• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número1"

Copied!
6
0
0

Texto

(1)

w w w.jo u r n als . e l s e vie r . c o m / r e v i s t a - b r a s i l e i r a - d e - f a r m a c o g n o s i a

Original

Article

Characterization

and

evaluation

of

the

cytotoxic

potential

of

the

essential

oil

of

Chenopodium

ambrosioides

Ruth

T.

Degenhardt

a

,

Ingrid

V.

Farias

a

,

Liliane

T.

Grassi

a

,

Gilberto

C.

Franchi

Jr.

b

,

Alexandre

E.

Nowill

b

,

Christiane

M.

da

S.

Bittencourt

a

,

Theodoro

M.

Wagner

a

,

Marcia

M.

de

Souza

a

,

Alexandre

Bella

Cruz

a

,

Angela

Malheiros

a,∗

aNúcleodeInvestigac¸õesQuímico-Farmacêuticas,ProgramadeMestradoemCiênciasFarmacêuticas,UniversidadedoValedoItajaí,Itajaí,SC,Brazil bCentroIntegradodePesquisasOncohematológicasdaInfância.UniversidadeEstadualdeCampinas,Campinas,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13May2015 Accepted18August2015 Availableonline28November2015

Keywords:

Chenopodiumambrosioides

Ascaridole

p-Cymene Essentialoil Cytotoxic

Gaschromatographic

a

b

s

t

r

a

c

t

TheessentialoilofChenopodiumambrosioidesL.,Amaranthaceae,wasobtainedbysteamdistillationin aClevengerapparatusandcharacterizationwasperformedusingchromatographicandspectroscopic assays(GC-FID,GC/MS,1HNMR).Twomajorcompoundswereidentified:p-cymene(42.32%)and

ascari-dole(49.77%).Theethanolicextractandhydrolatewerefractionatedbyliquid–liquidpartitioningandthe compoundswerecharacterizedbyGC/MS.Theessentialoil,ethanolextractandfractionsbypartitioning withdicloromethane,ethylacetateandbutanolweretestedintumorcelllines(K562,NALM6,B15,and RAJI).Significantcytotoxicactivitywasfoundforessentialoil(IC50=1.0␮g/ml)forRAJIcellsandfraction

dicloromethane(IC50=34.0␮g/ml)andethanolextract(IC50=47.0␮g/ml)forK562cells.Theactivityof

theessentialoilofC.ambrosioidesisprobablyrelatedtothelargeamountofascaridol,sincetheother majorcompound,p-cymene,isrecognizedasapotentanti-inflammatoryandhaslowcytotoxicactivity. ©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

ChenopodiumambrosioidesL.,Amaranthaceae,popularlyknown as “erva-de-santa-maria” or “mastruc¸o” (Kokanova-Nedialkova etal.,2009),hasbeenwidelyusedinfolkmedicineinthemidwest, southandsoutheast ofBraziland isfoundmainlyin temperate andsubtropicalcountries(LorenziandMatos,2002).Theleaves areusedasananthelminticandvermicide(Alitonouetal.,2012) and this species is also used in the treatmentof gastrointesti-nal,respiratory, vascular, and nervous diseases and to combat diabetesandhypercholesterolemia.Furthermore,itpresents seda-tive,antipyretic,andantirheumaticeffects(DeFeoandSenatore, 1993).Duetotheseproperties,in2009,theBrazil’sHealth Min-istryselectedtheC.ambrosioidesasoneoftheplantsofinterestto theHelthSistem(Renisus)thatcanbeusedasanherbalmedicine. ThegeographicalareawhereC.ambrosioidesisobtained,with variablehumidity,temperatureandgeneralenvironmental condi-tionsandthedegreeofevolutionaryandgeneticvariability(the possibleexistenceofchemotypeswithinthespecies)arefactors thatdirectlyinfluencethechemicalcompositionoftheessential

∗ Correspondingauthor.

E-mail:angela@univali.br(A.Malheiros).

oilobtainedfromthisplant(Gobbo-NetoandLopes,2007;Chekem etal.,2010).However,despitethisvariability,theessentialoil con-sistsmainlyofmonoandsesquiterpenes(Kliks,1985;Cruzetal., 2007).

