• Nenhum resultado encontrado

of Poisson Deviates Distributions

N/A
N/A
Protected

Academic year: 2022

Share "of Poisson Deviates Distributions"

Copied!
17
0
0

Texto

(1)

Computer Generation from Modified Normal

J. H. AHRENS

University of Kiel, West Germany and

U. DIETER

Technical Univers,ty, Austria

of Poisson Deviates Distributions

Samples from Poisson distributions of m e a n # _> 10 are generated by truncating suitable normal deviates and applying a correction with low probabdity. For p < 10, inversion is substituted. T h e m e t h o d is accurate and it can cope with changing parameters p. Using efficient subprograms for generating uniform, exponential, alid normal deviates, the new algorithm is m u c h faster t h a n all competing methods.

Categories and Subject Descriptors: G.3 [ M a t h e m a t i c s o f C o m p u t i n g ] : Probability and Statistics-- random number generatmn; statistical software

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Poisson distribution, acceptance-rejection method

1. INTRODUCTION

In 1969 D. E. K n u t h proposed the following research problem [8, Sect. 3.4.1, Ex.

22]: "Can the exact Poisson distribution for large # be obtained by generating an appropriate normal deviate, converting it to an integer in some convenient way, and applying a {possibly complicated) correction a small percent of the time?"

We are going to solve this exercise for all Poisson distributions with mean # _ 10--in the case of smaller # < 10, a simple inversion method is substituted in our proposed new Algorithm PD.

Since the right-hand tail of a Poisson distribution does not fit under any normal density, an acceptance-rejection method would have to use a normal " h a t "

covering the bulk of the Poisson distribution, and a separate majorizing function for large arguments. A diploma thesis at Kiel University did not overcome the technical difficulties of this approach; the good fit of the normal envelope was upset by tedious initializations and case distinctions.

This research was supported by the Austrian Research Council (Fonds zur Fbrderung der wissen- schaftlichen Forschung).

Authors' addresses: J. H. Ahrens, D e p a r t m e n t of Mathematics, Umversity of Kiel, D 2300 Kiel, Olshausenstrasse 40-60, West Germany; U. Dieter, Institute of Statistics, Technical University, A 8010 Graz, Hamerllnggasse 6, Austria.

Permission to copy without fee all or part of this material is granted provided t h a t the copies are not made or distmbuted for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given t h a t copying IS by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requtres a fee a n d / o r specific permissmn.

© 1982 ACM 0098-3500/82/0600-0163 $00.75

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982, Pages 163-179.

(2)

164 • J.H. Ahrens and U. Dieter

010-- J *

__l"-:"

0 05 -- J

I0

~ ~ 6 (L--8)

7 • ~3 i i l 15 I I 18 19 I0

.LLLLL~/ok

,tin ,J2 ,13 ,i,4 ,15 ,16 ,rr ": ... ~::,.,.,,.~

F i g u r e 1

In [5] we dodged t h e p r o b l e m b y using double exponential h a t s covering all binomial and Poisson distributions. T h e Algorithm B P in [5] leads to c o n s t a n t c o m p u t a t i o n times for large p a r a m e t e r s . F o r Poisson distributions with poten- tially variable m e a n s #, this seems to be t h e m o s t efficient m e t h o d to date.

H o w e v e r , quite r e c e n t l y we developed a v e r y successful sampling p r o c e d u r e for g a m m a distributions [6] in which we modified J. v o n N e u m a n n ' s a c c e p t a n c e - r e j e c t i o n m e t h o d . T h i s new a p p r o a c h is now applied to Poisson distributions.

In Figure 1 t h e case # = 10 is displayed. T h e p r o b a b i l i t y function pk of t h e Poisson distribution is c o m p a r e d with a suitable probability density fk of a

"discrete n o r m a l distribution" (dotted lines). T h e fk are defined as integrals over e q u a l intervals of t h e s t a n d a r d n o r m a l probability density function. Since ~ p k - ~, fk ffi 1, we m u s t e x p e c t t h a t pk < fk for some k b u t pk >- fk for others. T h i s situation will n o t be mended: no scaling f a c t o r a > 1 is applied such t h a t pk <

ark b e c o m e s t r u e for m o r e k. T h e fk are n o t e v e n t h e best overall discrete n o r m a l a p p r o x i m a t i o n s to t h e pk. I n s t e a d t h e y are contrived such t h a t pk < fk for all k < m a n d p k _ fk for all k __ m, w h e r e m __ L = [# - 1.1484J i f # _> 10.

T h e new m e t h o d starts with a s t a n d a r d n o r m a l deviate T which is t r a n s f o r m e d quickly into a sample K ~-- [# + J-#pTJ f r o m a discrete n o r m a l distribution. If K __ L, we know t h a t pK -- fK and a c c e p t K immediately as a Poisson (#) variate (Case I). Otherwise we p e r f o r m the usual a c c e p t a n c e - r e j e c t i o n test: a u n i f o r m deviate is c o m p a r e d withpK/fK. T h e calculations Ofpg (Section 2) and fg (Section 3) are involved, b u t in m o s t cases t h e y are avoided t h r o u g h a simple squeeze function (Section 4) zg

<--pg/fK

(Case S). T h e asterisks (*) in Figure 1 depict t h e p r o d u c t s Zgfg, and illustrate t h e tightness of t h e squeeze. If t h e c o m p a r i s o n with

ACM Transactions on Mathematmal Software, Vol 8, No 2, June 1982.

(3)

Computer Generation of Poisson Deviates • 165

i I I ~ ; I ~ P I '1 '~ ' ,l,.- ,A"

t = - 0 6 7 4 4 t : O t : l ? : 1 8 t : 2 t : 3 t - - 4 Figure 2

zK does not lead to acceptance, the q u o t i e n t P ~ / f g has to be worked out; the probability of still accepting K will be rather small (Case Q).

Whenever K is finally rejected, it must be replaced with a new sample, and this has to be from the difference distribution whose probability function is propor- tional to p K - f g ( K -- m). Thus the rejected excess on the left (horizontal shades in Figure 1) is transformed to the defect on the right (vertical shades) which has the same area. Sampling from the difference distribution will be carried out by means of double exponential h a t s on p K - f g (Case H); for # = 10 the hat is displayed in Figure 2. Fortunately, the resulting more laborious acceptance- rejection test (Section 5) occurs only rarely: see Table II for the probabilities P(I), P(S), P(Q), and P(H) of the four cases.

