• Nenhum resultado encontrado

Evaluation of a synthetic peptide from the Taenia saginata 18 kDa surface/secreted oncospheral adhesion protein for serological diagnosis of bovine cysticercosis

N/A
N/A
Protected

Academic year: 2021

Share "Evaluation of a synthetic peptide from the Taenia saginata 18 kDa surface/secreted oncospheral adhesion protein for serological diagnosis of bovine cysticercosis"

Copied!
6
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Acta

Tropica

j ou rn a l h o m epa g e :w w w . e l s e v i e r . c o m / l o c a t e / a c t a t r o p i c a

Evaluation

of

a

synthetic

peptide

from

the

Taenia

saginata

18

kDa

surface/secreted

oncospheral

adhesion

protein

for

serological

diagnosis

of

bovine

cysticercosis

Rafaella

Paola

Meneguete

Guimarães-Peixoto

a,∗

,

Paulo

Sérgio

Arruda

Pinto

a

,

Marcus

Rebouc¸

as

Santos

b

,

Marcelo

Depólo

Polêto

c

,

Letícia

Ferreira

Silva

a

,

Abelardo

Silva-Júnior

b

aUniversidadeFederaldeVic¸osa,DepartamentodeVeterinária,LaboratóriodeInspec¸ãodeProdutosdeOrigemAnimal,CampusUniversitário,Vic¸osa, MinasGerais,Brazil

bUniversidadeFederaldeVic¸osa,DepartamentodeVeterinária,LaboratóriodeVirologiaAnimal,CampusUniversitário,Vic¸osa,MinasGerais,Brazil cUniversidadeFederaldoRioGrandedoSul,CentrodeBiotecnologia,PortoAlegre,RioGrandedoSul,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received23March2016

Receivedinrevisedform7October2016 Accepted14October2016

Availableonline17October2016 Keywords: Taeniasaginata Bovinecysticercosis ELISA Oncosphericprotein Syntheticpeptides

a

b

s

t

r

a

c

t

BovinecysticercosisisazoonoticinfectionwidelyspreadthroughoutBrazil,creatingaburdenonhygiene maintenanceandtheeconomy.Diagnosisofcysticercosisusuallyreliesonpostmorteminspectionof car-cassesinslaughterhouses.Thisdetectionmethodprovidesonlylowsensitivity.Recentadvancements haveimprovedtheperformanceofserologictests,suchasELISA,providinggreatersensitivityand speci-ficity.Theobjectiveofthecurrentstudywastoidentifyandevaluateasyntheticpeptidederivedfrom theTaeniasaginata18kDaoncosphericsurfaceproteinforthediagnosisofbovinecysticercosisinELISA. TestperformanceoftheidentifiedpeptidewascomparedtoanELISAbasedonaheterologouscrude Taeniacrassicepsantigen(Tcra),widelyusedforthesero-diagnosisofbovinecysticercosis.Basedonthe primarysequenceofaninsilicostructuralmodelofthe18kDaprotein,anepitoperegiondesignated EP1wasselected(46-WDTKDMAGYGVKKIEV-61).Thepeptidederivedfromthisregionyielded91.6% (CI=80–96%)sensitivityand90%(CI=82–95%)specificitywhenusedinanELISA,whereasthecrude antigenyielded70%(CI=56–8%)sensitivityand82%(CI=73–89%)specificity.Thus,weconcludethatEP1 hashigherdiagnosticpotentialfordetectingbovinecysticercosisthanthecrudeantigenTcra.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Bovinecysticercosisisaparasiticinfection.It’scausedbythe larvalstageofthehumanintestinalparasiteTaeniasaginata.Itis ratherafoodhygienicandeconomicproblemthanahealth prob-lemwithsevereimpact,andiswidelyspreadthroughoutBrazil, causingconcerninmeatpackingdepotsaswellasamongrural live-stockproducers.InBrazil,thereportedaverageprevalenceis1.05%, whichvariesamongFederalStates(Dutraetal.,2012).

Usually, bovine cysticercosis is diagnosed during a routine postmortemexaminationofcarcassesatofficialmeatinspection in slaughterhouses. The examination consists of standard cuts throughthemuscletissue forthedetectionofcysticerci(Brasil, 1971).However,someinfectedcarcassesaremissedduringthis

∗ Correspondingauthor.

E-mailaddress:rafaella.peixoto@ufv.br(R.P.M.Guimarães-Peixoto).

procedure,asdemonstratedbyaprobabilisticmodeldevelopedby

Kyvsgaardetal.(1990),whichshowedthatover85%ofinfected animalsmaybemissedduringroutinemeatinspection.Thelow sensitivity of routine post-mortem examination is reported by several authors (Dorny et al., 2000; Eichenbergeret al., 2013; Guimarães-Peixotoetal.,2015),andwiththatcomesnew emerg-ingalternativesforthediagnosisofcysticercosis,asanexample,

Eichenbergeretal.(2011)thatsuggestedtheuseofanauxiliary modelbyadditionalcutsinthemuscle;Wanzalaetal.(2003), rec-ommendincreasingtheareaandnumberoflocationsinspected; andcurrently,ithasbeenemployedtheuseofauxiliary serolog-icaltestssuchasELISAidentifyingthediseaseintheanimalwith greaterprecision(Dornyetal.,2000;Pintoetal.,2006;Monteiro etal.,2004;Allepuzetal.,2012;Guimarães-Peixotoetal.,2015).It isnoteworthythat,inaretrospectivestudyofdatafromtheFederal InspectionServiceofBrazil,Souzaetal.(2007)foundthat94%of carcassesparasitizedbycysticerciismonocysticercosis(onlyone cysticercusinroutineinspectionsites).

http://dx.doi.org/10.1016/j.actatropica.2016.10.008 0001-706X/©2016ElsevierB.V.Allrightsreserved.