Various studies have been undertaken to characterize the composition oftheessential oilof C.ambrosioides bygas chro-matography coupled tomass spectrometry (GC/MS). The main compoundsfoundare:(Z)-ascaridole,(E)-ascaridole,carvacrol,p -cymene,˛-terpinene andlimonene (Cavalliet al., 2004;Jardim et al., 2008; Chekem et al., 2010; Vieira et al., 2011). Studies ontheessentialoilshowedantifungalactivityagainstAspergillus fumigatus,Aspergillus niger,Botryodiplodia theobromae, Fusarium oxysporum,Sclerotiumrolfsii,Macrophominaphaseolina, Cladospo-rium cladosporioides, Helminthosporim oryzae, and Pythiumdeba ryanumataconcentrationof100g/ml(Matos,2011).Monzonte etal.(2007)notedthattheessentialoilofC.ambrosioidespresents

invitroactivityagainsttheprotozoanLeishmaniadonovani,causing irreversibleinhibitionoftheirgrowth.

Kinupp (2007) describes this species as also being rich in flavonoidsandterpenoidsandhavingverydiverse pharmacologi-calactivities,includingantioxidantandchemopreventiveeffects againstcancer, aswellas antimicrobial,anti-inflammatory,and analgesicproperties (Cruz et al., 2007; Dembitskyet al., 2008; Grassi,2011).AccordingtoHmamouchietal.(2000),theextract

http://dx.doi.org/10.1016/j.bjp.2015.08.012

(2)

obtainedfromthisspeciespresentspotentialmolluscicidal activ-ityagainst snailstransmittingschistosomiasis, Bulinustruncatus

(LC90=2.23mg/l).Patrícioetal.(2008),ontheotherhand,studied theeffectoftheaqueouscrudeextractoftheleavesofC. ambro-sioidesonskinulcersinducedbyLeishmaniaamazoniensisinmice. Intralesionaltreatmentwasabletoinhibittheprogressionofthe ulcer.

Someauthors,citedbyMatos(2011),reportedthatthe anti-inflammatoryactivityofChenopodiumisduemainlytoascaridole, whichisoneofthemajorcomponentsoftheessentialoilofthis plant.Thissamecompoundcanalsoexhibitantipyreticeffectsand hasbeenindicatedasbeingresponsibleforgrowthinhibitionin differenttumorcelllines.Itsactionissosignificantinvitrothatisa strongcandidateforthetreatmentofcancer(Efferthetal.,2002).

Given the above, the objective of this study was to obtain andcharacterizetheessentialoilandfractions fromthe hydro-late and ethanol extract of leaves of C. ambrosioides through chromatographic and spectrometricassays (GC-FID, GC/MS, 1H NMR)and evaluateitscytotoxicityinvitroby theMTTmethod (3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide)in differenttumorcelllines:myeloidleukemia(K562),acuteB lym-phoblasticleukemia(NALM6and B15),and Burkitt’slymphoma (RAJI),sincecancerisa majorpublichealth problemworldwide (INCA,2011).

Materialsandmethods

Plantmaterial

ChenopodiumambrosioidesL.,Amaranthaceae,wasobtainedin March2010inCáceres,acityinthestateofMatoGrosso,Brazil. Tax-onomicidentificationofthecollectedmaterialwasdonebybotanist M.Sc.OscarBenignoIzabycomparisonwithauthenticsamples.The exsiccatewasdepositedintheHerbariumBarbosaRodrigues(HBR), Itajaí,SC,withtheregistrynumber52802.

Extractionoftheessentialoil

TheessentialoiloftheleavesofC.ambrosioides,whichhadbeen driedandweighed(148g),wasobtainedbysteamdistillationina Clevengerapparatus.Theleaveswereextractedwith3lofdistilled waterintheflask,andtheextractionwasperformedoveraperiod of4h.Theoilwasremovedwithamicropipetteand,toprevent oxidationreactionsduetotheremainingwater,anhydroussodium sulfatewasadded.Theoilwasstoredfrozen,protectedfromlight.

Hydrolateandethanolicextract

Aftertheextractionoftheessentialoil,thewaterwasfiltered toyieldabout2.75lofhydrolate.Theleavesusedforoil extrac-tion(approximately185g)weresubjectedtomacerationinethanol for7days.Approximately1leachofthehydrolateandethanolic extractweresubjectedtoliquid–liquidpartitioningwith immisci-blesolventsinincreasingorderofpolarity(dichloromethane,ethyl acetateandbutanol).Foreachsolvent,twoextractionswere per-formedusingfirst400mlandthen200mlofthesolvent.Afterthe separationofthephases,anhydroussodiumsulfatewasaddedto theorganicphase toremovetheremainingwater.Theobtained fractionswerefilteredandconcentratedinarotaryevaporatorat amaximumtemperatureof50◦Ctoobtainadryresidue.Aliquots

ofthesefractionsweresentforanalysisbyGC/MS.

