• Nenhum resultado encontrado

Influence of Polyphosphoric Acid on the Consistency and Composition of Formulated Bitumen: Standard Characterization and NMR Insights

N/A
N/A
Protected

Academic year: 2021

Share "Influence of Polyphosphoric Acid on the Consistency and Composition of Formulated Bitumen: Standard Characterization and NMR Insights"

Copied!
17
0
0

Texto

(1)

Research Article

Influence of Polyphosphoric Acid on the Consistency

and Composition of Formulated Bitumen: Standard

Characterization and NMR Insights

Catarina Varanda,

1,2

Inês Portugal,

1

Jorge Ribeiro,

2

Artur M. S. Silva,

3

and Carlos M. Silva

1

1Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal

2Galp Energia, Refinaria de Matosinhos, Rua Belchior Robles, 4450-802 Lec¸a da Palmeira, Portugal

3Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal

Correspondence should be addressed to Inˆes Portugal; inesport@ua.pt and Carlos M. Silva; carlos.manuel@ua.pt Received 11 April 2016; Revised 28 June 2016; Accepted 29 June 2016

Academic Editor: Adam Voelkel

Copyright © 2016 Catarina Varanda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Over the recent years, bitumen modification with polymers, acids, or mineral fillers has gained relevance to adjust its performance properties. This work reports the use of polyphosphoric acid (PPA) for the modification of formulated bitumen. With this objective, an in-depth literature review on PPA modification was firstly performed. Subsequently, five individual refinery components were selected for the preparation of bitumen blends, namely, asphaltic residue, vacuum residue, and three lube oils extracts. Seven binary/ternary bitumen blends were prepared and then treated with PPA. Afterwards, the five components and the unmodified and PPA-modified bitumen were characterized by standard methods (penetration, softening point, and penetration index), SARA analysis, elemental analysis, and31P and1H nuclear magnetic resonance (NMR) spectroscopy. The results evidenced higher asphaltenes and lower saturates/resins contents in PPA-modified bitumen. The NMR data suggest that the paraffinic chains became longer, the content of condensed aromatics increased, more substituted aromatic structures appeared, and𝛼-hydrogen in aromatic structures diminished. These findings disclosed the improved consistency and oxidation stability of PPA-modified bitumen blends.

1. Introduction

The European Committee for Standardization defines bitu-men as a virtually nonvolatile, adhesive, and waterproofing dark brown viscous organic material derived from crude oil or present in natural asphalt [1]. Due to its binding and hydrophobic properties, bitumen is commonly used for the construction of pavements and waterproof systems [2, 3]. Bitumen properties are related to its composition, which in turn depends strongly on the type and origin of the crude oil. However, the precise identification of the molecular composition and structure of bitumen is almost impossible; therefore, they are often characterized by fractionation tech-niques [3, 4]. For instance, the SARA method is based on

sequential chromatographic separation of bitumen compo-nents into four generic groups according to their polarity and solubility, namely, saturates (S), aromatics (A), resins (R), and asphaltenes (A) [3, 5, 6]. Commonly, the saturates fraction contains linear and branched alkanes eluted with a paraffinic solvent (e.g., n-hexane), the aromatics fraction is constituted mainly by alkylated C5 and C6 cyclic structures eluted with a moderately polar solvent (e.g., toluene), the resins are alkylated and cycloalkylated structures with 2-3 aromatic rings (e.g., eluted with tetrahydrofuran), and asphaltenes are heavier aromatic polycyclic structures [3]. Moreover, bitumen contains heteroatoms (such as sulfur, oxygen, and nitrogen) normally embedded in the molecular structure of the aromatic rings [4, 7].

Volume 2016, Article ID 2915467, 16 pages http://dx.doi.org/10.1155/2016/2915467

(2)

The structure of bitumen is controversial but the colloidal model, proposed by Rosinger [8] though generally attributed to Nellensteyn [9], still prevails, especially for explaining the interactions between modifiers and bitumen fractions [6, 10]. According to this model, bitumen is considered as a suspension of asphaltene micelles peptized by resins, dispersed in an oily medium constituted by saturates and aromatics [3, 10–12]. Depending on the relative contents of these fractions, bitumen exhibits different rheological properties used for its classification into three distinct types, specifically: “sol” (viscous) bitumen which has a colloidal structure constituted by noninteracting micelles and behaves as Newtonian fluid; “gel” (elastic) bitumen which is characterized by a three-dimensional colloidal structure and high resilience; and “sol-gel” (viscoelastic) bitumen which exhibits an intermediate behavior with elastic effects in the initial stages of deformation and a colloidal structure characterized by the presence of supermicelles [13, 14].