(2)

TheTaeniacrassicepsantigenhasbeenusedinELISAassaysfor thediagnosisofcysticercosissinceitfeaturesproteinshomologous tothoseofTaeniasaginata.AnotheradvantageofusingtheTaenia crassicepsantigenistheeaseofhandlingofcysticerciinthe labo-ratoryandthatstandardizedreproducibleresultscanbeobtained usinglow-costmaterialsforimmunologicalassays(Larraldeetal., 1990).However, theaccuracyof thetest maybecompromised bythelackofspeciesspecificity.Manyresearchersemphasizethe needtoimplementserologicELISAtestsasauxiliaryroutine inspec-tionmethods. Thiswould require furtherevaluation of various laboratoryprotocolsinordertoincreasethetests’accuracyand efficiency(Monteiroetal.,2006;OgunremiandBenjamin,2010; Eichenbergeretal.,2011;Allepuzetal.,2012).

TheindirectELISAtest isnotyetreliable inthedetectionof bovinecysticercosisinnaturallyinfectedanimals(Monteiroetal., 2006;Allepuzetal.,2012)orinchroniccasesofthedisease,due tolowamountofcirculatingantibodiesinbovine.Therefore,new technologiesarebeingimplementedandutilized,including molec-ulartechniques,suchassyntheticpeptidesandpredictionoftheir productioninheterologousexpressionsystems,withthegoalof improvingtheperformanceoftheimmunologicaltest(Ferreretal., 2003,2007;Parkhouseetal.,2008).

Initslarvalform,T.saginataexpressesproteinsthatmediatethe adhesionoftheparasitetohostcells.Theseproteinspresentone ortwofibronectintype-IIIdomains,whichconferadhesionability (Gonzalezetal.,2007).Amongthebindingproteins,the18kDa pro-teinischaracterizedasanimportantadhesin(Bonayetal.,2002) andpotential vaccineimmunogenprotecting fromcysticercosis (Lightowlers etal.,1996).The 18kDaoncosphere protein (HP6-TSAG)isasecretion/excretionantigen(Ferreretal.,2007).Theuse ofTaeniasaginataproteinHP6hasbeenreportedforthediagnosis ofbothanimalandhumancysticercosis(Ferreretal.,2003,2007; Abuseiretal.,2007).

Antigen-specificantibodiesmaybecapturedfromserum sam-plesviathesubstitutionofshort,syntheticpeptidesintheplaceof theproteinantigenepitopes(AndresenandBier,2009).Innovative computationalapproachesresultsinthepredictionofacceptable tohigh-precisionofmappingofantigenicepitopes,facilitatingthe selection ofpeptides used for immunodiagnostics (Zimic et al., 2011;Wangetal.,2014).Withinthiscontext,theaimofthepresent studywastocharacterizeandevaluatethediagnosticpotentialofa syntheticpeptidederivedfromtheT.saginata18kDaoncopsheric antigeninanELISAforthedetectionofbovinecysticercosis.

2. Materialsandmethods

2.1. Computationalcharacterization

Preliminary,assemblyofstructuralmodelswasperformedfor theTaeniasaginata18kDaproteinusingasequencewasobtained fromGenBank(AccesscodeADO86979.1).Thestructuralmodels weregeneratedbyI-TASSER(Yangetal.,2015)andPhyre2servers (Kelleyetal.,2015)andthetwobestresultsfromeachserverwere comparedin thiswork.Additionally, transmembraneregions of theproteinswerepredictedbyusingtheTMHMMserver(Krogh etal.,2001).PossibleN-andO-glycosylationsitesfromthe pri-maryaminoacidsequencewerepredictedbyusingtheNetNGIyc 1.0(Guptaetal.,2004)andNetOGIyc4.0(Steentoftetal.,2013) servers.

2.2. Selectionandpreparationofantigenicpeptide

Anepitopemapwasassembledbasedonthethree-dimensional modelpredictedfor18kDaproteinanditsprimarystructure.Four methods were utilized: Bepipred® (Larsen et al., 2006), which

usesacombinationofParker’shydrophobicityscales(Parkeretal., 1986), Levitt’s secondary structure (Levitt, 1978), and the hid-denMarcovmodel;ABCpred®,whichutilizesanartificialneural network(SahaandRaghava,2004);AAPpred®,whichutilizesan aminoacidpairantigenicityscale(Chenetal.,2007);andELIPRO®, whichpredictsdiscontinuousepitopes(conformational)by analyz-ingregionsaccessibletosolventsandflexibilityina3Dstructure (Ponomarenko et al., 2008).Ultimately, theresulting data con-vergedinepitopeEP1(46-WDTKDMAGYGVKKIEV-61),whichwas subsequentlysynthesized(Genscript®,USA)with>95%purity.

2.3. Serumsamples

Thesamplesofbovineserumusedinourstudyconstitutedfive distinctgroups, as follows:Group1 (G1, n=60) wascomposed of experimentally infected bovine blood samples, which were previously collectedat differentpost-infectionperiods froman establishmentwithoutahistoryofcysticercosis.Ninemalebovines, livestockofmixedDutch-Zebubreeds,wereinoculatedwitha par-asiticloadof120.000eggsofTaeniasaginata.Thetapewormsample waspreviouslyobtainedbyahumandonor,andtapewormspecies wasconfirmedbydirectmicroscopy.Cysticercosiswasconfirmed inallanimalsbelongingtoG1atmeat-inspectionina slaughter-house.Group2(G2,n=60)consistedofsamplesfromnaturally infectedanimalswhosecysticercosisdiagnosishadbeenmade dur-ingroutinepost-mortemsurveillanceconductedinslaughterhouses supervisedbytheofficialinspectionalservice.Group3(G3,n=60) constitutedofsamplesfromlivestockslaughteredincommercial slaughterhousesthat testednegativefor cysticercosisandother diseasesduring routinepost-mortem inspection.Lastly, Group4 (G4,n=28)consistedofsamplesfromlivestockthattestednegative forcysticercosis,butpresentedwithotherdiseases(tuberculosis (n=8),hydatidosis(n=8),andfasciolosis(n=12)),tocheckpossible cross-reactionwithcysticercosis.