Analysisbychromatographicandspectroscopicassays

The essential oil obtained from the dried leaves of C. ambrosioides was analyzed by gas chromatography with a

flame ionization detector (GC-FID) and by gas chromatogra-phy coupled to mass spectrometry (GC/MS Shimadzu QP2010 S). The analysis by GC-FID, with an Rtx-1 capillary column (30m×0.25mm×0.10␮m), used helium as the carrier gas (0.8ml/min);theinjectortemperaturewas180◦Candthedetector

temperaturewas250◦C,1:50split,usingthefollowing

temper-atureprogram:80–200◦Cat20C/min,200–300Cat15C/min;

300–310◦Cat12C/min;FID(310C);H2:40ml/min.

Thefractionsobtainedfromthehydrolateandethanolextract and theessential oilwereanalyzed byGC/MS withaninjector temperatureof250◦C;thetemperatureprogramwas80–200C

at20◦C/min;200–300Cat15C/min,withotherconditionsequal

tothoseofGC-FID.Theidentificationofthechemicalcomposition oftheessentialoilandfractionswasperformedbycomparingthe massspectraobtainedwiththedataavailableinthelibrary(NIST version8.0).

The1HNMRspectrawereobtainedonaBrukerAC-300MHz 300F. Spectra were obtained in deuterated chloroform (purity 99.8%+0.05%TMS)obtainedfromCambridgeIsotopeLaboratories Inc.,withtetramethylsilaneastheinternalreference(TMS). Chemi-calshiftswererecordedindimensionlessvalues␦(ppm)indicating thesignassinglet(s),doublet(d),triplet(t),etc.

1H NMR (CDCl

3,300MHz)essential oilconsisting mainlyof ascaridoleandp-cymene.Ascaridole␦:1.03(d,J=6.9,H9,H10), 1.39(s,H7),1.52(d,J=9.0,H5),1.91(sept,J=6.9,H8),2.07(d,J=9.0, H6),6.43(d,J=8.7,H3),6.51(d,J=8.7,H2).p-Cymene␦:1.26(d,

J=6.9,H9,H10),2.34(s,H7),2.90(n,J=6.9,H8),7.16(s,H3,H4,H5, H6).

Theessentialoil, ethanolextract anddichloromethane,ethyl acetateandbutanolfractionsfromtheextractwereevaluatedfor cytotoxicityusingK562(myeloidleukemia),Nalm6andB15(acute Blymphoblasticleukemia),and RAJI(Burkitt’slymphoma)cells. CellviabilitywasassessedbytheMTT(3 (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide)assay,whichisbasedona methodusingadye,i.e.atetrazoliumsaltsolublethatisinwater whichisconverted topurpleformazanafterreduction by mito-chondrialdehydrogenasesinviablecells(Mosmann,1983).

Cells were grown in appropriate plastic dishes withDMEM (Dulbecco’sModified Eagle’sMinimum EssentialMedium), sup-plemented with fetal calf serum (FBS) 10% inactivated for 1h at 56◦C, 10mM of ethanesulfonicacidhydroxyethyl piperazine

(HEPES),1.5g/lofsodiumbicarbonate,1%ofpenicillinG(100U/ml), 100mg/ml of streptomycin, 50␮g/ml of amphotericin B in an incubatorhumidifiedat37◦Cwith5%CO2emissions.Beforethe

experiments,thenumberofviablecellswasdeterminedbythe try-panblueexclusionmethod,withcountsperformedinaNeubauer chamber.

CellswereplatedusingepMotion®5070equipment(Eppendorf,

Vaudaux, Schonenbuch, Switzerland) which distributed 2×104 cellsperwellin96-wellplates,which wereincubatedwiththe testsubstancesatdifferentconcentrations(0.01,0.1,1,10,100and 1000mg/ml)for48hat37◦Cin5%CO

2.DMSOwasusedfor solubi-lizationofthetestsubstancesinamaximumconcentrationof0.1% well/treatment;thisconcentrationisnotcytotoxictothecells. Dox-orubicinatthesameconcentrationstestedwasusedasapositive standard.