Finally, we state the Algorithm PD in the style of K n u t h [8] (Section 6), report computational experience (Section 7), and include a sample computer program (Section 8). With assembler subprograms for uniform, exponential, and normal deviates this F O R T R A N code returns Poisson variates in about twice the time required for a single precision logarithm (ALOG, 50 ~ s ) - - t h r e e ALOG times if the mean # is continually changing between calls. But the new algorithm is really designed as part of a machine code sampling package, and our assembler version of Algorithm PD cuts the time down to 50-70 ~s, so Poisson sampling becomes almost as fast as taking o n e logarithm.

2. POISSON DISTRIBUTIONS

The Poisson (#) probability function is given by

e-~#k k = O, 1, 2 . . . (1)

p k - k!

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982.

(4)

1 6 6 d. H. Ahrens and U. D i e t e r

Table I

l e l < 2 × l O -a 1~1<2×10 -9 IE1<2.5× 10 -'°

ao -0.49999999 -0.500000000 -0.5000000002

a, 0.33333328 0.333333278 0.3333333343

a2 -0.25000678 -0.249999856 -0.2499998565

a3 0.20001178 0.200011780 0.1999997049

a4 -0.16612694 -0.166684875 -0.1666848753

a5 0.14218783 0.142187833 0.1428833286

aG -0.13847944 -0.124196313 -0.1241963125

a7 0.12500596 0.125005956 0.1101687109

as -0.114265030 -0.1142650302

a9 0.1055093006

Note: e -- t r u n c a t i o n error.

T h e pk a r e c a l c u l a t e d directly f r o m (1) o n l y if k is small. F o r large k t h e Stirling a p p r o x i m a t i o n

ln k ! = ( k + 2 ) ln k - k + ln d 2-~ + - - 1 - - 1 + - -1 + o ( k - 5 ) ( 2 )

12k 360k 3 1260k ~ is used. T h e resulting expression

ph -- , / ~ 1 e x p ( k In(1 + v) - (# - k) - 6), (3)

w h e r e

# - k 1 1 1

k a n d 6 = 12---k 360k 3 t 1260k 5, (4)

is n o t p r o n e to f l o a t i n g - p o i n t overflow. H o w e v e r , if v is small, t h e r o u n d i n g e r r o r s of (3) b e c o m e severe. T h e r e f o r e , w h e n e v e r I v I - 0.25 we e x p a n d

k ln(l + v) - (# - k) = k v 2 ( l v v2 v8 )

- ~ + 5 - 7 + ~ . . . kv2~'(v)' a n d a p p r o x i m a t e q,(v) b y a n e c o n o m i z e d p o l y n o m i a l

(5)

1 V -- V 2 V 3

~ ( v ) f f i ~ + . 5 ---~ + -~ . . . ~ ~ ajv J,

J--0 (6)

w h i c h c o n f o r m s to t h e s t a n d a r d precision a c c u r a c y of t h e c o m p u t e r . Coefficients a~ for 7-10 d e c i m a l digits a c c u r a c y a r e listed in T a b l e I.

On o u r S i e m e n s 7760 c o m p u t e r , w i t h its 24-bit m a n t i s s a , t h e first set of coefficients aj(n -- 7) is sufficient, a n d (1) is u s e d if k < 10 aided b y a t a b l e of k!

for 0 ~ k _< 9. I f k >_ 10, t h e last t e r m 1/(1260k 5) of 3 is s m a l l e r t h a n 8 × 10-9; so it c a n be i g n o r e d in (4). F o r m o r e a c c u r a t e f l o a t i n g - p o i n t a r i t h m e t i c s t h e t h i r d s e t of coefficients aj ( n = 9) in T a b l e I a n d t h e inclusion of t h e t e r m 1/(1260k 5) in (4) r e s u l t s in t r u n c a t i o n e r r o r s below 6 × 10 - ' ° if k __ 10.

ACM TransacUons on Mathematmal Software, Vol 8, No 2, June 1982

(5)

Computer Generation of Poisson Deviates • 167 3. DISCRETE NORMAL DISTRIBUTIONS

S i n c e P o i s s o n (#) d i s t r i b u t i o n s t e n d t o n o r m a l d i s t r i b u t i o n s w i t h m e a n # a n d s t a n d a r d d e v i a t i o n s = ~/'~, o n e c a n a p p r o x i m a t e t h e P o i s s o n p r o b a b i l i t i e s ph i n

(1) b y t h e i n t e g r a l s

1 t' t ' k - # + l

~ f t ( - ~ ) = s a n d s=ur~. (7)

fk = exp -- dx, w h e r e k - #

t - s

T h e s e fk ( - ~ < k < oo) c o n s t i t u t e t h e p r o b a b i l i t y f u n c t i o n o f a discrete normal distribution. T h e T a y l o r e x p a n s i o n s a r o u n d t h e m i d p o i n t s

t +.t' k - t L + ½

x - = ( 8 )

2 s

m a y be e x p r e s s e d in t e r m s o f H e r m i t e p o l y n o m i a l s Hen (x). U s i n g ( - 1 ) nZ(n)(X)

Hen(X) =

Z(x)

[1, 26.2.3], w h e r e Z(x) is t h e s t a n d a r d n o r m a l p r o b a b i l i t y d e n s i t y f u n c t i o n , we o b t a i n

1( x+l/2s ( ~.~)

1 n~0 H e 2 n ( x )

-- exp - d~ - (9)

fk ~ ~x-~/2, s ~ ] ~ = 22n( 2n + 1) !s~n"

T h e f a c t o r s He2n(X) m a y be w o r k e d o u t r e c u r s i v e l y f r o m [1, 22.7.14]:

Heo(x) = 1, H e d x ) = x, H e ~ + d x ) = x H e m ( x ) - m H e = - l ( x ) . (10) Explicitly, (9) r e a d s

( x4ox +

1 - -2" + ~ + 1920s 4

fk = ~ - - ~ exp 1

x 6 - 15x 4 + 4 5 x 2 - 15

4 322560s 6

x s - 28x 6 + 210x 4 - 420x 2 + 105 +

92897280s s

x w - 4 5 x s + 630x 6 - 3150x 4 + 3725x 2 - 945 \

+ 40874803200s lO + . . . . ) (11)

W e u s e as m a n y t e r m s as r e q u i r e d f o r t h e g i v e n p r e c i s i o n o f t h e c o m p u t e r . I n t h e final m e t h o d t h e r e a r e o n l y t w o a p p l i c a t i o n s o f (11). W e s h a l l n e e d t h e q u o t i e n t s pk/fk in c a s e s # --- 10 a n d K < L# - 1.1484J. S e c o n d , w h e n g¢ _ 10 a n d p k - fk > 0, w e c o n s i d e r e x p r e s s i o n s (ph - f D / h ( t ) , w h e r e h(t) is d e f i n e d as a h a t f u n c t i o n m a j o r i z i n g t h e d i f f e r e n c e s pk - fk. T h e s e t w o q u a n t i t i e s a r e c o m p a r e d w i t h (0, 1)- u n i f o r m d e v i a t e s , a n d w e h a v e t o m a k e s u r e t h a t t h e i r a b s o l u t e e r r o r s a r e s m a l l e n o u g h .