2.4. IndirectELISA

2.4.1. Syntheticpeptide-basedELISA

TheoptimaldilutionsforthereagentsusedintheELISAassays were determined via block titration. The immunoassay plates (Thermo.Nunc,Maxisorp)wereinitialtreatedwithPolypep®2% (SigmaP5163)for10hat25◦C,followedbythreewasheswithPBS, pH7.4.Thepeptidesweredilutedwith0.5M(1␮g/mL) carbonate-bicarbonatebuffer,pH9.4,andincubatedintheplatesovernightat 4◦C.Afterthreewashes(with0.15Msalinesolution,pH7.4, con-taining0.05%Tween20),theplateswereblocked(with1%Molico® denaturedpowderedmilkinPBS)andincubatedfor1hat37◦C.The livestockserumsampleswerediluted1:25intheblockingsolution with0,05%Tween20,for1hat37◦C.Followingthreetimes wash-ing,anrabbitanti-bovineIgGantibodyconjugatedtoperoxidase (A5295,SigmaChemicalCo.,StLouis,MO,USA)wasaddedtothe platesata1:1.250dilution,followedbyincubationandwashing stepsasdescribedabove.Thespectrophotometricdetectionwas initiatedviaincubationwithasolutionof0.1%o-phenylenediamine dihydrochloride(OPD)and0.003%H2O2in0.2Mcitrate-phosphate

buffer, pH5.0, for30min37◦C. Thereactionwasstopped with H2SO4 (4N), and the plates were read in a spectrophotometer

(BiotekInstruments)ata492nmwavelength.Allreagentswere addedtotheplatesatavolumeof100␮L/well,excepttheblocking solution,at200␮L/well.

2.4.2. Taeniacrassicepsantigen-basedELISA

Taeniacrassiceps larvalantigenswereobtainedvia intraperi-tonealinoculationofBALB/cfemalemice,followingthe method-ologyaccordingtoVazetal.(1997).

(3)

After collection, the cysticerci were immediately frozen (−20◦C).Posteriorly,thecysticerciwerelyophilizedat25Cand

afterthat,homogenizerandmixedwitha0.15Msalinesolution, resultinginafinalconcentrationof6.5–10%.Thedilutedcysticerci werethenhomogenizedoniceusingatissuehomogenizer (Pot-ter)andthencentrifugedat17.400gfor30minat4◦C.Aprotease inhibitor(PMSF, SigmaChemicalCo, St.Louis,MO, USA,P7626, 0.25M–10␮L/mL)wasaddedtothesupernatantandtheantigen wasstored(−20◦C)untilused.

Thepolystyreneplatesweresensitizedwithdilutedantigens (40␮g/mL)ina0.5Mbufferedsolutionofcarbonate-bicarbonate, pH9.6.The ELISAplatewascoatedfor1hat 37◦C. Afterthree washesinsalinesolutioncontaining0.05%Tween20,thereactive siteswereblocked(using5%denaturedmilkinPBS,pH7.4)for1h at37◦C.Afteradditionalthreewashes,thesampleswerediluted in1%denaturedmilkinPBS,pH7.4.Theplateswerethen incu-batedfor30minat37◦C. Afterwashing,peroxidase-conjugated anti-IgGantibody(A5295,SigmaChemicalCo.,StLouis,MO,USA) (1:5000)wasadded toeach well,andtheincubationand wash procedures wererepeated.The chemiluminescent reactionwas initiatedusingasolutionof0.1%o-Phenylenediamine dihydrochlo-ride(OPD)P8287(SigmaChemical Co.;StLouis,MO, USA) and 0.003%H2O2in0.2Mcitrate-phosphatebuffer,pH5.0.Aftera 5-min-incubation,thereactionwasstoppedusing4N H2SO4,and theplateswerereadinaspectrophotometeratawavelengthof 492nm.Allreagentsappliedtotheplateswereappliedatavolume of100␮L/well,withtheexceptionofthe200␮Lblockingsolution. 2.5. Determinationoftestperformance

Thereactivityofthepeptideswasevaluatedbasedontheresults obtainedfromtheELISAtestsEachELISAreactionwasperformed intriplicateandthemeanopticaldensities(OD)werecalculated. TheODvalueswerenormalizedtoastandardreferenceplate,and thecorrectionfactor wascalculatedaccordingtoPassos(1993). Thecut-off pointwasselectedbasedonthemeanODobtained fromanalysesof five negativeserum-control samples collected fromlivestockraisedinisolation,keptundercontrolledconditions andslaughteredunderrigorousinspection,includingtwostandard deviations.

To determinetheperformance of the ELISA test, wereused serum-controlgroupsdistributedasfollows:analysisofantibody kinetics (G1) to evaluate the diagnosis performance; to calcu-late thesensitivity (G2), specificity (G3-G4) considering allthe negativesamplesforcysticercosisafterinspectionandpotential cross-reactions.Thetests’sensitivity,specificity,positiveand neg-ativepredictivevaluesandaccuracywerecalculatedbasedonthe recommendationsofAltman,Bland(1994)andAkobeng(2006).To testtheperformanceratesitwastakenintoaccountaconfidence intervalof(CI)95%.

2.6. Ethicscommitteeapproval

Thenormsofconductfortheuseofanimalsinresearchfromthe EthicsCommitteeforAnimalExperimentationoftheFederal Uni-versityofVic¸osawerefollowedaccordingtotheProcessreference 20/2011CEUA/UFV.