(3)

theequation below. Each experiment wasperformed in tripli-cateand repeatedatleastthreetimes.Resultsareexpressedas mean±standarddeviationvalues. ForIC50 calculationwasused nonlinearregressionPrism5.0softwareforwindows

Relativeviability=TesteControlsampleabsorbanceabsorbance×100

Resultsanddiscussion

TheprocessofextractingtheessentialoilfromC.ambrosioides

was conducted by steam distillation with a Clevenger appara-tus. The essential oil obtained was called CAEO, with a yield of 1.15%. After extraction, an aliquot of the oil was analyzed by GC-FID (Fig. 1), displaying two major peaks with retention times of 3.614 and 5.064min, which were identified by com-parison of the mass spectra in the standards of the NIST 8.0 libraryas1-isopropyl-4-methyl-benzene(p-cymeneorp-cymol1) (42.32%)and1-isopropyl-4-methyl-2,3dioxabicyclo[2.2.2] oct-5-ene(ascaridole2)(49.77%),respectively.Thesetwomonoterpenes amountedto92.09%oftheessentialoil.Oftheremaining7.91%of theessentialoil,onlytwocompoundsshowedpercentagesabove 1%,butthesewerenotidentifiedinNISTlibraryversion8.0.

O

1 2

O

Accordingtotheliterature,itisknownthatthechemical com-positionoftheoilvariesgreatlyaccordingtoitsregionoforigin anditsmethodofextraction.Asaresult,variationsinthe percent-ageofanalyzedcompoundscanbeobserved.p-Cymene,shownto makeup42.32%oftheessentialoil,differedlittlefromastudyby Tapondjouetal.(2002),whofoundthattheoilcontained50%p -cymene.ResearchbyJardimetal.(2008)ontheessentialoilofC. ambrosioidesobtainedinBrazil,Cavallietal.(2004)inMadagascar, Chekemetal.(2010)inCameroonandSinghetal.(2008)inIndia,

showedlowerconcentrationsofp-cymene,withpercentagesof2.0, 16.2,23.4and25.77%,respectively.

Ascaridoleappearedataconcentrationof49.77%intheoil.This percentagewasclosetothatfoundinastudybyCavallietal.(2004), whofoundthattheoilcontained55.3%ascaridole.Thispercentage differedgreatlycomparedtothatfoundinastudybyVieiraetal. (2011),whichfoundascaridoleasthemajorcompound(87%).On theotherhand,Borgesetal.(2012)foundlessascaridoleintheoil obtainedfromtheplantcollectedinnortheasternBrazil(17.1%).In astudyontheessentialoilfromIndia,ascaridolewaspresentas only7%oftheoilcomposition(Guptaetal.,2002).

AccordingtoJohnsonandCroteau(1984),ascaridoleisa sensi-tiveheatcomponent,whichhasabiosyntheticpathwayrelatedto theformationof˛-terpinene.Ascaridolemayundergochangesin itsconformationandbecomeisoascaridole.JohnsonandCroteau (1984)assessedthethermalisomerizationinascaridoleto isoas-caridolebyGCanalysisofleavesandfruitsofC.ambrosioideswhen theinjectortemperaturewasabove200◦C.Thethermalstructural

rearrangementofascaridoleisknown,but therehavebeenfew studiesonthisreaction(BocheandRunquist,1968).Cavallietal. (2004)reportedthatduringthecharacterizationoftheessential oilofC.ambrosioidesfromMadagascar,usingGC-FIDandGC/MS assays,thepartialisomerizationof ascaridoleintoisoascaridole occurred.

Inthepresentstudy,whentheoilwasanalyzedbyGC/MSwith aninjectiontemperature of250◦C it wasobservedthat

ascari-dole(retentiontimeof5.550min)wasconvertedintoitsisomer, isoascaridole (retentiontime of6.001min). So,theoilwasalso evaluatedbynuclearmagneticresonanceofhydrogen(1HNMR) (Fig.2).Thespectrumwasobtainedatroomtemperatureandno signwasdetectedthatcouldbeattributedtoisoascaridole.This techniquehasbecomeanexcellenttoolfortheanalysisof essen-tialoilsbecauseitallowsforevaluatingallhydrogenspresentin amatrix, whichcanbecomplex.Allsignalsobserved inthe1H NMRspectrumwereassignedtothehydrogensofthetwomajor compounds.Thesignalsrelativetotheotherhydrogensofthe com-poundswereobservedasnoiseinthebaseline.Fromtheanalysis of theintegral of the signals, theratio betweenp-cymene and ascaridolecouldbeestablished,whichwas1:1.2.Thesedataare consistentwiththeinformationobtainedbyGC-FID.

1.0 –0.25

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

O

O 2.50 Chromatogram

uV(x1 000 000)

2.0 3.0 4.0 5.0 6.0 7.0 8.0 Min

(4)

Fig.2.1HNMRspectrum(300MHz)oftheessentialoilofChenopodiumAmbrosioides.