Over the recent years, bitumen has become a highly technical material with modifiers (e.g., polymers, acids, and mineral fillers) gaining relevance in the control of the perfor-mance properties of modified bitumen [3, 15]. Polyphospho-ric acid (PPA) is an example of a reactive modifier that can be used by itself or in conjugation with a suitable polymer, in this case, with considerable economic benefits [16]. In general, the concentrations of PPA in bitumen are in the range from 0.2 to 1.2 wt.% [7] with an optimum at 1.0 wt.% [17]. Typically, commercial PPA is a mixture of phosphoric acid (H3PO4), pyrophosphoric acid (H4P2O7), triphosphoric acid (H5P3O10), and higher oligomers [18].

Bitumen refined from a specific crude oil has character-istic properties related to its consistency, namely, softening point and penetration value at 25∘C (expressed in dmm) which is the base for the European grading system [19]. These properties can be shifted up or down in the refin-ing process or by posterior blendrefin-ing with different grade bitumen or an additive (e.g., a polymer, PPA, or a combi-nation of both) [20]. Bitumen modification with a polymer or with PPA stiffens the product at higher temperatures, improving the resistance to permanent deformation, without negative effects at low temperatures (i.e., between−30 and 5∘C) [18]. It is noteworthy that PPA has been reported to improve the behavior of modified bitumen also at low temperature (≤5∘C) [21] and to impart antioxidant properties

[18].

In this work, a detailed review of issued patents and sci-entific literature on the performance of straight-run bitumen (i.e., obtained directly from crude oil distillation) modified with PPA has been accomplished and is presented in the Appendix. On the other hand, since the influence of PPA on formulated bitumen is not reported in the scientific literature, this is the main focus of this paper. It has been studied using phosphorous (31P) and proton (1H) nuclear magnetic resonance spectroscopy to evaluate structural mod-ifications, SARA and elemental analyses to evaluate chemical transformations, and standard grading tests (softening point, penetration value, and penetration index) for performance evaluation.

2. Bitumen Modification with PPA and

Its Characterization

The interaction of PPA with bitumen model compounds was studied by several authors, as summarized in the Appendix. From these studies, it became clear that PPA modification follows different mechanisms depending on the chemical composition of bitumen which is strongly related to the crude oil geographical source. Overall, the reactivity of PPA increases with the polarity of the asphaltene fraction because it enhances PPA dissociation (into PPA− and H+) [3] disrupting the hydrogen bond network formed within the agglomerates of asphaltene micelles. Consequently, the molecular weight of the asphaltene fraction is lowered and the distribution of asphaltenes in the remaining fractions (i.e., saturates, aromatics, and resins, usually called maltene phase) is improved, shifting the bitumen towards a more elastic gel-type structure, as represented schematically in Figure 1 [13, 17].

There is a direct relationship between the chemical composition and colloidal structure of bitumen and its performance [13]. Therefore, bitumen is often characterized by related parameters, such as the index of colloidal instability (defined as the ratio of the sum of asphaltenes and saturates to the sum of aromatics and resins), the colloidal indices Ip (i.e., resins-to-asphaltenes ratio) and Is (i.e., ratio of asphaltenes to maltenes), the penetration index (PI), and other rheological measurements.

Several rheological studies of PPA-modified bitumen focused on its performance and stability. For instance, Giavarini et al. [13] reported that PPA-modified bitumen exhibits higher penetration index (PI) and thus improved thermal susceptibility in comparison to unmodified bitu-men. Giavarini et al. [16] and Bonemazzi and Giavarini [14] performed rheological studies with polymer-modified bitumen and proved that PPA changes the bitumen structure towards gel type, thus improving the stabilization interactions between the polymer and the bitumen components. Edwards et al. [22] performed rheological tests at low temperature (−25∘C) and established that bitumen modification is influ-enced by the amount and type (grade) of PPA used and also by the composition of bitumen. Baldino et al. [21] validated the capacity of PPA to decrease the glass transition temperature (Tg) and to increase the stiffness of modified bitumen.

Another approach is to use spectroscopic techniques to detect specific functional groups in highly complex hydrocarbon mixtures such as bitumen [23–26]. In partic-ular, solution-state1H and13C nuclear magnetic resonance (NMR) spectroscopy can be used to identify and quantify the aromatic and aliphatic moieties. This is of utmost importance to understand the molecular interactions between the SARA fractions of bitumen and to explain the influence of modifiers on bitumen performance [27]. For instance, Michon et al. [28, 29] used quantitative13C NMR data coupled with molecular weight distribution data to estimate structural parameters of bitumen such as, for example, aromaticity and the average number of naphthenic and aromatic rings per molecule. Their final purpose was to define a bitumen “fingerprint” [28], particularly for the aromatic part, in order to propose

(3)

Asphaltene

agglomerate Asphalteneunit

PPA Continuous maltenes phase

Figure 1: Influence of PPA on the colloidal structure of bitumen (adapted from [17]).

Table 1: Composition (wt.%) of the bitumen formulations.