3. Results

Structuralmodelsof 18kDa proteinweregenerated using I-TASSERandPhyre2serversthroughcomparativemodeling,fold recognitionandabinitioalgorithms.Amongtheresultingmodels, theoneswithhigherscoresfromeachserverwereselectedformore in-depthcomparisons.Interestingly,thestructureswiththe high-estscoreswereobtainedforanproteinmodelusingafibronectin

Fig.1. Three-dimensionalmodelofthe18kDaprotein.(a)Overlappingof pre-dictedmodelsbyI-TASSER(inblue)andPhyre2(ingreen).Intranslucentsilver, theN-terminalstructuremodeledbyI-TASSERandnotconsideredinthisstudy. (b)LocalizationofthepredictedepitopeEP1(inred).Inblue,theputativesitesof N-glycosylation(ASN74andASN92)andO-glycosylation(THR116).(For interpre-tationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothe webversionofthisarticle.)

type-IIIdomainofhumanneuralcelladhesionmolecule(PDBID 2DOC),leadingtoC-scoreof−1.99inI-TASSERandConfidenceof 95.4%inPhyre2.Bothmodelsconvergedtoaverysimilarfold,with arootmeansquare deviation(RMSD)valueof1.167Å(Fig.1a). Duetothesimilaritybetweenbothmodels,allstructuralfeatures of18kDaproteinwerediscussedinthisworkusingthe3Dstructure obtainedbyPhyre2.

Since18kDaproteinisknowntobeamembraneprotein(Bonay etal.,2002),furtheranalyseswerecarriedoutusingtheTMHMM serverinordertopredicttransmembranehelicalregions.Despite thehighlyhydrophobicregion5-FGLILLVAVVVLA-17,theserver didnotpredictsequenceasatransmembranehelixwithhigh prob-abilityofoccurrence(datanotshown).However,region1–17was predictedtocontainasignalpeptidewithameanscoreof94.4%, confirmingthehypothesisofanN-terminaltransmembraneregion in18kDaprotein.Therefore,thepredictedN-terminalstructureof 18kDawasnottakenintoaccountinthisstudy,duetothehigh probabilitythatthisregionformsatransmembranestructure.

In addition, since 18kDa protein is located in the outer membrane and it contains a signal peptide, it is possible that glycosilationpathwayscouldbeinvolved in maturation. There-fore, glycosilation sites predictions were performed using the NetNGlyc1.0andNetOGlyc4.0servers.Bothserverspredicted N-glycosylationsitesatASN74andASN92,andanO-glycosylation siteatTHR116(Fig.1b),withscoresof0.7303,0.5054and0.7021, respectively.

The resultsof thebioinformatics programs usedfor epitope prediction of18kDa proteinmostly convergedin theregionof aminoacidof46-WDTKDMAGYGVKKIEV-61.Thepeptidederived from this region was subsequently named EP1, being used for

(4)

Fig.2. ReactivityofbovineserumsamplesintheELISAtestandcut-off(dottedline).Assaysconductedusing(a)EP1peptideasanantigen(Cutoff0,881);(b)Taeniacrassiceps heterologousantigen(Cutoff0,359).

theposteriorsanalyses.EP1inourmodelwasexposedtoa sol-ventinabeta-hairpinwithoutanypredictedsitesofglycosylation (Fig.1b).Theantibodydiscriminationbythepeptideandits diag-nosticpotentialwasmeasuredbyitsperformanceinELISA.The EP1 antigen was detected in most of the positive serum con-trols(n=112/120)(animalsexperimentallyornaturallyinfected) (Fig. 2), while the majority of negative animal serum samples (n=80/88)didnot reactwiththeEP1 peptide.Therefore, these resultsindicatethatEP1enableddistinctionbetweenpositiveand negativesamplesintheELISAassay.Theperformancerateswere calculated and wereobtainedthe following results:91.6% sen-sitivity(CI=80–96%), 90%specificity (CI=82–95%), 85% positive predictivevalue(PPV)(CI=75–93%),93%negativepredictivevalue (NPV)(CI=86–97%)and91%accuracy.

4. Discussion

Themajorrecentimprovementsinbiomolecularmodeling tech-niqueshavegreatlyimprovedtheaccuracyoftheoreticalstructural models(Figueiredoet al.,2014).Based onthis background,we generatedstructural modelsofTaenia saginata18kDa oncopsh-ericprotein,usingcomputationalapproaches. Basedonthefold recognitionstepsandabinitiocalculationsusedforthecreation of this model, thefolding convergence and low RMSDindicate thatourmodelislikelyandaccuratestructuralrepresentationof 18kDaprotein.Itisimportanttonotethatthefinalmodelswere verysimilartotheonedescribedbyKyngdonetal.(2006)forthe TaeniasoliumTSOL18protein,whichhas61%identitywiththe Tae-niasaginata18kDaproteinandanalogousfunction.Furthermore,

(5)

gly-cosylationsiteinTSOL18,aswasalsopredictedinourmodel,thus furtherincreasingtheconfidenceinourmodel.

Withtheaimof improvingdiagnostictestsagainstdifferent pathogens,variousstudieshaveattemptedtomapBlymphocyte epitopesinamannersimilartothatpresentedinthisstudy(Meloen etal.,2003).Themaintechniqueusedtoidentifyconformational epitopesreliesonathreedimensionalstructuralrepresentationof theproteinofinterest,aswellasinferencesregardingregionsor aminoacidresiduesthatmayinteractwithantibodies.Despitethis attractivemethod,themajorityofthestudiesdescribelinearand notconformationalepitopes(Vitaetal.,2010).Themain explana-tionforthisdiscrepancyisthatvariousproteinspresentachallenge inplausibleresolutionoftertiarystructure,becauseofeitherthe highcostandtimerequiredforcrystallography,orincomputational molecularmodeling.Forourresearch,weemployedfourmethods ofepitopeprediction,includingoneconformationalepitope predic-tionmethodandthethreelinearpredictionmethods.Itisimportant toemphasizethatonlylinearepitopeswerepredicted,whichwere basedonconvergentregionspredictedbythesoftwareprograms andregionsnotdescribedinotherstudies.