Afterextractionoftheessentialoil,thehydrolatewassubmitted topartitioning with solvents of increasingpolarity. These frac-tionswerecalled:partitionhydrolatedichloromethane(PHDCM), partitionhydrolateethylacetate(PHEA),andpartitionhydrolate butanol(PHB).ThefirsttwoweresubjectedtoanalysisbyGC/MS

forcharacterization,whilethelatter,duetoitshighpolarity,was notanalyzedbythistechnique.

Theleavesusedforextractionoftheoil,inturn,werefurther subjectedtoextractionbymacerationwithethanol.Theextractwas alsosubjectedtotheliquid–liquidpartitionprocess.Thefractions

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 –0.25

–0.50 0.00 0.25 0.50 0.75 1.00 1.25

1

5

6 10

2 4

3 78 9 1.50

a

(x10 000 000)

PHDCM

b

PHEA

c

PEDCM

d

PEEA

e

CAEO

(5)

Table1

ComparisonofpercentageofthecompoundsanalyzedbyGC/MSinthedichloromethane(PHDCM)andethylacetate(PHEA)hydrolatefractionsandinthefractionof dichloromethaneofethanolextract(PEDCM).

Peaks Fraction

PHDCM PHEA PEDCM

RT Area% RT Area% RT Area%

1 4.458 13.36 4.461 19.64 4.454 18.11

2 – – 5.642 1.26 – –

3 5.738 3.43 5.739 7.22 5.735 2.78

4 5.792 1.06 – – – –

5 5.847 3.46 5.848 6.65 5.842 3.24

6 5.986 41.84 5.982 17.65 5.976 23.60

7 6.090 11.11 6.090 11.21 6.084 8.51

8 6.249 3.66 6.249 1.37 6.250 1.33

9 6.333 1.58 – – – –

10 6.467 0.80 6.478 1.94 – –

11 6.569 19.68 6.573 31.27 6.560 17.93

12 – – 6.920 1.79 – –

Table2

Cytotoxiceffect(IC50␮g/ml)ofessentialoilandfractionsoftheextractofChenopodiumambrosioidesandpositivecontrol(doxorubicin)againstK562,NALM6,B15,andRAJI cells.

Sample IC50(␮g/ml)

K562 NALM6 B15 RAJI

Essentialoil(CAEO) 86.1±10.6 25.3±3.6 >100 1.0±0.2 Ethanolicextractoftheleaves(CAEE) 47.0±6.1 61.9±6.4 >100 29.6±6.9 Dichloromethanefraction(PEDCM) 34.0±2.7 45.9±5.6 >100 40.9±6.5 Ethylacetatefraction(PEEA) >100 >100 >100 >100 Butanolfraction(PEB) >100 >100 >100 >100

Doxorrubicin 62.5±18.1 5.8±1.8 >100 13.2±0.5

Dataexpressedasmean±standarddeviationvalues.

werecalled:partitionextractdichloromethane(PEDCM);partition extractethylacetate(PEEA);partitionextractbutanol(PEB).These fractions,exceptforPEB,weresubsequentlyanalyzedbyGC/MS. ThechromatogramsobtainedfromfractionsoftheDCMandAE hydrolatesandtheethanolextractofC.ambrosioideswere com-paredandareshowninFig.3.

ThechromatogramsofthefractionsPHDCM,PHEA,andPEDCM hadpeakswithsimilarretentiontimes,indicatingasimilar chem-icalcomposition,differingonlyintheirconcentrations(Table1). Hydrolatepartitioningwasnotefficientbecausethesame com-poundsweredetectedindifferentfractions.

ThemassspectraobtainedfromthehydrolatefractionDCMwas comparedwiththemassspectrainNISTlibraryversion8.0,butno compoundwasidentified.Itissuggestedthatmanyofthese com-poundsarederivedfromthedegradationofthemaincompoundsin theessentialoilduetoheatingduringextraction.Peaks5,6,and7, withretentiontimesof5.99,6.09,and6.25min,respectively, corre-spondtoisomersofeachother,sincetheyhavethesamemolecular weight(170),oneofwhichispossiblydihydroascaridol,and oth-ersitsisomers.Compound10,correspondingtoaretentiontime of6.57min,isanisomerofascaridol,withanidenticalmolecular mass(168).