Blend Component AR VR SN1 SN2 SN3 Bit1 84.80 15.20 Bit2 78.44 21.56 Bit3 78.39 21.61 Bit4 77.31 9.99 12.70 Bit5 70.69 10.02 19.29 Bit6 72.27 10.06 17.67 Bit7 30.00 70.00

a mechanism for bitumen oxidation [29]. The chemical trans-formations associated with bitumen ageing were investigated by Siddiqui and Ali [30] and Siddiqui [31] using 1H and

13C NMR. Curiously, Molina et al. [23] developed a very

fast and reliable method that correlates the area of1H NMR signals of petroleum residues to their SARA fractions and to some physicochemical properties (e.g., density and S, N, and wax content). Gentile et al. [32] related different

1H NMR spin-spin relaxation times (evaluated by inverse

Laplace transform) to different macroaggregates in PPA-modified bitumen. Moreover, bitumen modification with PPA can be analyzed by31P NMR, a powerful tool to evaluate the structure of phosphorus-containing compounds.

3. Experimental Procedures

3.1. Preparation of Bitumen Blends Modified with PPA. The

bitumen blends (penetration grade 70/100) used in this work contained asphaltic residue (AR), vacuum residue (VR), and aromatic extracts SN1, SN2, or SN3, in the proportions presented in Table 1. These bitumen blends were provided by a Portuguese refinery.

Bitumen modification with PPA was performed in a glass reactor, equipped with a mechanical stirrer and a temperature controller. Bitumen blends (1000 ± 0.01 g) were heated to approximately 135∘C and then PPA grade 105% (supplied by Innophos, Cranbury, USA) (8.00 ± 0.01 g) was added, which corresponds to 0.8 wt.%. The mixture was allowed to react for 30 minutes at 135∘C with constant stirring (ca. 245 rpm).

3.2. Characterization of Bitumen Components and Blends.

The SARA fractions of the individual components and the seven bitumen blends (Bitj, j = 1–7) were analyzed according

to the International Standard method IP-469 using Iatroscan MK-6 TLC-FID instrument (Iatron Laboratories Inc.) [33]. Data acquisition was performed with the DataApex Clar-ity Lite software, version 3. Each sample was analyzed in triplicate and the results (peak areas) were averaged and considered as the weight percentage of the corresponding SARA fractions.

Elemental analysis of carbon, hydrogen, and nitrogen in bitumen samples was performed in a Leco TruSpec instrument (628 Series) following the standard procedure ASTM D5291 [34]. Sulfur content was determined by energy-dispersive X-ray fluorescence (EDXRF) in Oxford Instru-ments Lab-X3500, following the International Standard method IP 336 [35]. The analyses were performed using three replicated samples.

For NMR analysis, the bitumen samples (0.20 ± 0.01 g) were dissolved in deuteriochloroform (CDCl3, Sigma-Aldrich, 99.8 atom% D) (1 mL) and analyzed in triplicate. Solution-state 1H NMR measurements were obtained in a Bruker Avance 300 spectrometer (operating at 300.13 MHz) under the following conditions: spectral window of 6887 Hz, with a 30∘ pulse width (3.63𝜇s), acquisition time 2.4 s, relaxation delay 1 s, 32768 data points, and 128 scans. Solution-state 31P NMR spectra were acquired at room temperature in a Bruker Avance 300 spectrometer at a nominal frequency of 121.5 MHz, over a period of 7 minutes, using a pulse repetition rate of 1 s. Chemical shifts were referenced to orthophosphoric acid at 0 ppm.

Bitumen penetration (Pen, expressed in dmm) at 25∘C and the ring and ball softening point (SP, in ∘C) were measured by standard methods [19]. The penetration index (PI) was calculated by [36]

PI = 12.04 (SP − 𝑇𝑃) − 300 (2.903 − log (Pen)) 0.602 (SP − 𝑇𝑃) + 30 (2.903 − log (Pen)), (1)

(4)

Table 2: SARA analysis of the individual components of bitumen blends.

Component Saturates Aromatics Resins Asphaltenes (wt.%) Asphaltic residue (AR) — 61.6± 1.3 21.7 ± 1.5 16.7± 1.0 Vacuum residue (VR) 5.5± 0.7 63.8± 1.7 17.3 ± 1.5 13.4± 0.9 SN1 extract 4.1± 0.5 92.6 ± 0.9 3.3 ± 0.6 — SN2 extract 3.6± 0.3 92.8 ± 0.6 3.6 ± 0.5 — SN3 extract 9.9± 0.8 84.9 ± 1.2 5.2 ± 0.8 —

4. Results and Discussion

4.1. SARA and Elemental Analysis of Bitumen Components and Blends. The SARA fractions of the individual bitumen

components and of the seven bitumen blends before and after PPA modification are presented in Tables 2 and 3, respectively. Table 3 also presents the elemental analysis of bitumen before PPA modification.