W e e s t a b l i s h e d n u m e r i c a l l y (by m e a n s o f e x t e n s i v e c o m p u t e r - g e n e r a t e d e r r o r tables) t h a t t h e l a r g e s t e r r o r s o c c u r a t t h e s m a l l e s t m e a n ~t -- 10. L e t f(2n) b e t h e a p p r o x i m a t i o n t o f~ w h i c h is o b t a i n e d b y t e r m i n g t i n g (11) a f t e r t h e 1/s2n-term.

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982.

(6)

168

T h e n

and

J. H. Ahrens and U. Dieter

f(k2.) 0<_k_<~

I }

e"(2n) = max h ( t ) ~ ( ( ~ all k for whichpk - h > 0 are bounded by their values at # -- 10 (for # > 10 they decline steadily):

e'(6) < 1.5 x 10 -l°, e'(8) < 3.2 x 10 -13, e'(10) < 4.5 x 10 -16, e"(6) < 1.0 x 10 -8, g'(8) < 2.0 X 10 -11, e"(10) < 3.3 x 10 -14.

Hence for up to 8 digits precision the first two lines of (11) are sufficient, and we work out f(k 6) in the following way. Whenever the m e a n # changes, define

1 0.3989422804 .2

bl b2 ~0 b~,

~=s42~r~ s #

1

c3 = -~ bib2, c2 = b2 - 15c3, cl - bl - 6b2 + 45c3, (12) Co = 1 - bl + 3b2 - 15c3.

With these coefficients the approximation to fk (x) becomes

f(k6)(x) --- e x p ( - ~ ) ~ ( ( ( c ~ x 2 + c 2 ) x ~ + o ) x 2 + Co). (13)

4. C O M P A R I S O N S

T h e Poisson and discrete normal probability functions pk and fk are now com- pared, and a squeeze function zk < - p k / f k is established. For the study of

d q k qk = In pkfk = In pk - In fk and q'k - d k k is treated as a continuous variable in accordance with (8):

k - # + ½ k+½

X---- - - 'S + - - , ~ - - - - S.

S S

F r o m (1) and (11) we have

q k = - s 2 + k l n s 2 - 1 n k ! + l n ( s 2q~)+--ff 1 -

s,(

s2 ( 1 ( ( k + ½ f 1 )

- i n l + g i 1 ~

- ~

1 ( ( k + ½ ) 4 6 ( k__+~ 2 3 ) )

+ 1 - ~

1 -

s2 - ~

1

s2 ] + ~ +

. . . .

ACM Transactions on Mathematical Software, Vol. 8, No. 2, J u n e 1982

(7)

Computer Generation of Poisson Deviates • 169 It is easy to verify numerically t h a t qo and q, are negative within our range

# _ 10; even s 2 = ~ > 2 suffices. For k >_ 2 the Stirling approximation (2) to In k!

yields

s 2( k+½~

q k f - s 2 + - ~ 1 - s2 ] + k

( 1) s 2 1 1 1

+ k + In k 12----k + 360k ---~ 1260k ~ -F . . .

ln(1+1((

1 ( (

k+½~ 4

6 ( k + ½ ) 2 3 ) ) +19-20 1 - s2 ] - ~ 1 - s2 +~-~ + . . . . Using t -- (k - # ) / s -- k / s - s, t h a t is, k = s 2 + st ffi s2(1 + t/s), we obtain

1( 1)2(

q k f s t + ~ t + ~ s - s 2

1

+ s t + In 1 + - 1 2 ( s e + s t ) + . . .

- l n ( l + 2 T s 2 ( ( t + ~ s ) 2 - 1 ) + ' ' * )

(14)

1 dqk t 1 1

q'k-- s d--~- - 1 + - + s ~ s 2 - 1 - 2(s 2 + st)

( ! ) 1

- In 1 + + 12(s 2 + st)2

12sa(t+1)(l+4~--~((t+l)2--3) +

" " ) (1 + 2-~s2((t + 1 ) 2 - 1) + " ' - )

q'k= t - - I n 1 + +

s

t + - - 1

t 2s 1

2s2(s + t) ---5- + ~ 12s + o(s-4)

( t , s s t ) + i

q~ -- - In 1 + + 12s3(s + t) 2-~s 4 + °(s-4) " (15) T h e expression in curly braces is never negative. T h e second t e r m in (15) is negative for t < 0 since t > - s , and it is positive for 0 < t < 5s. T h e case t >_ 5s is irrelevant since the second t e r m can dominate t h e curly bracket only n e a r

A C M T r a n s a c t i o n s o n M a t h e m a t m a l Software, Vol. 8, No. 2, J u n e 1982

(8)

170 J . H . Ahrens and U. Dieter

t = 0. B e c a u s e o f q ~ = - - -

q l c h a n g e s s i g n n e a r

t 2 t 3 5t

282 38---- 5 + ~ + 0 (S -a)

: - - - ~ ( ( t - 3 - - : : ) 2 - ( ( 3 - - : : ) 2 + 5 ) ) + o ( s - 3 ) ,

3s 3s I 2O 5

~ / 1 + a n d n e a r t2 -- 0.

tl =- -4- - -4 - ~ s 2 = - 6 - - s

H e n c e qk i n c r e a s e s f o r t < tl, i t d e c r e a s e s if tl < t < 0 a n d i t i n c r e a s e s a g a i n f o r t > 0. E x p a n d i n g t h e l o g a r i t h m i n (14) y i e l d s

t 2 t 1

qk = st + -~ + ~s + 8s --~

( i)(t

- s +st+ 3 s 3 t 3 4 ~ ) t 4 \ 1 2 s 2 1 t 2 - 1 - - - ~ 2 4 s + o (s -2) (16)

t 3 1

qk -- ~ss + ~ (2 + 5 t 2 - 2 t 4) + o (s-2), a n d t h i s a p p r o x i m a t i o n o f qk is z e r o i f

