• Nenhum resultado encontrado

Referências Bibliográficas

N/A
N/A
Protected

Academic year: 2021

Share "Referências Bibliográficas"

Copied!
9
0
0

Texto

(1)

Referˆ

encias Bibliogr´

aficas

[Bad04] BADDOUR, K. E.; BEAULIEU, N. C.. Improved pilot symbol aided estimation of rayleigh fading channels with unknown autocorrelation statistics. In: IEEE VEHICULAR TECH. CONFERENCE – FALL, Los Angeles, EUA, 2004. 3.1.4

[Bad05] BADDOUR, K. A.; BEAULIEU, N. C.. Autoregressive modeling for fading channel simulation. IEEE Transactions on Wireless Communica-tions, 4(4):1650–1662, 2005. 2.4, 2.4

[Bee95] VAN DE BEEK, J.-J.; EDFORS, O.; SANDELL, M.; WILSON, S. K. ; B ¨ORJESSON, P. O.. On channel estimation in OFDM systems. In: PROC. IEEE VEHICULAR TECHNOLOGY CONFERENCE, Chicago, EUA, 1995. 3

[Bin90] BINGHAM, J.. Multicarrier modulation for data transmission: An idea whose time has come. IEEE Commmunications Magazine, 28:5–14, 1990. 2, 2.3

[Bol06] B ¨OLCSKEI, H.. MIMO-OFDM wireless systems: Basics, per-pectives and challenges. IEEE Wireless Communications, 13(4):31–37, 2006. 1

[Cam99] CAMPELLO, J.. Discrete bit loading for DMT. In: PROC. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, Vancouver, Canad´a, 1999. 2.2

[Cim85] J. CIMINI, JR., L.. Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Wireless Communications, 3(7):666–675, 1985. 1, 3

[Col02] COLERI, S.; ERGEN, M.; PURI, A. ; BAHAI, A.. Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on Broadcasting, 48(3):223–229, 2002. 3

[Edf96] EDFORS, O.; SANDELL, M.; VAN DE BEEK, J.-J.; LANDST ¨OM, D. ; SJ ¨OBERG, F.. An introduction to ortoghonal frequency-dvision multiplexing. Technical report, Lule˚a University of Technology, 1996. 2

(2)

Referˆencias Bibliogr´aficas 86

[Edf98] EDFORS, O.; SANDELL, M.; VAN DE BEEK, J.-J.; WILSON, S. K. ; B ¨ORJESSON, P. O.. OFDM channel estimation by singular value decomposition. IEEE Transactions on Communications, 46(7):931–939, 1998. 3

[Gol02] GOLDFELD, L.; LYANDRES, V. ; WULICH, D.. Minimum BER power loading for OFDM in fading channel. IEEE Transactions on Communications, 50(11):1729–11733, 2002. 1, 4, 4.2, 4.2

[Gol05] GOLDSMITH, A.. Wireless Communications. Cambridge University Press, 2005. 1

[Itu08] INTERNATIONAL TELECOMMUNICATION UNION (ITU). Worldwide mobile cellular subscribers to reach 4 billion mark late 2008, 2008. 1, i

[Jak74] JAKES, W.. Mobile Microwave Communications. John Wiley & Sons, 1974. 2.4

[Jia08] JIANG, T.; WU, Y.. An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broacasting, 54(2):257–268, 2008. 2.3

[Li98] LI, Y.; J. CIMINI, JR., L. ; SOLLENBERGER, N. L.. Robust channel estimation for OFDM systems with rapid dispersive fading channels. IEEE Transactions on Wireless Communications, 46(7):902–915, 1998. 1, 3

[Lov07] LOVE, D. J.; W. HEATH, JR., R.. OFDM power loading with limited feedback. IEEE Transactions on Vehicular Techology, 54(5):1733– 1780, 2005. 4.2

[Mar05] DE MARINS NETO, A. S.. Equaliza¸c˜ao e estima¸c˜ao de canal em sistemas de transmiss˜ao OFDM. Disserta¸c˜ao de Mestrado, Pontif´ıcia Universdade Cat´olica do Rio de Janeiro, 2005. 2, 2.3

[Mor01] MORELLI, M.; MENGALI, U.. A comparison of pilot-aided chan-nel estimation methods for OFDM systems. IEEE Transactions on Signal Processing, 49(12):3065–3073, 2001. 3, 3.1.1, 3.1.1, 3.1.2, 3.1.2 [Mor08] MORAES, R.; DORTSCHY, B.; KLAUTAU, A. ; I RIU, J. R..