The binary blends (Bit1, Bit2, and Bit3) prepared with asphaltic residue (AR) and one of the extracts (SN1, SN2, or SN3) present similar contents of asphaltenes and resins (within experimental error). In contrast, the concentration of saturates and aromatics differs for the blends prepared with extracts SN1 and SN2 (i.e., Bit1 and Bit2, resp.) and with SN3 extract (i.e., Bit3). For the former, saturates were not detected and the aromatic content is naturally higher (ca. 71 wt.% versus 65.5 wt.% for Bit3) due to the nature of the extracts (see Table 2). However, the differences in elemental composition of the three bitumen blends are negligible (see Table 3).

It is noteworthy that the SARA fractions for binary blend Bit3 (78.39 wt.% AR + 21.61 wt.% SN3 extract) are similar to those for Bit7, a binary blend prepared with asphaltic and vacuum residues (30 and 70 wt.%, resp.; see Table 1). The most significant difference is the high content of saturates (3.0 wt.%, Table 3) in Bit7 which can be related to its higher content of vacuum residue (VR). In fact, VR contains 5.5 wt.% of saturates whereas AR, the main component of the other blends, contains no saturates (see Table 2). Again, there are no significant differences for the elemental chemical composition of Bit7 in comparison to the other bitumen samples.

The results for the ternary blends (Bit4–Bit6) prepared with AR, VR, and one of the extracts are quite similar (within experimental error) in what concerns the SARA fractions and elemental composition (Table 3). Overall, these results are consistent with the origin of the blends as they were all prepared with components derived from Arabian light crude oil.

It is worth noting that the elemental analysis of formu-lated bitumen after PPA addition is not reported in Table 3, as the results were statistically equivalent. In fact, from the lit-erature review, it became clear that PPA modification follows different mechanisms, like redox reactions and disruption of

0 2 4 6 8 10 12 14 16 18

Phosphorous chemical shift (ppm)

−2 −4 −6 −8 −10 −12 −14 −16 −18 0−2 −22 −24 −26 −28 −30 −26 −28 −30 −3 2 −3 4

Figure 2:31P NMR spectrum of the PPA (105% grade) used for bitu-men modification.

hydrogen bond networks, and none of these mechanisms are expected to change the overall elemental composition of PPA-modified bitumen.

A final comment concerning the absence of saturates in Bit1 and Bit2 is in order. In fact, these blends were prepared with extracts SN1 and SN2 which contain ca. 4 wt.% of saturates (Table 2) and thus the absence of saturates is puzzling. A possible explanation is that the content of saturates is below the TLC-FID apparatus detection limit (detection limit 0.8%).

The influence of PPA on bitumen composition (SARA fractions) can be visualized in Table 3. In general, PPA modification decreases the content of saturates and resins and increases the fraction of asphaltenes in agreement with the literature [13, 37]. The higher content of asphaltenes in PPA-modified bitumen explains the experimental results (Table 4), namely, higher softening points (ca. 1–3∘C increment), lower penetration values (ca. 10 dmm), and, consequently, an improvement of the penetration index (PI) in accordance with the results reported by Oyekunle [38]. The higher values of PI indicate a change in the colloidal structure of PPA-modified bitumen blends which is expected to improve their thermal susceptibility [13].

The effect of PPA on bitumen modification has been associated with redox reactions involving polycondensed aromatic structures that act as reducing agents for phosphoric acid oligomers(HPO3)𝑛, which are therefore oxidized [13]. As a result, one would expect the conversion of part of the resins fraction into asphaltenes and the conversion of the saturates and aromatics fractions into resins [13]. However, the increase of the aromatics fraction observed in this work, after PPA addition, suggests that part of the resins were converted to asphaltenes and part were converted to aromatics.

4.2. Analysis of PPA and Modified Bitumen by 31P NMR Spectroscopy. The 31P NMR spectrum of the PPA used in this work is presented in Figure 2. According to the litera-ture [37, 39], the resonance peak at 0 ppm is attributed to phosphorus in H3PO4, a smaller peak at−13 ppm is assigned to phosphorus in end groups of PPA chains, and a much

(5)