1

5 (_~) 1/3 5

to -- - (2s)1/a - 12---s + ° ( s - l ) ; ko = tt + sto -- tt - - + o ( 1 ) . (17) F u r t h e r m o r e , s u b s t i t u t i n g t -- 0 i n t o (16), w e o b t a i n

(. 1 1 ) > 0 at t = O (corresponding to k = #). (18)

qk = 12-s e - - 1 2 #

T h e o v e r a l l b e h a v i o r o f qk is n o w c l e a r : w e h a v e qk -< 0 if t __ to < 0 a n d qk -> 0 f o r a l l t >__ to, e s p e c i a l l y i f t > 0. C o n s e q u e n t l y , t h e r e is a n i n t e g e r m ( t t ) s u c h t h a t p k < fk i f k < m b u t p k - fk if k __ m . F o r n u m e r i c a l b o u n d s w e n e e d a f e w o f t h e

a c t u a l d i f f e r e n c e s p k - fh.

g = 10.0000 k = 7 t = - 0 . 9 4 8 6 8 3 3 0 k = 8 t = - 0 . 6 3 2 4 5 5 5 3

p7 - ~ = - 0 . 0 0 2 0 7 4 5 5 P s - ~ = + 0 . 0 0 0 2 2 8 8 4 tt = 10.1484 k = 7 t - - - 0 . 9 8 8 3 0 5 2 8

k - 8 t =- - 0 . 6 7 4 3 9 8 1 3

pv - f7 -- - 0 . 0 0 2 4 3 6 4 1 p s - fs = + 0 . 0 0 0 0 0 0 0 1 g -- 10.1485 k = 7 t = - 0 . 9 8 8 3 3 1 8 0 p7 - f7 = - 0 . 0 0 2 4 3 6 6 6 k = 8 t -- - 0 . 6 7 4 4 2 6 1 9 p s - fs -- - 0 . 0 0 0 0 0 0 1 5 T h e s e d a t a a r e r e a s o n a b l y c l o s e t o t h e a b o v e a p p r o x i m a t i o n s : a t tt = 10.1484, e q . (17), y i e l d s to ~ - 0 . 6 7 0 2 a n d ko ~ 8.0133. N o w c o n s i d e r # = n + 0.1484, w h e r e n = 10, 11, 1 2 , . . . . T h e n to d e c r e a s e s a n d # - ko i n c r e a s e s i n (17), a n d t h e r e f o r e ACM Transactions on Mathematmal Software, Vol 8, No 2, June 1982

(9)

Computer Generation of Poisson Deviates 171

we c a n be c e r t a i n t h a t

pk > fk if ~t >_ 10 a n d k _> L > m, w h e r e L -- L# - 1.1484J (19) k - #

p k < f k if /~-->10 a n d t = _<-0.6744. (20)

S

Finally a squeeze function zk <_ pk/fk is constructed. F r o m qk ffi (ta/6s) + o (s-~), eq. (16), we c o n j e c t u r e t h a t Zk ~ e x p qk ~ exp(ta/6S) ~ 1 + (ta/6S) will s e r v e t h e purpose. H e n c e we set Zk ffi 1+ t3/Cs, a n d f r o m (15) we calculate

d In - In zk ffi - q

dk dk Zk elk szk d t

t , o s _ t , t In 1 + + 12sa(s + t)

s

H e r e t h e first p a r t t

s

3t ~

s(Cs + t 8) o (s -3)

t ( 5 s - - t) { t2 3t2 }

4 1 2 S a ( S + t ) b ~S 2 s ( C s + t ~) +°(s-8)" (21)

)

2s ~ ~ 1 + =yTs ~ 1 - ~ s + ~ . . . .

a n d t h e m i d d l e t e r m a r e n e g a t i v e if t < 0 a n d positive if t > 0. T h e last p a r t b e c o m e s

t 2 3 t z t 2 ( ( C - 6)s + t 3) 2s 2 s(Cs + t 3) 2s2(Cs + t 3) '

a n d for C = 6 this is also a n o d d function of t.

C o n s e q u e n t l y we r e p l a c e C w i t h 6 as t h e b e s t possible c o n s t a n t w h i c h g u a r a n - t e e s t h a t ln(pk/fk) -- In Zk, eq. (21), d e c r e a s e s w h e n t < 0. H e n c e zk/(p~/fD increases for n e g a t i v e t, b u t a t t = 0 we h a v e Zk = 1, pk/fk ffi exp qk > 1, eq. (18), a n d Zk/(pk/fk) is still s m a l l e r t h a n 1. Using t = (k - p)/s, eq. (7), t h e final squeeze i n e q u a l i t y r e a d s

t 3 (k - #)a < pk 0 ( c o r r e s p o n d i n g to k < #). (22) Z k f l + ~ s = I + 6/~ 2 -- fk ' if t - -

5. T H E H A T F U N C T I O N

I n o r d e r to a c h i e v e a good fit to t h e P o i s s o n distribution we d e v e l o p e d t h e discrete versions of n o r m a l distributions in S e c t i o n 3. An a l t e r n a t i v e would h a v e b e e n to c o m p a r e o r d i n a r y n o r m a l p r o b a b i l i t y densities w i t h " c o n t i n u o u s P o i s s o n distributions," t h a t is w i t h densities

fo ~ e-tt x-x OF(x, tt______~) w h e r e F(x,/~) = - - dt.

~ ( x ) - 0~ ' r ( t )

ACM Transachons on Mathematical Software, Vol. 8, No. 2, June 1982.