Semi-blind power allocation for digital subscriber lines. In: PROC. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, Beijing, China, 2008. 2.2

(3)

Referˆencias Bibliogr´aficas 87

[Muq02] MUQUET, B.; WANG, Z.; GIANNAKIS, G. B.; DE COURVILLE, M. ; DUHAMEL, P.. Cyclic prefix or zero padding for wireless multicar-rier transmissions? IEEE Transactions on Communications, 50(12):2136– 2148, 2002. 1, 2, 2.3

[Neg98] NEGI, R.; CIOFFI, J. M.. Pilot tone selection for channel esti-mation in a mobile OFDM system. IEEE Transactions on Consumer Electronics, 44(3):1122–1128, 1998. 3, 3.1.1

[Ozd07] OZDEMIR, M. K.; ARSLAN, H.. Channel estimation for wireless OFDM systems. IEEE Communications Surveys & Tutorials, 9(2):18–48, 2007. 3

[Pan08] PANAH, A. Y.; NOSRAT-MAKOUEI, B. ; VAUGHAN, R. G.. Non-uniform pilot-symbol allocation for closed-loop OFDM. IEEE Transactions on Wireless Communications, 7(7):2723–2731, 2008. 1, 2.4, 4, 4.2, 4.3.1, 4.3.1, 4.3.1

[Pel80] PELED, A.; RUIZ, A.. Frequency domain data transmission using reduced computational complexity algorithms. In: PROC. IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, Denver, EUA, 1980. 2

[Pro00] PROAKIS, J. G.. Digital Communications, 4a

Ed. McGraw-Hill, 2000. 3.3

[San96] SANDELL, M.; EDFORS, O.. Comparative study of pilot-based channel estimators for wireless OFDM. Technical report, Lule˚a University of Technology, 1996. 3

[Wan00] WANG, Z.; GIANNAKIS, G. B.. Wireless multicarrier commu-nications: where Fourier meets Shannon. IEEE Signal Processing Magazine, 17(3):1–17, 2000. 1, 2, 2.3, 4

[Wei71] WEINSTEIN, S. B.; EBERT, P. M.. Data-transmission by frequency-division multiplexing using the discrete Fourier trans-form. IEEE Transactions on Communications, 19(5):628–634, 1971. 2 [Zou95] ZOU, W. Y.; WU, Y.. COFDM: an overview. IEEE Transactions on

Broadcasting, 41(1):1–8, 1995. 2

(4)

A

Abrevia¸

oes

BER Bit Error Rate

BITE Busca Iterativa

CDMA Code Division Multiple Access

CP Cyclic Prefix

DAB Digital Audio Broadcasting

DFT Discrete Fourier Transform

DMT Discrete Multitone

DSL Digital Subscriber Lines

DVB Digital Video Broadcasting

ERB Esta¸c˜ao R´adio-Base

ESA Estacion´ario no Sentido Amplo

FDM Frequency Division Multiplexing

FFT Fast Fourier Transform

IBI Inter-Block Interference

ICI Inter-Carrier Interference

IDFT Inverse Discrete Fourier Transform

MIMO Multiple Input, Multiple Output

ML Maximum Likelihood

MMSE Minimum Mean Squared Error

MSE Mean Squared Error

OFDM Orthogonal Frequency Division Multiplexing

PAPR Peak to Average Power Ratio

RD Ru´ıdo de Distor¸c˜ao

RI Ru´ıdo de Interpola¸c˜ao

SC Single Carrier

VA Vari´avel Aleat´oria

ZP Zero Padding

(5)

B

Operadores Matem´

aticos

a escalar

a vetor

A matriz

a[i] i-´esimo elemento de a

A[i, j] (i, j)-´esimo elemento de A

IK matriz identidade de tamanho K

0K×J matriz de zeros com tamanho especificado

pelo sub-escrito

1K×J matriz de 1’s com tamanho especificado pelo

sub-escrito ¯

¯A¯¯ cardinalidade do conjunto A ¯

¯a¯¯ m´odulo do escalar a

diag {a} matriz com a na diagonal principal

(·)∗ conjugado de um n´umero

(·)T transposta de uma matriz

(·)† pseudo-inversa de uma matriz

(·)−1 inversa de uma matriz

(·)H hermitiano de uma matriz

E [·] valor esperado

tr©·ª tra¸co de uma matriz

° °·°°

F norma de Frobenius

[A]lin i i-´esima linha de A

[A]coli i-´esima coluna de A

⌊a⌋ arredondar para menor inteiro

⌈a⌉ arredondar para o maior inteiro

N (x, y) vari´avel aleat´oria gaussiana de m´edia x e variˆancia y

ℜ{·} parte real de um complexo

(6)