T a ble 3: E lemen tal ch emical an al ys es o f unmo dified b it umen b lends an d SARA anal ysis o f unmo dified (b ef o re PP A) an d m o dified (a ft er PP A) b it u men b lends. Bi tu men E lemen ta la n al ysis b efo re PP A (wt.%) a SARA an al ysis b ef o re PP A (wt.%) a SARA an al ysis aft er PP A (wt.%) a Sa m p le CH N S Sa tu ra te s A ro ma ti cs Resin s A sp h al te nes Sa tura tes Ar o m at ics R esin s A sp hal tenes (± 1.3) (± 0.4) (± 0.10) (± 0.0 9) B it1 84.7 10.3 0.45 4.7 4 n .d . 6 6.4 ± 0.8 18.9 ± 0.7 14.2 ± 0.7 n.d . 71 .2 ± 0.9 13.5 ± 1.0 15.2 ± 0.8 B it2 84.8 10.4 0.4 2 4.7 6 n .d . 6 8.3 ± 1.0 17 .8 ± 1.0 13.1 ± 0.9 n.d . 70.7 ± 1.3 13.4 ± 0.9 15.9 ± 1.0 B it3 84.2 10.6 0.4 3 4.4 3 1.9 ± 0.2 6 6.6 ± 1.4 18.2 ± 0.6 13.1 ± 0.9 1.6 ± 0.2 65 .5 ± 1.6 14.9 ± 1.5 14.9 ± 0.7 B it4 84.6 10.3 0.4 3 4.6 6 1.1 ± 0.2 65 .8 ± 1.6 18.9 ± 0.8 14.3 ± 1.0 0.7 ± 0.2 6 8.0 ± 1.1 14.7 ± 1.2 16.6 ± 0.8 B it5 84.4 10.4 0.4 3 4.6 9 1.2 ± 0.2 67 .8 ± 0.8 17 .8 ± 1.2 13.2 ± 0.8 1.0 ± 0.2 70 .5 ± 1.2 13.6 ± 0.8 14 .9 ± 0.9 B it6 84.2 10.6 0.4 2 4.4 0 2.2 ± 0.2 65 .6 ± 0.9 18.6 ± 0.9 13.6 ± 0.7 1.6 ± 0.2 67 .4 ± 0.2 15.6 ± 1.8 15.4 ± 0.8 B it7 84.8 10.9 0.4 3 4.3 5 3.9 ± 0.5 63 .1 ± 0.2 18.6 ± 1.2 14.4 ± 0.7 3.0 ± 0.4 6 6.6 ± 1.7 15.2 ± 1.1 15.1 ± 0.7 aAv er ag e ± st an da rd de via tio n; n.d.: n o t det ec ted.

(6)

Table 4: Characteristic properties of bitumen blends, before and after PPA modification.

Blend Before PPA After PPA

Pen (dmm) SP (∘C) PI (—) Pen (dmm) SP (∘C) PI (—) Bit1 101 43.0 −1.4 90 43.8 −1.5 Bit2 99 43.0 −1.5 88 44.0 −1.5 Bit3 103 43.0 −1.4 90 45.2 −1.1 Bit4 108 42.0 −1.6 88 44.2 −1.4 Bit5 99 43.0 −1.5 95 43.8 −1.3 Bit6 110 42.2 −1.5 86 45.5 −1.1 Bit7 100 43.5 −1.3 91 45.6 −0.9

Pen: penetration at 25∘C; SP: ring and ball softening point; PI: penetration index.

0 5 Chemical shift (ppm) Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 −5 −10 −15 −20

Figure 3:31P NMR spectra for PPA-modified bitumen (Bit1–Bit7).

smaller peak around−26 ppm is attributed to phosphorus in the middle groups of PPA chains.

The PPA-modified bitumen blends were also analyzed by

31P NMR spectroscopy, at room temperature. The spectra

for the seven blends (see Figure 3) are very similar reveal-ing a broad signal approximately at 1 ppm. This resonance peak, located in the vicinity of the phosphorous resonance peak in H3PO4, was assigned to hydrophobic interactions between phosphorous and polycondensed aromatic struc-tures typically present in asphaltenes [23]. The absence of resonance peaks assigned to phosphorus in phosphate chains (end and middle groups) suggests that phospho-ric esters were not formed during bitumen modification with PPA, in agreement with the results of Miknis and Thomas [39] and in opposition to the earlier hypothesis of Orange et al. [40]. Furthermore, these results indicate that PPA is hydrolyzed completely back to H3PO4, prob-ably due to the presence of residual water in bitumen [39].

The broader spectral peaks for PPA-modified bitu-men blends (Figure 3), in comparison with PPA (Fig-ure 2), are probably due to higher viscosity of the PPA bitumen blends or to the formation of charge transfer

complexes between phosphorous and the asphaltene poly-condensed aromatic structures [39, 41]. Another hypoth-esis is that small amounts of paramagnetic impurities typically present in bitumen (e.g., vanadium and nickel) may decrease the relaxation time and, consequently, increase peak broadening due to the Heisenberg uncertainty principle [42].

4.3. Analysis of Unmodified and PPA-Modified Bitumen by

1H NMR Spectroscopy. The 1H NMR results for

unmod-ified and PPA-modunmod-ified bitumen blends are presented in Table 5. The spectra were divided into 12 unequal seg-ments corresponding to well-defined chemical shifts asso-ciated with specific groups (i.e., hydrogen types), though minor overlapping may occur [23]. Peak integration in the selected segments generated, after normalization, the relative content of the various proton types (Table 5). The mean values were obtained by averaging the results from the spectra of three aliquots of the same bitumen formula-tion.