(10)

172 J. H. Ahrens and U. Dieter

Table II

# P(I) P(S) P(Q) P(H) b o c# a

10 0.736455 0.211282 0.008939 0.043324 1.7958 0.9376 0.1103 1.5097 1.5606 15 0 697212 0.260763 0.006848 0.035177 1.7931 0.8535 0.1188 1.4886 1.5693 20 0.672640 0.291613 0.005416 0.030332 1.8023 0.7826 0.1279 1.4759 1.5761 30 0.642500 0.329034 0.003835 0.024631 1.7892 0.8216 0.1199 1.4598 1 5847 50 0.611351 0.367261 0.002379 0 019009 1.7906 0 7778 0.1243 1 4382 1 5906 100 0 579260 0 406141 0.001213 0 013387 1.7875 0 7500 0.1263 1 4152 1.5971 200 0.556231 0.433718 0.000607 0.009443 1.7848 0.7425 0.1258 1.3987 1 6010 500 0.535635 0.458162 0.000242 0.005961 1.7837 0.7234 0.1273 1.3817 1.6040 1000 0.525215 0.470453 0.000121 0.004211 1.7812 0.7273 0 1257 1.3735 1.6054

W e decided against this possibility since ~b(x) p r e s e n t e d too m a n y n u m e r i c a l problems. F a c e d with t h e task of designing an a c c e p t a n c e - r e j e c t i o n m e t h o d for t h e differences pk - fk > 0 (Case H), we should h a v e b e e n consistent b y selecting a discrete h a t as well, for instance, a two-tailed geometric distribution. B u t this would h a v e b u r d e n e d t h e final a l g o r i t h m with u n c o m f o r t a b l e additional calcula- tions. So we d e c i d e d o n a c o n t i n u o u s double e x p o n e n t i a l (Laplace) h a t

h(t)

which

has to majorize the e n t i r e

histogram

of pk - fk > 0, as illustrated in Figure 2 (Section 1) in t h e case/Z --- 10.

cex (., t

= - - ---- pk -- /k, i f t E . ( 2 3 )

T ' S

T h e o p t i m u m p a r a m e t e r s b, a, a n d c in (23) are t h e ones t h a t lead to t h e smallest areas 2co u n d e r t h e hat. T h e y were d e t e r m i n e d for m a n y /Z b y a c o m p l i c a t e d s e a r c h program. T h e r i g h t - h a n d p a r t of T a b l e II contains some o p t i m a l values of b, o, a n d c/z, resulting in t h e best possible efficiencies a =

2co/

(s P ( H ) ) ; a is t h e e x p e c t e d n u m b e r of trials before accepting a t r u n c a t e d L a p l a c e deviate as a sample f r o m t h e difference distribution p r o p o r t i o n a l to pk - f,. ( T h e probabilities P(I), P(S), P(Q), and P ( H ) in t h e left-hand p a r t of T a b l e II were o b t a i n e d a f t e r t a b u l a t i o n s a n d s u m m a t i o n s of t h e pk, fk, a n d zk.)

F o r t h e final algorithm we need

simple

choices of t h e p a r a m e t e r s in (23), and a f t e r some e x p e r i m e n t a t i o n and timing we settled for b = 1.8 a n d o = 1 (o = 1 saves one multiplication). T h e r e f o r e c h a d to be d e t e r m i n e d such t h a t

h(t)=cexp(-]t-l.8[)>__p~-f~,

if

t~[ k-/zs 'k-/z+s

1.) (24)

for all/Z -- 10. Large tables of lower b o u n d s

( /Z(Pk-- fD } < e/z

a/z = maxk e x p ( - I t -- 1.8 ]) --

displayed t h e same w o b b l y b e h a v i o r t h a t is visible in T a b l e II in r e s p e c t to t h e o p t i m u m p a r a m e t e r s b, o, a n d c/z. Because, with changing m e a n / Z t h e critical o u t e r corners of t h e staircase in Figure 2 m o v e and change t h e i r identities. So the tightest b o u n d a/z = 0.1068446 does n o t occur at/Z -- 10, b u t it is the first local m a x i m u m near/Z = 10.464. H e n c e c = 0.1069/# satisfies (24) safely for all k and for all/Z _> 10.

ACM Transactmns on Mathematical Software, Vol 8, No. 2, June 1982

(11)

Computer Generation of Poisson Deviates • 173 T h e final choices b = 1.8, a = 1, and c = 0.1069/g lead to efficiencies ~ ( T a b l e II), which are n o t so good as t h e o p t i m u m values a, particularly w h e n / t is large.

B u t t h e n t h e probabilities P ( H ) of the h a t case are small and declining. T h e e x p e c t e d n u m b e r & P ( H ) of h a t calculations per sample is always below 6.8 percent.

6. THE ALGORITHM

W i t h t h e expositions in Sections 1-5 the formal s t a t e m e n t of t h e new Algorithm P D (below) should be comprehensible. In the main case (A) of m e d i u m or large Ix -> 10 step N creates t h e discrete n o r m a l deviate K = l# + s T J (7), which is a c c e p t e d i m m e d i a t e l y in step I if K _> L {19). T h e squeeze function is e m p l o y e d in step S: using the (0, 1)-uniform deviate 1 - U (instead of U), 1 - U < ZK = 1 + (K - #)3/6#2, eq. (22) translates into U >_ (# - K ) 3 / d , w h e r e d = 6# ~. If this fails, K m a y still be a c c e p t e d after comparing 1 - U with t h e q u o t i e n t P g / f g ---- py exp p x / f y exp fx in step Q. T h e Poisson p a r t s p x and py are w o r k e d o u t in t h e p r o c e d u r e F using (1), (3), (4), w h e r e ~ ,-- 1/(12K), ~ (-- ~ - 4.883 yields ~ = 1/(12K) - 1/(360K3), (5) and (6). T h e discrete n o r m a l p a r t s fx and f~ in F com- ply with (13) using t h e coefficients (12) as p r e c a l c u l a t e d in step P.

If K is finally r e j e c t e d in step Q, the h a t case is entered. T h e double exponential deviate T in step E will r a r e l y be below -0.6744, in which case p K -- f g < 0, eq.

(20), allows us to r e j e c t i m m e d i a t e l y and t r y again. W h e n T > -0.6744 holds, t h e new sample K = [# + s T J requires a n o t h e r application of t h e p r o c e d u r e F for t h e test in step H where rejection is indicated w h e n e v e r t h e C0, D - u n i f o r m deviate [ U[ is larger t h a n ( p K - - h ) / h ( T ) , eq. (23), or c[ U[ > (p~ e x p p x - f~ exp fx)exp [ T - 1.8 I, eq. (24), b u t I T - 1.8 ] is the original exponential sample E f r o m step E and c = 0.1069//z is precalculated in step P.