Afterthecharacterizationofessentialoilandfractionsobtained from the ethanol extract and hydrolate, samples CAEO, CAEE, PEDCM,PEEAandPEBweretestedondifferenttumorcelllines: myeloidleukemia(K562),acuteBlymphocyticleukemia(NALM6 andB15),andBurkitt’slymphoma(RAJI).Theresults(Table2)show thepotentialcytotoxicityofthetestedsamples,especiallyCAEO, whichshowedanextremelylowIC50of1mg/mlonRAJIcells, com-paredtotheIC50of13.2mg/mlofdoxorubicin(positivecontrol). ThefractionsPEDCMandCAEEalsoshowedlowerIC50valuesin K562cellscomparedtodoxorubicin(62.5mg/ml),withvaluesof 34and47mg/ml,respectively.

Efferth et al. (2002) isolated ascaridole from a commercial preparationoftheessentialoilofC.ambrosioidesandanalyzedin itusingdifferentstrainsoftumorcellsinvitro(CCRF-CEM–human lymphoblasticleukemiaTcells,HL60–promyelocyticleukemia, andMDAMB-231–breastcancer).Accordingtotheirresults,it wasconcludedthatascaridoleshowedcytotoxicityintheanalyzed cells.Thisstudywasthefirsttodemonstratetheimportanceof ascaridoleasapossiblecandidateforthetreatmentofcancer,and revealstheneedforfurtherstudyofitscytotoxicaction.Thus,it canbesuggestedthattheantitumoreffectoftheessentialoilin Burkitt’slymphomacells(RAJI)inthepresentstudymayberelated tothehighconcentrationofascaridole.

Nascimentoetal.(2006),ontheotherhand,investigatedthe treatmenteffectofahydroalcoholicextractofC.ambrosioidesin Ehrlichascitestumorcellsandobservedthatthisspecieswasable toinhibittumorgrowthwhenadministeredpriortotumor implan-tation,i.e.twodaysafterimplantation.Theauthorsalsosuggested thatthiseffectmayberelatedtotheantioxidantpropertiesofC. ambrosioides.

TheactivityoftheessentialoilofC.ambrosioidesisprobably related tothelargeamountof ascaridol, since theothermajor compound,p-cymene,isrecognizedasapotentanti-inflammatory (Chenetal.,2013)andhaslowcytotoxicactivity(Kobaetal.,2009). ThroughtheanalysisoftheessentialoilofC.ambrosioidesby GC/MSand1HNMR,itwaspossibletoidentifytwomajor com-pounds, i.e. ascaridole and p-cymene, which were identified in previousresearchandhavebeenfoundindifferentconcentrations. Thisindicatesthedependenceoftheregionofcollectionand extrac-tionconditionsontheisolationofthesecompounds.

(6)

in inhibitingthe proliferationof K562and Raji tumorcells are required.

Ethicaldisclosures

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Protectionofhumanandanimalsubjects. Theauthorsdeclare thatnoexperimentswereperformedonhumansoranimalsfor thisstudy.

Authorcontributions

RTD,LTG,andAMcontributedtocollectingplantsampleand identification,ofherbarium,runningthelaboratorywork,analysis ofthedataanddraftingthepaper.RTG,IVF,GCF,AEN,CMSB,MMS, ABC,andAMcontributedtorunningthelaboratorywork, extrac-tionofessentialoil,fractionationandbiologicalstudies.RTG,CMSB, TMW,andAMcontributedtochromatographicanalysis.RTG,MMS, ABC,GCF,andAMcontributedtobiologicalstudies,analysisofthe dataanddraftingthepaper.Alltheauthorshaveread thefinal manuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

Theauthors thank CNPq,Fundac¸ãode AmparoàPesquisa e Inovac¸ãodoEstadodeSantaCatarinaandtheUniversidadedoVale deItajaíforprovidingfinancialsupport(ProBICProPPEC/UNIVALI).

References

Alitonou,G.A.,Sessou,P.,Tchobo,F.P.,Noudogbessi,J.,Avlessi,F.,Yehouenou,B., Menut,C.,Villeneuve,P.,Sohounhloue,D.C.K.,2012.Chemicalcompositionand biologicalactivitiesofessentialoilsofChenopodiumambrosioidesL.collectedin twoareasofBenin.Int.J.Biosci.2,58–66.

Boche,J.,Runquist,O.,1968.Kineticsofthethermalrearrangementofascaridole.J. Org.Chem.33,4285–4286.