Some conclusions may be drawn from the 1H NMR results (Table 5) more explicitly presented in Figure 4. In general, the content of aliphatic hydrogen (segments 1 and 2, Table 5) in PPA-modified bitumen is different from that in the parent unmodified bitumen. The signals in the segments associated with the branching (0.5–1.0 ppm) and the length (1.0–1.7 ppm) of paraffinic chains are systematically higher, though rather similar. The signals in segment 3 (1.7–1.9 ppm), that is, in the region of chemical shifts associated with sulfur adjacent hydrogen atoms (1.8–3.0 ppm) [27], decrease after PPA modification, thus suggesting more substituted aromatic structures.

The slightly lower signals in segment 6 (2.4–3.5 ppm), Figure 4, which are associated with the chemical shifts of 𝛼-hydrogen (𝛼-CH, 𝛼-CH2) indicate the occurrence of oxidation reactions, thus explaining the improved stabil-ity of PPA-modified bitumen [27]. The signals associated with bridging hydrogen atoms (segment 7, 3.5–4.5 ppm) and hydrogen atoms in monoaromatic structures (seg-ment 9, 6.0–7.2 ppm) have both a tendency to decrease

(7)

Ta b le 5: 1H N MR re sul ts fo r th e b it umen b ef o re an d aft er P PA mo difica tio n. Se gm en t Chemical shift (p p m ) Hy d ro ge n ty p e Bit 1 Bit 1 + P PA Bit 2 Bit 2 + P PA Bit 3 Bit 3 + P PA Bit 4 Bi t4 + P PA B it5 B it5 + P PA B it6 B it6 + P PA B it7 B it7 + P PA % % 1 0.5–1.0 𝛾 CH 3 ,s o m e na ph th enic CH and C H2 16 .8 9 ± 0.2 2 17 .0 9 ± 0.12 16 .8 2 ± 0.0 4 17 .45 ± 0.01 17 .45 ± 0.1 8 17 .67 ± 0.07 17 .13 ± 0.2 4 17 .3 6 ± 0.13 16 .87 ± 0.08 17 .5 6 ± 0.0 6 17 .3 5 ± 0.1 0 17 .8 3 ± 0.12 17 .4 2 ± 0.08 17 .80 ± 0.1 9 2 1.0–1.7 𝛽 CH 2 and som e 𝛽 CH 50 .2 1± 0.0 3 50 .5 3 ± 0.08 50 .5 6 ± 0.11 50 .9 2 ± 0.2 0 53 .26 ± 0.1 6 53 .4 7 ± 0.1 6 50 .9 2 ± 0.0 9 51.3 1± 0.2 5 51.12 ± 0.1 6 51.4 8 ± 0.1 6 53 .6 3 ± 0.2 3 53 .6 6 ± 0.0 6 54 .98 ± 0.2 2 54 .7 3 ± 0.1 8 3 1.7 – 1.9 M o st CH an d CH 2 in 𝛽 po si ti o n s 4.3 0 ± 0.0 2 4.2 0 ± 0.0 2 4.3 3 ± 0.0 3 4.1 8 ± 0.0 2 4.2 4 ± 0.0 6 4.1 4 ± 0.0 0 4.21 ± 0.0 6 4.15 ± 0.0 4 4.3 1± 0.0 3 4.13 ± 0.0 3 4.2 3 ± 0.05 4.1 0 ± 0.0 4 4.08 ± 0.0 2 4.0 3 ± 0.0 6 4 1.9–2.1 𝛼 CH 3 in o lefin s 2.3 5 ± 0.01 2.2 7 ± 0.0 2 2.3 5 ± 0.0 3 2.2 3 ± 0.01 2.29 ± 0.05 2.2 3 ± 0.01 2.2 7 ± 0.05 2.2 4 ± 0.0 3 2.3 3 ± 0.0 2 2.2 0 ± 0.0 2 2.2 8 ± 0.0 4 2.1 9 ± 0.0 3 2.2 0 ± 0.0 3 2.1 6 ± 0.05 5 2.1 – 2.4 𝛼 CH 3 in arom at ic ca rb on s 4.1 9 ± 0.0 3 4.07 ± 0.0 2 4.15 ± 0.0 2 3.97 ± 0.0 2 3.7 7 ± 0.0 4 3.6 5 ± 0.01 3.9 9 ± 0.0 4 3.97 ± 0.0 4 4.0 6 ± 0.0 2 3.8 9 ± 0.0 2 3.7 3 ± 0.01 3.6 1± 0.0 2 3.5 2 ± 0.01 3.4 2 ± 0.01 6 2.4–3.5 𝛼 CH an d C H2 in arom at ic ca rb on s 11.97 ± 0.0 9 11.8 ± 0.10 11.95 ± 0.08 11.5 5 ± 0.0 6 10 .51 ± 0.13 10 .3 8 ± 0.0 6 11.57 ± 0.11 11.3 7 ± 0.0 4 11.6 8 ± 0.0 3 11.2 7 ± 0.07 10 .4 2 ± 0 .10 10 .2 2 ± 0.05 9. 78 ± 0.07 9. 74 ± 0.1 0 7 3.5– 4.5 B ri dgin g C H2 1.11 ± 0.0 4 1.0 9 ± 0.07 1.11 ± 0.0 6 1.0 0 ± 0.0 3 1.0 2 ± 0.0 9 1.0 4 ± 0.0 3 1.1 4 ± 0.07 1.01 ± 0.07 1.12 ± 0.0 6 0.9 9 ± 0.0 4 1.0 2 ± 0.1 0 1.01 ± 0.05 0.97 ± 0.08 1.01 ± 0.08 8 4.5–6.0 O lefin s 0.07 ± 0.0 2 0.1 0 ± 0.0 3 0.0 4 ± 0.0 3 0.07 ± 0.01 0.0 6 ± 0.0 6 0.0 9 ± 0.0 2 0.11 ± 0.0 3 0.07 ± 0.0 3 0.0 6 ± 0.0 6 0.0 6 ± 0.0 2 0.05 ± 0.08 0.0 9 ± 0.0 2 0.0 4 ± 0.07 0.1 4 ± 0.0 9 9 6.0–7 .2 M o n oa ro ma tics 2.87 ± 0.1 0 2.6 8 ± 0.1 9 2.8 3 ± 0.1 7 2.7 5 ± 0.05 2.5 4 ± 0.12 2.3 4 ± 0.1 0 2.7 0 ± 0.08 2.7 6 ± 0.0 4 2.7 2 ± 0.1 0 2.6 3 ± 0.1 6 2.4 9 ± 0.13 2.3 1± 0.1 9 2.3 6 ± 0.11 2.2 5 ± 0.08 10 7. 2–8.3 Dia ro m at ics and so m e tri -an d te tr a-ar o m at ic s 5.2 3 ± 0.0 2 5.2 5 ± 0.05 5.11 ± 0.0 6 5.1 0 ± 0.05 4.2 0 ± 0.0 2 4.26 ± 0.0 3 5.11 ± 0.05 4.9 9 ± 0.08 4.97 ± 0.0 6 4.98 ± 0.07 4.12 ± 0.0 6 4.2 4 ± 0.0 2 3.97 ± 0.05 4.01 ± 0.08 11 8.3–8.9 So m e tr i-an d te tr a-ar o m at ic s 0.67 ± 0.01 0.7 1± 0.0 4 0.6 4 ± 0.0 4 0.6 6 ± 0.0 3 0.5 5 ± 0.0 2 0.6 1± 0.01 0.7 1± 0.0 3 0.6 5 ± 0.05 0.6 4 ± 0.0 4 0.67 ± 0.0 4 0.5 3 ± 0.0 4 0.6 1± 0.0 2 0.5 3 ± 0.0 3 0.59 ± 0.0 2 12 8.9–9 .3 So m e te tr a-ar o m at ic s 0.12 ± 0.01 0.1 4 ± 0.0 2 0.1 0 ± 0.0 2 0.11 ± 0.01 0.1 0 ± 0.01 0.13 ± 0.0 0 0.1 4 ± 0.01 0.12 ± 0.0 2 0.11 ± 0.0 2 0.12 ± 0.0 2 0.1 0 ± 0.0 2 0.13 ± 0.01 0.1 0 ± 0.0 2 0.12 ± 0.01