In t h e case (B) of small m e a n s # < 10, table-aided inversion is substituted: t h e (0, 1)-uniform deviate U in step U is c o m p a r e d with c u m u l a t i v e Poisson proba- bilities PK = po + p l + " " + pK. T h e s e PK are stored (step C) so t h a t t h e y m a y be used again {step T) provided t h a t tt has not changed in t h e m e a n t i m e . T h e P g - table is useless if t h e m e a n g shifts after e v e r y sample, b u t in m o s t simulations with variable # the changes will occur only from time to time. If U > 0.458

> 0.4579297 = P9 Cat # = 10), we know t h a t K _ [#J will result. Hence, if U >

0.458, the search starts at [ttJ = M (at 1 i f g < 1) or at L (current length of t h e P g - table), whichever is smaller.

Algorithm PD

Case A. Input: mean/z >_ 10. Output: Poisson deviate K.

Case A requires Table I (coefficients a,) and a table of k! (k = 0, 1 .. . . . 9).

If the mean/z is not the same as before, the following three quantities are recalculated:

s ~-- 4~, d ~-- 6g ~, and L *- [g - 1.1484J (/.J = floor function).

N (Normal sample). Generate T (standard normal deviate) and set G ~ # + sT.

If G _> 0 set K ~-- [GJ. In the rare case G < 0 immediate rejection is indicated: if G <

0 go to P.

I (Immediate acceptance). If K __ L return K.

S (Squeeze acceptance). Generate U ((0, D-uniform deviate).

If d U >_ (It - K) 3 return K.

ACM Transactions on Mathematical Software, Vol. 8, No. 2, J u n e 1982

(12)

174 • J . H . Ahrens and U. Dieter

P (Preparations for Q a n d H ) . If the m e a n 9 has changed since this step P was carried out the last time, the following eight quantities are recalculated: w ~-- 1/~2~r/s, bl (1/24)//~, b2 ~ (3/10)b~, c3 *-- (1/7)blb2, c2 ~-- b2 - 15c3, c~ *-- bi - 6b2 + 45c3, Co ~ 1

- b] + 3b2 - 15c3, and c *-- 0.1069/~.

If G - 0 a p p l y t h e procedure F (below) to evaluate px, py a n d fx, fy.

If G < 0 go to E (skip Q).

Q (Quotient acceptance). Iffy(1 - U) _< py exp(px - fx) r e t u r n K.

E (Double e x p o n e n t i a l sample). G e n e r a t e E (standard exponential deviate) and U ((0, D-uniform deviate). S e t U ,~- U + U - 1 and T (-- 1.8 + E sgn U.

If T ~ -0.6744 this step E has to be restarted. Otherwise set K <-- [~ + sTJ and a p p l y procedure F to evaluate px, py and fx, f v.

H ( H a t acceptance). I f c[ U[ > p ~ exp(p~ + E ) - fy exp(fx + E ) go back to E (reject).

Otherwise r e t u r n K.

F Procedure F.

1. Poisson probabilities pk expressed b y px and py (pK ffi Py exp px).

Case K < 10: S e t p x ~-- - # a n d p y <--I~K/K! using the table of K!.

Case K _ 10: P r e p a r e 6 (-- 1/(12K), 8 *-- 6 - 4.863 a n d V <-- (~ - K ) / K . T h e n p ~ <-- K In(1 + V) - (~ - K ) - 6. However, if[ V[ ~ 0.25 s u b s t i t u t e p x <-- K V 2 F, a~V J - ~ for i m p r o v e d accuracy using coefficients aj from T a b l e I. Finally, s e t p y <-- 1 / ~ / J - K . 2. Discrete n o r m a l probabilities fK expressed b y f~ and fy (fK = fy exp f~).

S e t X <-- (K - # + 0.5)/s, f~ <-- 0.5X 2 and fy = o~(((caX 2 + c2)X 2 + cl)X + co).

Case B. Input: m e a n ~ < 10. Output: Poisson deviate K.

Case B is t r e a t e d b y table-aided inversion, and space m u s t be provided for t h e cumulative probabilities Pk(k -- 1, 2 . . . 35 for up to 9 digits accuracy).

I f t h e m e a n # is not t h e s a m e as before, initialize t h e following five quantities: M (-- m a x ( I , [pJ), L (---0,p (---exp(-#), q (--p, a n d p 0 (---p.

U (Uniform sample). G e n e r a t e U ((0, D-uniform deviate). S e t K (-- 0.

If U ~- po r e t u r n K .

T (Comparison o f U w i t h existing table). If L = 0 ( e m p t y table of PD go to C. Otherwise set J (-- 1, b u t if U > 0.458 set J (--- rain(L, M ) (because, ff U > 0.458 > Po (at # = 10) t h e n K will never be below lpJ).

F o r K (-- J , J + 1 . . . L do: as soon as U -< PK r e t u r n K.

If this search is unsuccessful and L = 35 go back to U. (This is a safety measure: 1 - P35 < 0.2 x 10 -9 for all p < 10, b u t rounding errors could still cause an infinite loop.) C (Creation o f n e w Pk a n d comparison with U). F o r K (--- L + 1, L + 2 . . . 35 do: set

p ( - - p # / K , q (-- q + p, PK (--- q, and as soon as U <_ q set L (-- K and r e t u r n K.

If this research is unsuccessful t h e n L (-- 35 and go b a c k to U (safety).

7. COMPUTATIONAL EXPERIENCE

A l l i n e q u a l i t i e s a n d t h e a c c u r a c y o f t h e c a l c u l a t i o n s w e r e c h e c k e d o u t o n a S i e m e n s 7760 c o m p u t e r . S e v e r a l b a t c h e s o f 10,000 P o i s s o n d e v i a t e s e a c h p a s s e d v a r i o u s s t a t i s t i c a l t e s t s . T h e F O R T R A N a n d a s s e m b l e r v e r s i o n s o f A l g o r i t h m P D r e t u r n e d i d e n t i c a l s e t s o f s a m p l e s f o r e a c h c h o i c e o f / L , s i n c e t h e s a m e a s s e m b l e r s u b p r o g r a m s w e r e u s e d :

T = S N O R M ( I R ) (standard n o r m a l deviates), 24 ~ts, A l g o r i t h m FL5 [3].

E = S E X P O ( I R ) (standard exponential deviates), 20 ~s, A l g o r i t h m S A [2].

U = S U N I F ( I R ) ((0, D-uniform deviates), 10 tLs.

ACM Transactmns on Mathematmal Software, Vol 8, No 2, J u n e 1982.