The immunodominant oncosphere antigens are considered immunetargetsandmayalsohavepreventiveanddiagnostic appli-cations (Ferrer et al., 2003).The 18kDa oncospheric protein is termedHP6(Ferreretal.,2003,2007;Gonzalezet al.,2011)or TSA-18(Lightowlersetal.,1996;Jabbaretal.,2010).

Thefollowingperformanceindicatorswereobtainedfromthe ELISA test using the heterologous antigen (T. crassiceps): 70% sensitivity (CI=56–80%), 82% specificity (CI=73–89%), 72% PPV (CI=60–84%),80%NPV (CI=70–87%),and78%accuracy.Theuse ofEP1inanELISAyieldedslightlyhighervaluesthanthosefrom theheterologousantigen,indicatinganimprovedperformanceof thediagnostictest.WhileEP1wasabletodetect91.6%ofsamples fromthenaturallyinfectedanimals,theTaeniacrassicepscrude het-erologousantigenonlydetected70%ofthesamples.Itisknown thatthereisahomologybetweenthe18kDaproteinofTaenia sagi-nataanddifferentspeciessuchas:Taeniamulticeps–Tm18(85.5%), Taeniasolium–TSOL18(61.5%),Taeniaovis–To18(79.7%),Taenia asiaticaTASI18(95.5%) eTaeniahydatigena.Ainfecc¸ãoem bovi-nossóocorrecomaTaeniamulticeps(Avciogluetal.,2011)eTaenia hydatigena(DadaandBelino,1978),however,itisimportanttonote thattheserumcontrolsamples(G1,G2,G3,G4)areobtainedfrom animalsthathaveundergonepost-morteminspectionanddiscard apossibleco-infectionwiththeseparasites.

Ferreretal.(2003)synthesizedsixpeptidesderivedfromTaenia saginataproteins,usingtheantigenicindexofJamesonandWolf (JamesonandWolf,1988).Thetwopeptides(HP6-2andHP6-3) derivedfrom18kDaproteinwereabletodifferentiateserumsfrom cysticercosis-positiveand-negativeanimalsinasmallersample size.Itisimportanttostate,incontrasttoEP1,whichislocatedin anexposedbeta-harpin,HP6-2ismostlyburiedinourmodel,while HP6-3ismainlylocatedintheproteinC-terminalregionand, there-fore,exposedtointeractions(datanotshown).Thisdifferencein locationmightrevealdifferencesintheperformanceofdiagnostic testsusingthedistinctpeptides;agreaterexposureofthe pep-tideintheproteinstructureincreasestheprobabilityofinteraction withantibodies.Immunodominantpeptideshaveadirecteffecton disease,asevidencedbytheirhighaffinityforthehostantibodies releasedduringinfection.Thus,amorethoroughunderstandingof thebiologyoftheimmunodominantpeptideswillgreatlyaidthe attemptstoimprovetheperformanceofimmunodiagnostictests (Noyaetal.,2003).

Thus,incomparisontousingtheheterogenicantigen,theuse oftheEP1peptidemayenableimproveddetectionofcysticerciin naturallyinfectedanimalsand/orinanimalswith monocysticer-cosis.Animalsnaturallyinfectedhavelowamountsofcirculating antigens,whichnormallyhinderaccuratediagnoses.Accordingto

Allepuzetal.(2012),thecostofimplementingofamoresensitive toolforthediagnosisofbovinecysticercosisshouldbecompared withthe associated benefitsfor humanhealth, given thegreat potentialoflimitingthetransmissioncycleofbovine cysticerco-sis.Theuseofanimproveddiagnostictoolforbovinecysticercosis wouldalsobenefitthelivestock-farmingsectorbyreducing eco-nomicloss.

TheELISAtesthasbeenusedinresearchworldwide(Pintoetal., 2000;Ferreretal.,2003,2007;Monteiroetal.,2006;Allepuzetal., 2012; Guimarães-Peixoto et al., 2015).It shouldbe noted that theELISAshouldbeabletodetectanimalsatdifferentstagesof infection(viableornon-viablecysticerci),andsimilarly,showing satisfactoryperformance(Pintoetal.,2006;Monteiroetal.,2006; Minozzoetal.,2004;Guimarães-Peixotoetal.,2015).According

Smithetal.(1991)lowlevelsinlowcyst-burdenproduced anti-bodieshindertheselectionofacutoffpointandinterpretationof findingsinserologicaltestssuchasELISA,especiallyin monocys-ticercosis(Thomaz-Soccoletal.,2010).

IntheperformanceofanELISAtest,itisimportanttoconsider theamplitudevalueofthedifferencebetweenthepositiveand neg-ativecontrolsera(Guimarães-Peixotoetal.,2015;Silvaetal.,2015). Thus,theaimofthisresearchwastosetupalaboratoryscenario usingtheopticaldensityvaluesadjustedtoastandardplateto com-paretheperformanceofpeptideEP1withtheantigenTcra,thusthe backgroundarereduced.

5. Conclusion

In thepresent study,acomputationalapproach wasusedto select a peptide withgreat potential for use in serologic diag-nosis of bovinecysticercosis. Theselected EP1 peptideenabled discriminationbetweensamplesfromanimalspositiveornegative forcysticercosis.TheEP1peptidealsoexhibitedimproved perfor-mancecomparedtotheheterologousantigenofTaeniacrassiceps.

Theincreasinguseofcomputationaltoolstoobtainstructural dataofbiomoleculeshassignificantlyimprovedour understand-ingofantigen-antibodyinteractions.Inthisstudy,thecreationof aconformationalmodelof18kDaproteinprovidedatheoretical frameworkforasuitableandrationalmethodologicaldesignthat enabledtheidentificationofanewepitopewithpotentialusein thediagnosisofbovinecysticercosis.

Acknowledgements

Theauthorswould liketothankFapemig (ResearchSupport Foundation of Minas Gerais), CAPES (the Coordination for the ImprovementofHigherEducationPersonnel),andCNPq(National CounselofTechnologicalandScientificDevelopment)forthegiven supportandVivianeAssaoforthegraphicalabstract.