(8)

Chemical shift (ppm) Chemical shift (ppm) Chemical shift (ppm) Chemical shift (ppm) Chemical shift (ppm) Chemical shift (ppm)

Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 16.20 16.40 16.60 16.80 17.00 17.20 17.40 17.60 17.80 18.00 % H 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00 3.85 3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 % H % H % H % H % H 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 Bit7 + PPA Bit6 + PPA Bit5 + PPA Bit4 + PPA Bit3 + PPA Bit2 + PPA Bit1+ PPA 0.5–1.0 1.0–1.7 1.7–1.9 2.4–3.5 3.5–4.5 6.0–7.2

Figure 4: Most significant results from the1H NMR spectra of bitumen blends before and after PPA addition. The types of hydrogen associated with the chemical shift regions are listed in Table 5.

after PPA modification (see Figure 4). This might be related to a slight increase in the content of hydrogen atoms associated with polyaromatic structures (segments 10, 11, and 12, in Table 5), suggesting an increase in con-tent of condensed structures as reported in the literature [13].

A final note about the residual presence of olefins, detected in the region 4.5–6.0 ppm (segment 8, Table 5). In fact, since bitumen is allegedly free of olefins, due to the process conditions in the refinery, its presence can be attributed to cracking reactions eventually occurring during NMR sample preparation (recall that

(9)

Table 6: Summary of issued patents related to bitumen modification with PPA.