(13)

Computer Generation of Poisson Deviates Table III

175

e 1 2 5 10 - e 10 15 20 30 50 100 103 104 I0 ~ 106 F O R F I X 62 77 81 90 108 114 111 111 109 105 101 97 96 95 95 F O R V A R 131 165 190 256 369 174 168 164 160 156 155 149 148 147 148

ASS F I X 36 49 50 56 66 70 67 67 65 61 57 54 52 52 51

ASS VAR 67 109 123 158 215 111 109 106 103 98 97 90 90 89 88

(The parameter IR transmits the current state of our basic generator: IR ffi IR x 663608941 (mod 232), U = IR/232. IR is initialized to some integer 4m + 1.) F O R T R A N (FOR) and assembler (ASS) times [l~s] in Table III were based on 10,000 samples each for fixed (FIX) and variable (VAR) #; in the latter case, the means were subject to small random oscillations around the table entries #. In order to predict the performance of P D on other computers, Table III should be compared with Siemens 7760 times for

Y = SQRT(X): 31-32 i~s; Y = EXP(X): 48-51 ixs; Y ffi ALOG(X): 47-51 i~s.

T h e claims at the end of the introduction are based on these comparisons. T h e new m e t h o d is also much faster than the Algorithm B P in [5]: there the Poisson sampling times stabilized at 390 I~S (FOR) and 330 I~s (ASS) for large parameters

#. We have no reason to compare P D with the older methods in [7] whose computation times grow with increasing #.

Naturally, the new algorithm is harder to code, and we think t h a t the inclusion of the F O R T R A N F U N C T I O N KPOISS(IR, A) in Section 8 may be helpful.

Moreover, K. D. K o h r t has designed a package of commented assembler routines for SUNIF, SEXPO, SNORM, KPOISS, and SGAMMA (Algorithm GD in [6]

for gamma deviates, which is about as fast as PD). These programs will run on all large IBM and IBM-like machines. Listings are available on request from the first author at Kiel University.

8. A FORTRAN PROGRAM FUNCTION KPOISS(IR,MU) C

C INPUT:

C

C OUTPUT:

C

IR=CURRENT STATE OF BASIC RANDOMNIYMBER GENERATOR MU=MEAN MU OF THE POISSON DISTRIBUTION

KPOISS=SAMPLE FROM THE POISSON-(MU)-DISTRIBUTION REAL MU, MUPREV, MUOLD

MUPREV=PREVIOUS MU, MUOLD=MU AT LAST EXECUTION OF STEP P OR B.

TABLES: COEFFICIENTS A@-A7 FOR STEP F. FACTORIALS FACT DIMENSION FACT(l@), PP(35)

DATA MUPREV,MUOLD /@.,@./

DATA A@,AI,A2,A3,A4,AS,A6,A7 /-.5,.3333333,-.250@@68, ,.2@@@i18,-.1661269,.1421878,-.1384794,.125~@6@/

DATA FACT /i.,i.,2.,6.,2.,12@.,72@.,5~4@.,4~32~.,36288~./

ACM Transachons on Mathematmal Software, Vol 8, No. 2, June 1982

(14)

176 J . H . Ahrens and U. Dieter

C C C

C C C

SEPARATION OF CASES A AND B

I F (MU .EQ. MUPREV) GO TO 1 IF (MU .LT. I@.¢) GO TO 12

C A S E A. (RECALCULATION OF S,D,L IF M U HAS CHANGED) MUPREV=MU

S=SQRT(MU) D-6.@*MU*MU L-IFIX(MU-I.1484)

STEP N. NORMAL SAMPLE - SNORM(IR) FOR STANDARD NORMAL DEVIATE G=MU+S*SNORM(IR)

IF (G .LT. @.~) GO TO 2 KPOISS-IFIX(G)

STEP I. IMMEDIATE ACCEPTANCE IF KPOISS IS LARGE ENOUGH IF (KPOISS .GE. L) RETURN

STEP S. SQUEEZE ACCEPTANCE - SUNIF(IR) FOR (@,1)-SAMPLE U FK=FLOAT (KPOISS)

DIFMUK=MU-FK U,,SUNIF (IR)

IF (D*U .GE. DIFMUK*DIFMUK*DIFMUK) RETURN

STEP P. PREPARATIONS FOR STEPS Q AND H. (RECALCULATIONS OF PARAMETERS IF NECESSARY) .3989423=(2"PI)**(-.5) 2 IF (MU .EQ. MUOLD) GO TO 3

MUOLD=MU

OMEGA-.3989423/S BI-.4166667E-I/MU B2=.3*BI*BI C3=.I428571*BI*B2 C2=B2-15.*C3 CI=BI-6.*B2+45.*C3 C@-I.'-BI+3.*B2-15.*C3 C-.I@69/MU

3 IF (G .LT. @.@) GO TO 5

"SUBROUTINE" F IS CALLED (KFLAG=@ FOR CORRECT RETURN) KFLAG=@

GO TO 7

STEP Q. QUOTIENT ACCEPTANCE (RARE CASE) 4 IF (FY-U*FY .LE. PY*EXP(PX-FX)) RETURN C

ACM Transactions on Mathematical Software, Vol 8, No 2, June 1982

(15)

Computer Generation of Poisson Deviates ~ 177

C S T E P E. EXPONENTIAL SAMPLE - SEXPO(IR) FOR STANDARD EXPONENTIAL

C DEVIATE E AND SAMPLING FROM THE LAPLACE ~AT C

5 E,,SEXPO (IR) U=SUNIF (IR) U = U + U - i . @ T=I. 8+SIGN (E, U)

IF (T .LE. -.6744) GO TO 5 KPOISS=IFIX(MU+S*T)

FK=FLOAT (KPOISS) DIFMUK=MU-FK C

C "SUBROUTINE" F IS CALLED (KFLAG,,I FOR CORRECT RETURN) C

KFLAG- 1 GO TO 7

STEP H. HAT ACCEPTANCE (E IS REPEATED ON REJECTION) 6 IF (C*ABS(U) .GT. PY*EXP(PX+E)-FY*EXP(FX+E)) GO TO 5

RETURN C

C STEP F. "SUBROUTINE" F. CALCULATION OF PX,PY,FX, FY.