References

Abuseir,S.,Kuhne,M.,Schnieder,T.,Klein,G.,Epe,C.,2007.Evaluationofa serologicalmethodforthedetectionofTaeniasaginatacysticercosisusing serumandmeatjuicesamples.Parasitol.Res.101,131–137.

Akobeng,A.K.,2006.Understandingdiagnostictests1:sensitivity,specificityand predictivevalues.ActaPaediatr.96,338–341.

Allepuz,A.,Gabriel,S.,Dorny,P.,Napp,S.,Jansen,F.,Vilar,M.J.,Vives,L.,Picart,L., Ortuno,A.,Gutiérrez,J.,Casal,J.,2012.Comparisonofbovinecysticercosis prevalencedetectedbyantigenELISAandvisualinspectionintheNorthEastof Spain.Res.Vet.Sci.92(3),393–395.

Andresen,H.,Bier,F.F.,2009.Peptidemicroarraysforserumantibodydiagnostics. MethodsMol.Biol.509,123–134.

Avcioglu,H.,Yildirim,A.,Duzlu,O.,Inci,A.,Terim,K.A.,KapakinBalkaya,I.,2011. PrevalenceandmolecularcharacterizationofbovinecoenurosisfromEastern AnatolianregionofTurkey.Vet.Parasitol.176(1),59–64.

Bonay,P.,Gonzalez,L.M.,Benítez,L.,Foster,M.,Harrison,L.J.S.,Parkhouse,R.M.E., Gárate,T.,2002.Genomicandfunctionalcharacterizationofasecretedantigen ofTaeniasaginataoncospheres.Mol.Biochem.Parasitol.121,269–273.

(6)

Brasil,1971.MinistériodaAgricultura,PecuáriaeAbastecimento(MAPA).Inspec¸ão decarnes:padronizac¸ãodetécnicas,instalac¸õeseequipamentos.Brasília, DIPOA/DICAR.TomoI:Bovinos.pp.183.

Chen,J.,Liu,H.,Yang,J.,Chou,K.C.,2007.PredictionoflinearB-cellepitopesusing aminoacidpairantigenicityscale.AminoAcids33,423–428.

Dada,B.J.,Belino,E.D.,1978.Prevalenceofhydatidosisandcysticercosisin slaughteredlivestockinNigeria.Vet.Rec.103,311–312.

Dorny,P.,Vercammen,F.,Brandt,J.,Vansteenkiste,W.,Berkvens,D.,2000. Sero-epidemiologicalstudyofTaeniasaginatacysticercosisinBelgiancattle. Vet.Parasitol.88,43–49.

Dutra,L.H.,Girotto,A.,Vieira,R.F.C.,Vieira,T.S.W.J.,Zangirolamoz,A.F.,Marquês, F.A.C.,Headley,S.A.,Vidotto,O.,2012.Theprevalenceandspatialepidemiology ofcysticercosisinslaughteredcattlefromBrazil.SeminaCiênc.Agrár.33(5), 1887–1896.

Eichenberger,R.M.,Stephan,R.,Deplazes,P.,2011.Increasedsensitivityforthe diagnosisofTaeniasaginatacysticercusinfectionbyadditionalheart examinationcomparedtotheEU-approvedroutinemeatinspection.Food Control22,989–992.

Eichenberger,R.M.,Lewis,F.,Gabriel,S.,Dorny,P.,Torgerson,P.R.,Deplazes,P., 2013.Multi-testanalysisandmodel-basedestimationoftheprevalenceof Taeniasaginatacysticercusinfectioninnaturallyinfecteddairycowsinthe absenceofa‘goldstandard’referencetest.Int.J.Parasitol.43,853–859. Ferrer,E.,Benitez,L.,Foster-Cuevas,M.,Bryce,D.,Wamae,L.W.,Onyango-Abuje,

J.A.,Garate,T.,Harrison,L.J.S.,Parkhouse,R.M.E.,2003.Taeniasaginataderived syntheticpeptideswithpotentialforthediagnosisofbovinecysticercosis.Vet. Parasitol.111,83–94.

Ferrer,R.,González,L.M.,Martinez-Escribano,J.A.,González-Barderas,M.A.,Cortéz, M.M.,Dávila,I.,Harrison,L.J.S.,Parkhouse,R.M.E.,Garáte,T.,2007.Evaluation ofrecombinantHP6-Tsag,an18kDaTaeniasaginataoncospheraladhesion protein,forthediagnosisofcysticercosis.Parasitol.Res.101,517–525. Figueiredo,F.D.,Antunes,D.A.,Rigo,M.M.,Mendes,F.A.M.,Silva,J.P.,Mayer,F.Q.,

Matte,U.,Giugliane,R.,Vieira,F.G.,Sinigaglia,M.,2014.Lessonsfrom molecularmodelinghuman–l-iduronidase.J.Mol.Graph.Model.54,103–107. Gonzalez,L.M.,Bonay,P.,Benitez,L.,Ferrer,E.,Harrison,L.J.S.,Parkhouse,R.M.E.,

Garate,T.,2007.MolecularandfunctionalcharacterizationofaTaenia adhesiongenefamily(TAF)encodingpotentialprotectiveantigensofTaenia saginataoncospheres.Parasitol.Res.100,519–528.

Gonzalez,L.M.,Ramiro,R.,Garcia,L.,Parkhouse,L.M.,McManus,D.P.,Garate,T., 2011.Geneticvariabilityofthe18kDa/HP6protectiveantigeninTaenia saginataandTaeniaasiatica:implicationsforvaccinedevelopment.Mol. Biochem.Parasitol.176,131–134.