C

alculos para o MMSE

C.1 MSE

Seja o MSE temporal da estima¸c˜ao MMSE, i.e. msemmse,n = E h° °hn− ˆhmmse,n ° °2 i . (C-1) Usando (3-26), obtemos msemmse,n = E h° °V−1n ¡FHSHnwp,n− σdiag {γ} −1 hn ¢° °2 i = tr ½ Vn−1hE£FHLSHnwpwHp SnFL ¤

+ E£σ2diag {γ}−1hhHdiag {γ}−1¤iV−1,Hn ¾ = tr ½ Vn−1hσFHLDnFL+ σ 2 diag {γ}−1iV−1,Hn ¾ . (C-2) Aqui usamos E£wpwHp ¤ = σIKp e E £ hnhHn ¤

= diag {γ}, como j´a definido no texto. Seguimos identificando que V−1 = V−1,H e reduzindo (C-2) a

msemmse,n = tr

½

V−1n σVVn−1,H ¾

= σtr©V−1n ª, (C-3)

onde usamos a defini¸c˜ao de V.

Considere agora o MSE da estima¸c˜ao de um determinado tom da resposta de freq¨uˆencia do canal:

MSEkmmse,n = E h° °qnk− ˆqmmsek ,n ° °2 i . (C-4)

(7)

Apˆendice C. C´alculos para o MMSE 91 Considerando (3-27), obtemos MSEkmmse,n = E h° °fkV−1n ¡FHLSHnwp,n− σdiag {γ} −1 hn ¢° °2 i = tr ½ fkV−1n hE£FHLSHnwpwHp SnFL ¤

+ E£σ2diag {γ}−1hhHdiag {γ}−1¤i(fk)HV−1,H n

¾

. (C-5)

A solu¸c˜ao de (C-5) ´e muito parecida com a de (C-2): MSEk mmse,n = f kV−1 n (f k)H . (C-6) C.2 Filtro de Wiener

Precisamos calcular a matriz RYY e o vetor Rh

nY levando em conta as

caracter´ısticas do MMSE. Primeiramente, temos RYY = E [YY] = E£(H + W)H(H + W)¤ = E£HHH¤ | {z } A + 2ℜ©E£HHW¤ª | {z } B + E£WHW¤ | {z } C , (C-7)

onde H ´e dado por (3-35) e W ´e dado por (3-49) e ℜ{·} denota a parte real de um elemento. A solu¸c˜ao de A ´e f´acil pois j´a foi visto que E£HHH¤ = Rhh,t. Partimos agora para a solu¸c˜ao de B e C.

B = −2ℜ©E£HHW¤ª = −2σ     ℜ{tr©V−1 n diag {γ} −1 E£hnhHn ¤ª } · · · ℜ{tr©V−1n−1diag {γ}−1E£hn−1hHn ¤ª } · · · ... . ..    . (C-8) Sendo E£hnhHn−i ¤

= diag {γ} × Rh,t[i], simplificamos (C-8) para

B = −2σtr©V−1ªRhh,t. (C-9)

Aqui consideramos os pilotos constantes no tempo, ou seja, pi = pj ∀i, j, o

que implica em V−1 i = V −1 j ∀i, j. Agora falta C. C = E£WHW¤ (C-10)

Essa vari´avel ter´a duas parcelas, representadas respectivamente por C1 e C2.

(8)

Apˆendice C. C´alculos para o MMSE 92

Consideramos de novo pilotos constantes no tempo. Temos

C1 =     tr©V−1FH LSHE £ wp,nwHp,n ¤ SFLV−1 ª 0 . .. 0 tr©(·)n−M +1 ª     = σtr©V−1UV−1ªIM, (C-11) e C2 =     σ2 tr©V−1diag {γ−1} E£h nhHn ¤ diag {γ}−1V−1ª · · · σ2 tr©V−1diag {γ−1} E£h n−1hHn ¤ diag {γ}−1V−1ª · · · ... . ..     = σ2 tr©V−1diag {γ}−1V−1ª× Rhh,t. (C-12)

Finalmente, combinando A com (C-9), (C-11) e (C-12), chegamos a RYY = Rhh,t׳1 − 2σtr©V−1ª+ σ2tr©V−1diag {γ}−1V−1ª´

+ σtr©V−1UV−1ªIM. (C-13)

A solu¸c˜ao de Rh

nY´e mais f´acil.