C CASE KPOISS .LT. i@ USES FACTORIALS FROM TABLE FACT C

7 IF (KPOISS .GE. i@) GO TO 8 PX=-MU

PY=MU**KPOISS/PACT (KPOISS+I) GO TO ii

C

C CASE KPOISS .GE. i@ USES POLYNOMIAL APPROXIMATION C A@-A7 FOR ACCURACY WHEN ADVISABLE

C

8 DEL=.8333333E-I/FK DEL=DEL-4.8*DEL *DEL *DEL V=DIFMUK/FK

IF (ABS(V) .LE. @.25) GO TO 9 PX,,FK*ALOG (i. @+V) -DIFMUK-DEL GO TO

9 PX=FK*V*V* ( ( ( ( ( ( ( A7 *V+A6 ) *V+A5 ) *V+A4 ) *V+A3 ) *V+A2 ) *V+AI ) *V÷A@ ) -DEL i@ PY,,. 3989423/SORT(FK)

ii Xz(@. 5-DIFMUK)/S XX=X*X

FX=-. 5*XX

FY=0MEGA* ( ((C3*XX+C2) *XX+CI) *XX+C@) IF (KFLAG) 4,4,6

C

C C A S E B. (START NEW TABLE AND CALCULATE P@ IF NECESSARY) C

z2 MUPREV=@. @

IF (MU .EQ. MUOLD) GO TO 13 MUOLD=MU

M--MAX¢ (1, IFLX (MU)) L=¢

A C M T r a n s a c t i o n s o n M a t h e m a h c a l Software, Vol 8, No. 2, J u n e 1982.

(16)

1 7 8 J . H . A h r e n s and U. Daeter

P-EXP(-MU) Q-P

p@,,P

STEP U. UNIFORM SAMPLE FOR INVERSION METHOD 13 U-SUNIF(IR)

KPOISS-@

IF (U .LE. P@) RETURN

STEP T. TABLE COMPARISON UNTIL THE END PP(L) OF THE ppITABLE OF CUMULATIVE POISSON PROBABILITIES IF (L .EQ. @) GO TO 15

J"l

IF (U .GT. @.458) J=MIN@(L,M) DO 14 KPOISS=J,L

14 IF (U .LE. PP(KPOISS)) RETURN IF (L .EQ. 35) GO TO 13

STEP C. CREATION OF NEW POISSON PROBABILITIES P AND THEIR CUMULATIVES Q=PP(K)

15 L=L+I

DO 16 KPOISS=L,35 P-P*MU/FLOAT(KPOISS) Q=Q+P

PP(KPOISS)=Q

16 IF (U .LE. Q) GO TO 17 L'35

GO TO 13 17 L=KPOISS

RETURN END

Remarks. The F U N C T I O N KPOISS(IR, MU) is presented with a conversion to machine code in mind; therefore low-level F O R T R A N was chosen. For the sampling subfunctions SNORM(IR), SEXPO(IR), and SUNIF(IR), compare Section 7.

The constant 35 in the last part (Case B) corresponds to the dimension PP(35) of the table P~ (steps T, C); it is sufficient for up to 9-digit accuracy. If the standard precision of the computer is more than 7-8 decimals, the DATA A0, A1, . . . may be modified according to the second block in Table I, and some other constants should be adjusted: 1/J2-~ = 0.398942280, 1/24 = 0.416666667E-1, 1/7

= 0 . 1 4 2 8 5 7 1 4 3 , a n d 1 / 1 2 = 0 . 8 3 3 3 3 3 3 3 3 E - 1 .

ACKNOWLEDGMENT

The authors wish to express their appreciation and thanks to the reviewers of this article for their constructive and valuable comments. Furthermore, they acknowledge stimulating conversations with E. Mayr and K. D. Kohrt.

ACM Transactions on Mathematmal Software, Vol 8, No 2, June 1982

(17)

Computer Generation of Poisson Deviates 1 7 9

REFERENCES

(Note. Reference [4] is not cited m the text.)

1. ABRAMOWITZ, M., AND STEGUN, I.A. Handbook of Mathemattcal Functions. Dover, New York, 1972.

2. AHRENS, J.H., ANO DIETER, U. Computer methods for samplir/g from the exponential and normal distributions. Commun. ACM 15, 10(Oct. 1972), 873-882.

3 AHRENS, J.H., AND DIETER, U. Extension of Forsythe's method for random sampling from the normal distribution Math Comput. 27 (1973), 927-937.

4. AHRENS, J.H., AND DIETER, U. Computer methods for samphng from gamma, beta, Poisson and binomial distributions Computing 12 (1974), 223-246.

5. AHRENS, J.H., AND DIETER, U. Sampling from binomial and Poisson distributions: A method with bounded computation tunes. Computing 25 (1980), 193-208.

6. AHRENS, J.H., AND DIETER, U. Generating gamma variates by a modified rejection technique.

Commun. ACM25, 1 (Jan. 1982), 47-54.

7. FISHMAN, G.S. Frtnctples of D~screte Event Simulation. Wiley, New York, 1978.

8. KNUTH, D.E. The Art of Computer Programming, Vol. II: Seminumerical Algorithms. Addison- Wesley, Reading, Mass., 1969 and 1981

Received March 1981; revised January 1982; accepted February 1982

ACM Transachons on Mathematical Software, Vol. 8, No. 2, June 1982

Referências

Documentos relacionados

The main consequences that have caused some turmoil in Europe are the movement towards the harmonization of degrees, created by the Bologna process, the need

Esta capacidade pode ter duas vertentes: a fotográfica, que corresponde ao registo do texto exactamente como se fosse uma fotografia (mais rara); e a memória visual

Além disso, foi possível concretizar todos os objetivos a que me propus, visto que este novo modo de geração de rótulos tornou o processo mais rápido, prático e eliminou

Segundo o Plano de Gestão da APA Guapimirim, o desenvolvimento de um conjunto de elementos poderia le- var a um processo profícuo de conservação ambiental. Dentre estes são

Média de notas dadas para sinto- mologia apresentada nas cultivares de soja precoces quando submeti- das ao crescimento durante quinze dias em soluções nutritivas conten-

Section III presents the materials and methods used to develop the analysis of the potential for technological modernisation and innovation based on ICT in agri-food

Since NB distribution is the compounded mixture of gamma and Poisson distributions, so it is usually recommended for heterogeneity and over-dispersion, while the generalized

Table A.12: Observed and median expected lower limits on the VLQ mass (in GeV) at 95% CL, or greater than 95% CL when indicated with ∗ , for a range of different combinations of