Guimarães-Peixoto,R.P.M.,Pinto,P.S.A.,Nero,L.A.,Santos,T.O.,Silva,L.F.,Nieto, E.C.A.,RivettiJúnior,A.V.,2015.PerformanceoftheELISAtestforthediagnosis ofcysticercosisusingexperimentallyandnaturallycattleinfectedwith metacestodeofTaeniasaginata.SeminaCienc.Agrar.36(2),807–816. Gupta,R.,Jung,E.,Brunak,S.,2004.PredictionofN-glycosylationsitesinhuman

proteins(inpreparation).

Jabbar,A.,Verastegui,M.,Lackenby,A.,Walduk,A.K.,Gauci,C.G.,Gilman,R.H., Lightowlers,M.W.,2010.Variationinthecellularlocalizationof host-protectiveoncospheralantigensinTaeniasaginataandTaeniasolium. ParasiteImmunol.32,684–695.

Jameson,B.A.,Wolf,H.,1988.Theantigenicindex:anovelalgorithmforpredicting antigenicdeterminants.Comput.Appl.Biosci.4,181–186.

Kelley,L.A.,Mezulis,S.,Yates,C.M.,Wass,M.N.,Sternberg,M.J.E.,2015.ThePhyre2 webportalforproteinmodeling,predictionandanalysis.Nat.Protoc.10, 845–858.

Krogh,A.,Larsson,B.,VonHeijne,G.,Sonhammer,E.L.L.,2001.Predicting transmembraneproteintopologywithahiddenMarkovmodel:applicationto completegenomes.J.Mol.Biol.305(3),567–580.

Kyngdon,C.T.,Gauci,C.G.,Gonzalez,A.E.,Flisser,A.,Zoli,A.,Read,A.J.,

Martinezocana,J.,Strugnell,R.A.,Lightowlers,M.W.,2006.Antibodyresponses andepitopespecificitiestotheTaeniasoliumcysticercosisvaccinesTSOL18and TSOL45–1A.ParasiteImmunol.28,191–199.

Kyvsgaard,N.C.,Ilsoe,B.,Henriksen,S.A.,Nansen,P.,1990.DistributionofTaenia saginatacystsincarcassesofexperimentallyinfectedcalvesandits significanceforroutinemeatinspection.Res.Vet.Sci.49,29–33.

Larralde,C.,Sotelo,J.,Montoya,R.M.,Palencia,G.,Padilla,A.,Govezensky,T.,Diaz, M.L.,Sciutto,E.,1990.Immunodiagnosisofhumancysticercosisin

cerebrospinalfluid:antigensfrommurineTaeniacrassicepscysticerci effectivelysubstitutethosefromporcineTaeniasolium.Arch.Pathol.Lab.Med. 114,926–928.

Larsen,J.E.P.,Lund,O.,Nielsen,M.,2006.Improvedmethodforpredictinglinear B-cellepitopes.Immun.Res.2,2.

Levitt,M.,1978.Conformationalpreferencesofaminoacidsinglobularproteins. Biochemistry17,4277–4285.

Lightowlers,M.W.,Rolfe,R.,Gauci,C.G.,1996.Taeniasaginata:vaccinationagainst cysticercosisincattlewithrecombinantoncosphereantigens.Exp.Parasitol. 84,330–338.

Lightowlers,M.W.,Gauci,C.G.,Chow,C.,Drew,D.R.,Gauci,S.M.,Heath,D.D., Jackson,D.C.,Dadley-Moore,D.L.,Read,A.J.,2003.Molecularandgenetic

characterisationofthehost-protectiveoncosphereantigensofTaeniidcestode parasites.Int.J.Parasitol.33,1207–1217.

Meloen,R.H.,Puijk,W.C.,Langeveld,J.P.,Langedijk,J.P.,Timmerman,P.,2003. Designofsyntheticpeptidesfordiagnostics.Curr.ProteinPept.Sci.4(4), 253–260.

Minozzo,J.C.,Thomaz-Soccol,V.,Olortegui,C.C.,Soares,V.E.,Costa,A.J.,2004. Enzyme-linkedimmunosorbentassay(ELISA)forimmunodiagnosticofbovine cysticercosisandkineticsofantibodiesproductionagainst-Cysticercusbovis. Ciênc.Rural.34(3),857–864.

Monteiro,L.L.M.,Pinto,P.S.A.,Araújo,J.V.,Vaz,A.J.,Silva,S.R.,Silva,D.C.B.,2004. EmpregodeantígenosdelarvadeTaeniacrassicepsemtesteELISApara diagnósticodacisticercosesuína.BiosciJ.Uberlândi.20(1),177–182. Monteiro,L.L.,Pinto,P.S.A.,Dias,F.S.,2006.EvaluationoftheELISAtestforthe

antibodydetectionincattlenaturallyandexperimentallyinfectedwith Cysticerccusbovis.Vet.Parasitol.141,260–263.

Noya,O.,Pattaroyo,M.E.,Guzman,F.,Alarcon,B.,Noya,D.,2003.Immunodiagnosis ofparasiticdiseaseswithsyntheticpeptides.Curr.ProteinPept.Sci.4(4), 299–308.

Ogunremi,O.,Benjamin,J.,2010.Developmentandfieldevaluationofanew serologicaltestforTaeniasaginatacysticercosis.Vet.Parasitol.169,93–101. Parker,J.M.,Guo,D.,Hodges,R.S.,1986.Newhydrophilicityscalederivedfrom

high-performanceliquidchromatographypeptideretentiondata:correlation ofpredictedsurfaceresidueswithantigenicityandx-ray-derivedaccessible sites.Biochemistry25,5425–5432.

Parkhouse,R.M.E.,Bonay,P.,González,L.M.,Ferrer,E.,Gárate,T.,Aguilar,C.M., Cortez,M.M.,Harrison,L.J.S.,2008.TSOL18/HP6-Tsol,animmunogenicTaenia soliumoncospheraladhesionproteinandpotentialprotectiveantigen. Parasitol.Res.102,921–926.