Rh

nY = [Rhh,t]col 1×

¡

1 − σtr©V−1ª¢. (C-14) C.3

MSE para MMSE mais filtro de Wiener Seja msemmse+w,n = E h° °hn− ˆhn ° °2 i , (C-15)

com ˆhn = Yλ e com o filtro λ calculado especificamente para o MMSE. Usando

(3-27), obtemos msemmse+w,n = E ·° ° °hn− M−1 X i=0 λ[i]hn−i+ − M−1 X i=0 λ[i]σV−1n−i ¡ FHLSHn−iwp,n− diag {γ} −1 hn−i ¢°° ° 2¸ . (C-16) ´

E f´acil ver que dois dos termos do MSE resultante s˜ao dados por λ′R hh,tλ′

e por σPMi=0−1λ[i]2

tr©V−1n−iª. H´a, por´em, mais um termo, que chamaremos de

(9)

Apˆendice C. C´alculos para o MMSE 93 D, dado por D = E·°° °hn− M−1 X i=0 λ[i]hn−i− M−1 X i=0 λ[i]V−1 n−iσdiag {γ} −1 hn−i ° ° ° 2¸ . (C-17)

Notamos que podemos escrever hn− M−1 X i=0 λ[i]hn−i = M−1 X i=0 λ′[i]hn−i (C-18) e D = −σE ·M−1 X i=0 λ′[i]hH n−i M−1 X j=0 λ[j]V−1 n−jdiag {γ} −1 hn−j ¸ = −σtr ½M−1 X i=0 M−1 X j=0 λ′[i]λ[j]V−1 n−jdiag {γ} −1 Ehhn−jhHn−i i¾ = −σtr ½M−1 X i=0 M−1 X j=0 λ′[i]λ[j]V−1n−jRh,t[ ¯ ¯i− j¯¯] ¾ . (C-19)

Se considerarmos pilotos constantes no tempo, podemos retirar o termo V−1

do somat´orio. Obtemos D = −σtr ½ V−1n M−1 X i=0 M−1 X j=0 λ′[i]λ[j]Rh,t[ ¯ ¯i− j¯¯] ¾ = −σ(λ′)TR hh,tλtr © Vn−1ª (C-20) Finalmente, conseguimos msemmse+w,n = (λ′)TRhh,tλ′+ σ M−1 X i=0 λ[i]2 tr©V−1n−iª− σ(λ′)TR hh,tλtr © V−1n ª. (C-21) Na freq¨uˆencia, tom k, obtemos

MSEkmmse+w,n = (λ ′ )TR hh,tλ′ + σ M−1 X i=0 λ[i]2 fkVn−i−1 (fk)H + − σfkV−1 n (f k)H)TR hh,tλ. (C-22)

Referências

Documentos relacionados

O Ministério Público poderá utilizar o Inquérito Civil (IC), a Recomendação Administrativa (RA), o Termo de Ajustamento de Conduta (TAC), e a Ação Civil Pública (ACP) para a

“Ó água, tu és tão forte que apagas o lume, que queima o pau, que bate no cão, que morde o gato, que come o rato, que fura a parede, que impede o Sol, que derrete a neve que o meu

Considering inter- actions with parental figures a core element of early attachment theory, and its quality hypothesized as a protection or a risk factor for alexithymia,

Notopodial cirri triangular, tapering (almost three times longer than wide at basis), decreas- ing in length towards posterior end (0.97 mm at chaetiger 5, 0.48 mm at chaetiger 40,

Cav- alcante, “Filtered delay-subspace approach for pilot assisted channel estimation in OFDM systems,” in Proceedings of the VII IEEE Workshop on Signal Processing Advances for

Therefore, we change the interval between OFDM pilot symbols in block type channel estimation in such a way that the redundancy introduced by both techniques is very similar (one

The many cell layers highlight different image representations: the basic activities of simple, complex and end-stopped cells, and the extracted feature maps that include

With the new generation of mobile communications, Long Term Evolution (LTE), the Orthogonal Frequency Division Multiplexing (OFDM) is used for the downlink data transmission and