Borges,R.A.,Aires,J.R.,Higino,T.M.,deMedeiros,M.D.,Citó,A.M.,Lopes,J.A.,de Figueiredo,R.C.,2012.Trypanocidalandcytotoxicactivitiesofessentialoilsfrom medicinalplantsofNortheastofBrazil.Exp.Parasitol.132,123–128. Cavalli,J.F.,Tomi,F.,Bernardini,A.F.,Casanova,J.,2004.Analysisoftheessentialoilof

ChenopodiumambrosioidesbyGC,GC–MSand13C-NMRspectroscopy: quantita-tivedeterminationofascaridole,aheat-sensitivecompound.Phytochem.Anal. 15,275–279.

Chekem,M.S.G.,Lunga,P.K., Tamokou,J.D.D.,Kuiate,R.,Tane, P., Vilarem,G., Cerny,M.,2010.AntifungalpropertiesofChenopodiumambrosioidesessential oilagainstCandidaspecies.Pharmaceuticals3,2900–2909.

Chen,L., Zhao,L.,Zhang, C.,Lan, Z., 2013. Protective effect ofp-cymeneon lipopolysaccharide-inducedacutelunginjuryinmice.Inflammation2,358–364. Cruz,G.V.B.,Pereira,P.V.S.,Patrício,F.J.,Costa,G.C.,Sousa,S.M.,Frazao,J.B., Aragão-Filho,W.C.,Maciel,M.C.G.,Silva,L.A.,Amaral,F.M.M.,Barroqueiro,E.S.B.,Guerra,

R.N.M.,Nascimento,F.R.F.,2007.Increaseofcellularrecruitment, phagocyto-sisabilityandnitricoxideproductioninducedbyhydroalcoholicextractfrom

Chenopodiumambrosioidesleaves.J.Ethnopharmacol.111,148–154. DeFeo,V.,Senatore,F.,1993.MedicinalplantsandphytotherapyintheAmalfitan

Coast,SalernoProvince,Campania,southernItaly.J.Ethnopharmacol.39,39–51. Dembitsky,V.,Shkrob,I.,Hanus,L.O.,2008.Ascaridoleandrelatedperoxidesfrom thegenusChenopodium.Biomed.Pap.Med.Fac.Univ.PalackyOlomoucCzech Repub.2,209–215.

Efferth,T.,Olbrich,A.,Sauerbrey,A.,Ross,D.D.,Gebhart,E.,Neugebauer,M.,2002. ActivityofascaridolfromtheanthelminticherbChenopodiumanthelminticum

L.againstsensitiveandmultidrug-resistanttumorcells.AnticancerRes.22, 4221–4224.

Gobbo-Neto,L.,Lopes,N.P.,2007.PlantasMedicinais:Fatoresdeinfluênciano con-teúdodemetabólitossecundários.Quim.Nova30,374–381.

Grassi,L.T.,(Dissertac¸ãodeMestrado)2011.ChenopodiumambrosioidesL.–Ervade SantaMaria(Amaranthaceae):estudodopotencialanti-inflamatório, antinoci-ceptivoecicatrizante.2011.Itajaí,147f.ProgramadePós-graduac¸ãoemCiências Farmacêuticas–UniversidadedoValedoItajaí.

Gupta,D.,Charles,R.,Mehta,V.K.,Garg,S.N.,Kumar,S.,2002.Chemicalexamination oftheessentialoilofChenopodiumambrosioidesL.fromthesouthernhillsof India.J.Essent.OilRes.14,93–94.

Hmamouchi,M.,Lahlou,M.,Agoumi,A.,2000.Molluscicidalactivityofsome Moroc-canmedicinalplants.Fitoterapia71,308–314.

INCA,2011.Estimativa2012:IncidênciadeCâncernoBrasil.InstitutoNacionaldo Câncerhttp://www.inca.gov.br/estimativa(accessedFebruary2014). Jardim,C.M.,Jham,G.N.,Dhingra,O.D.,Freire,M.M.,2008.Compositionand

antifun-galactivityoftheessentialoiloftheBrazilianChenopodiumambrosioidesL.J. Chem.Ecol.34,1213–1218.

Johnson,M.A.,Croteau,R.,1984.Biosynthesisofascaridole:iodide peroxidase-catalyzed synthesis of monoterpene endoperoxide in soluble extracts of

Chenopodiumambrosioidesfruit.Arch.Biochem.Biophys.235,254–266. Kinupp,V.F.,(TesedeDoutorado)2007.Plantasalimentíciasnão-convencionaisda

regiãometropolitanadePortoAlegre,RS.2007.PortoAlegre,562f.Faculdade deAgronomia,UniversidadeFederaldoRioGrandedoSul.

Kliks,M.M.,1985. Studiesonthetraditional herbalanthelminticChenopodium ambrosioidesL.:enthnopharmacologicalevalutionandclinicalfieldstrials.Soc. Sci.Med.21,879–886.