Passos,L.M.F.,1993.ImmunologicalStudiesonBovineBabesiosiswithParticular ReferencetoBrazilUsinginVitroCulture-derivedAntigens.PhDThesis.Center ofTropicalVeterinaryMedicine,Edinburg,pp.326.

Pinto,P.S.A.,Vaz,A.J.,Germano,P.M.L.,Nakamura,P.M.,2000.Performanceofthe ELISAtestforswinecysticercosisusingantigensofTaeniasoliumandTaenia crassicepscysticerci.Vet.Parasitol.88,127–130.

Pinto,P.S.A.,Monteiro,L.L.M.,Minozzo,J.C.,2006.Influenceofdifferent control-selagroupinthebovinecysticercosisdiagnosisemployngtheELISA test.Rev.Ceres.53,574–579.

Ponomarenko,J.,Bui,H.,Li,W.,Fusseder,N.,Bourne,P.,Sette,A.,Peters,B.,2008. ElliPro:anewstructure-basedtoolforthepredictionofantibodyepitopes. BMCBioinform.9,514.

Saha,S.,Raghava,G.P.S.,2004.BcePred:predictionofcontinuousB-cellepitopesin antigenicsequencesusingphysico-chemicalproperties.Artif.ImmuneSyst. 3239,197–204.

Silva,L.F.,Pinto,P.S.A.,Duarte,C.T.S.,Santos,T.O.,Nieto,E.C.A.,Guimarães-Peixoto, R.P.M.,2015.ApplicabilityofELISAwithdifferentantigenstodiagnosevarying levelsbovinecysticercosis.SeminaCien.Agrar.36,2013.

Smith,H.J.,Snowdon,K.E.,Finlay,R.C.,1991.Serologicaldiagnosisofcysticercosis byenzyme-linkedimmunosorbentassayinexperimentallyinfectedcattle. Can.J.Vet.Res.3,274–276.

Souza,V.K.,Pessoa-Silva,M.C.,Kowalczuk,M.,Marty,S.,Thomaz-Soccol,V.,2007. AnatomicregionsofmajoroccurrenceofCysticercusbovisinbovinesunder federalinspectionatslaughterhouseinthemunicipalityofSãoJosédosPinhais StateofParanáfromJulytoDecember,2000.Brazil.J.Vet.Parasitol.16,92–96. Steentoft,C.,Vakhrushey,S.Y.,Joshi,H.J.,Kong,Y.,Vester-Christensen,M.B.,

Schjoldager,K.T.,Lavrsen,K.,Dabelsteen,S.,Pedersen,N.B.,Marcos-Silva,L., Gupta,R.,Bennett,E.T.,Mandel,U.,Brunak,S.,Wandall,H.H.,Levery,S.B., Clausen,H.,2013.PrecisionmappingofthehumanO-GalNAcglycoproteome throughSimpleCelltechnology.EMBOJ.32(10),1478–1488.

Thomaz-Soccol,V.,Souza,V.K.,Pessoa,O.L.,Minozzo,J.C.,Pessoa-Silva,M.C., Peixoto,R.P.M.G.,Moura,J.F.,2010.PesquisadeanticorposcontraCysticercus bovis,portesteELISAembovinosdeabatedouro.Arch.Vet.Sci.15(2),77–85. Vaz,A.J.,Nunes,C.M.,Piazza,R.M.F.,Livramento,J.A.,Silva,M.V.,Nakamura,P.M., Ferreira,W.,1997.Immunoblotwithcerebrospinalfluidfrompatientswith neurocysticercosisusingantigenfromcysticerciofTaeniasoliumandTaenia crassiceps.Am.J.Trop.Med.Hyg.57(3),354–357.

Vita,R.,Zarebski,L.,Greenbaum,J.A.,Emami,H.,Hoof,I.,Salimi,N.,Damle,R.,Sette, A.,Peters,B.,2010.Theimmuneepitopedatabase2.0.NucleicAcidsRes.38, 854–862.

Wang,Y.,Wang,G.,Ou,J.,Yin,H.,Zhang,D.,2014.Analyzingandidentifyingnovel BcellepitopeswithinToxoplasmagondiiGRA4.Parasit.Vectors7,474. Wanzala,W.,Onyango-Abuje,A.,Kang´ıethe,E.K.,Zessin,K.H.,Kyule,N.M.,

Baumann,M.P.,Ochanda,H.,Harrison,L.J.,2003.ControlofTaeniasaginataby post-mortemexaminationofcarcasses.Afr.HealthSci.3,68–76.

Yang,J.,Yan,R.,Roy,A.,Xu,D.,Poisson,J.,Zhang,Y.,2015.TheI-TASSERsuite: proteinstructureandfunctionprediction.Nat.Methods12,7–8. Zimic,M.,Gutierrez,A.H.,Gilman,R.H.,Lopez,C.,Quiliano,M.,Evangelista,W.,

Gonzales,A.,García,H.H.,Sheen,P.,2011.Immunoinformaticspredictionof linearepitopesfromTaeniasoliumTSOL18.Bioinformation6,271–274.

Referências

Documentos relacionados

Specificity, sensitivity and accuracy values of indirect ELISA for sera and CSF samples The efficacy of indirect ELISA for active, inactive NCC and in degeneration cysts

Immunoblot assays were performed using total larval antigen of Taenia crassiceps and 60 sera of positive bovines for cysticercosis (30 naturally and 30 experimentally infected with

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

This interference can also explain the low amplitude of the difference in OD between negative and weakly positive samples when the T-Tso antigen was used compared to S-Tso during

Considering the results obtained from the four antigen preparations, vesicular fluid from Taenia solium and Taenia crassiceps cysticerci may be useful as a source of antigens

he aims of this study were to assess the frequency of cysticercosis in a population from the State of Santa Catarina by ELISA, using Taenia crassiceps vesicular luid as antigen

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Por essa razão, a proposição de um sistema informatizado de apoio ao monitoramento dessas pragas de eucalipto, que fazem uso de cartões-armadilha adesivos amarelos, auxiliaria