steel be- fore conventional tempering consitute cells, dendritic cells, sur- rounded with the cementite, inside of