Koba,K.,Catherine,G.,Raynaud,C.,Chaumont,J.P.,Sanda,K.,Laurence,N.,2009. ChemicalcompositionandcytotoxicactivityofChenopodiumambrosioidesL. essentialoilfromTogo.BangladeshJ.Sci.Ind.Res.44,435–440.

Kokanova-Nedialkova, Z., Nedialkov, P.T., Nikolov, S.D., 2009. The genus

Chenopodium:phytochemistry,ethnopharmacologyandpharmacology. Phar-macogn.Rev.3,280–306.

Lorenzi,H.,Matos,F.J.A.,2002.PlantasmedicinaisnoBrasil:nativaseexóticas cul-tivadas.InstitutoPlantarumdeEstudosdaFlora,NovaOdessa,SP.

Matos,J.A.L.,(Dissertac¸ãodeMestrado)2011.PotencialBiológicodeChenopodium ambrosioidesL.(Erva-de-Santa-Maria).Porto,51f.ProgramadePós-graduac¸ão emCiênciasFarmacêuticas,UniversidadeFernandoPessoa.

Monzonte,L.,Garcia,M.,Montalvo,A.,Scull,R.,Miranda,M.,Abreu,J.,2007.Invitro activityofanessentialoilagainstLeishmaniadonovani.Phytother.Res.21, 1055–1058.

Mosmann,T.,1983. Rapidcolorimetricassayforcellulargrowthand survival: applicationtoproliferationandcytotoxicityassays.J.Immunol.Methods65, 55–63.

Nascimento,F.R.F.,Cruz,G.V.B.,Pereira,P.V.S.,Maciel,M.C.G.,Silva,L.A.,Azevedo, A.P.S.,Barroqueiro,E.S.B.,Guerra,R.N.M.,2006.AsciticandsolidEhrlichtumor inhibitionbyChenopodiumambrosioidesL.treatment.LifeSci.78,2650–2653. Patrício,F.J.,Costa,G.C.,Pereira,P.V.S.,Aragão-Filho,W.C.,Sousa,S.M.,Frazão,J.B.,

Pereira,W.S.,Maciel,M.C.G.,Silva,L.A.,Amaral,F.M.M.,Rebêlo,J.M.M.,Guerra, R.N.M.,Ribeiro,M.N.S.,Nascimento,F.R.F.,2008.Efficacyoftheintralesional treatmentwithChenopodiumambrosioidesinthemurineinfectionbyLeishmania amazonensis.J.Ethnopharmacol.115,313–319.

Singh,H.P.,Batish,D.R.,Kohli,R.K.,Mittal,S.,Yadav,S.,2008.Chemicalcomposition ofessentialoilfromleavesofChenopodiumambrosioidesfromChandigarh,India. Chem.Nat.Compd.44,378–379.

Tapondjou,L.A.,Adler,C.,Bouda,H.,Fontem,D.A.,2002.Efficacyofpowderand essentialoilfromChenopodiumambrosioidesleavesaspostharvestgrain protec-tantsagainstsix-storedproductbeetles.J.StoredProd.Res.38,395–402. Vieira,D.F.,Azevedo,M.M.,Marins,A.K.,Pinheiro,P.F.,deQueiroz,V.T.,Costa,A.V.,

Imagem

Fig. 2. 1 H NMR spectrum (300 MHz) of the essential oil of Chenopodium Ambrosioides.

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Segundo Dias ( 2003 ),o Congresso de Moscou, objetivou a discussão das dificuldades encontradas e dos progressos alcançados pelas nações no campo da E.A., e a

The results showed the hexane extract and the essential oil from fruits of Pterodon emarginatus (Vogel) as potential sources of antimycobacterial drugs against 4 species of tested

This study aimed to evaluate the leishmanicidal activity of ethanol extract, fractions, and isolated substance obtained from Handroanthus serratifolius against Leishmania

A metodologia empregada se baseia nos estudos de fatores pedológicos condicionantes de propriedades dos solos importantes para o projeto e construção de obras de engenharia

The essential oil from Piper solmsianum leaves and its major compound (sarisan) were tested to verify their influences upon mice behaviour.. The essential oil was obtained

The aim of the study was to evaluate antibacterial activity of Caraway essential oil obtained from fruit originated from different genotypes and investigate the correlation

Variation of the reaction parameters (temperature, flow rate and molar ratio) positively influenced the mass transfer coefficient (kc) which varied from 0.95 × 10 −4 to 2.39 ×