Year Type Patent number Licensing Company

1973 Chemically modified bitumen US3751278 A Tosco Lion Inc.

2009 US20090249978A1 Innophos

1991

Polymer-modified bitumen

US5070123 A Exxon Research & Engineering

1996 US5565510 A Montell North America Inc.

1996 US5519073 A Shell Oil Company

1999 US5880185 A Elf Exploration Production

2000 US6117926 A Mathy Construction Company

2000 US6031029 A Ergon

2000 US6136898 A Marathon Ashland Petroleum

2002 US6414056 A Exxon Mobil

2007 US20050284333 ICL Performance Products

2008 US7985787 Innophos

2010 Reclaimed asphalt pavement US8906152 Innophos

2006

Roofing membranes US7678467 B2 ICL Performance Products

2013 WO2013116637 A1 ICL Performance Products

2004

Crumb rubber modified bitumen

WO2004081098 A1 Eurovia

2011 WO 2011047032 A2 Innophos

2011 WO 2011057085 A2 Innophos

Search criteria. Keywords: (asphalt or bitumen) and (polyphosphoric acid) in title and abstract in Google Patents and Web of Knowledge databases. Accessed in December 2015.

bitumen reheating was necessary to facilitate sample handling) [54].

5. Conclusions

Binary and ternary bitumen blends formulated with asphaltic residue, vacuum residue, and aromatic- extracts derived from refined Arabian crude oil were analyzed before and after modification with polyphosphoric acid (PPA). SARA analysis revealed that, in general, PPA modification increased the fraction of asphaltenes in bitumen and decreased the saturates and resins fractions abundance. These changes improved the performance properties, namely, the penetra-tion index (PI), which indicates higher thermal stability of PPA-modified bitumen blends.

With respect to the mechanism of PPA actuation, the

31P NMR proved that PPA is hydrolyzed back to phosphoric

acid and reacts with bitumen, probably in the form of charge transfer complexes with polycondensed aromatic structures. This fact was disclosed from the presence of the single reso-nance peak assigned to phosphoric acid and the absence of peaks assigned to phosphorus in the end and middle groups of phosphate chains. The PPA disrupts the agglomerates of asphaltene micelles, which promotes the distribution of asphaltenes in the maltene phase, thus increasing the content of the aromatic fraction. Furthermore, part of the resins is converted into the aromatic fraction.

Concerning the 1H NMR studies, results suggest that PPA improves the oxidation stability of the bitumen blends and increases the concentration of condensed structures. The former was evidenced by the content drop of 𝛼-hydrogen

(range 2.4–3.5 ppm) after PPA modification, as these hydro-gen atoms are associated with oxidation susceptibility.

Appendix

This appendix presents a literature review concerning bitu-men modification with polyphosphoric acid (PPA). Table 6 lists the patents issued since 1973 when Alexander [55] patented a process using PPA to improve bitumen viscosity. Table 7 summarizes the scientific studies performed to evaluate the effect of PPA on bitumen, or bitumen model compounds, and the main characteristics of the ensuing PPA-modified bitumen.

Competing Interests

The authors declare that there are no competing interests regarding the publication of this paper.

Acknowledgments

This work was developed within the scope of the projects CICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/ 50011/2013) and UI QOPNA (Ref. FCT UID/QUI/00062/ 2013), financed by national funds through the FCT/MEC and when appropriate cofinanced by FEDER under the PT2020 Partnership Agreement and the Portuguese National NMR Network (RNRMN). Catarina Varanda also thanks the FCT for a doctoral grant (SFRH/BDE/51420/2011).

(10)

T a ble 7: L it era tur e re vie w ab o u t b it u men m o difica tio n w it h p o ly p h osp h o ric acid (PP A). Ye ar Bitu me n ty p e (s o u rce) PP A, wt.% Ot her addi ti ve s a A imo fP PA mo difica tio n Pa ra m et er s an al yz ed b P rinci p al o bs er va ti o n s R ef er ence 19 95 St ra ig h t-r un bitu m en (v ar iou s undis clos ed cr ude oi ls ) 1-2 — St ud y the p h ysical an d chemical p ro p er ti es o f mo dified b it umen P en; SP ;F raas sT ; ag ein g (R TFO); MW ;a sp ha lt enes; 1H, 13C, 31P N MR; mo rp holog ic al an d rheo logical pa ra m et er s (i) P PA mo difica tio n is simila r to m ild air -b lo wn mo difica tio n o f b it umen, w it h lo w er costs (ii) H ig h er p enet ra tio n index an d ag ein g resist ance w it h mino r loss es fo r lo w-t em p era tur e b eha vio r (iii) Shift in g to w ar ds a gel st ru ct ur e w it h hig her co n te n t an d M W o f asp ha lt enes, d ue to co n ver sio n o f ar o m at ics to re sin s an d o f resin s to asp hal tenes an d to the fo rm at io n o f aspha ltene-phospho ro us co m p lexes [3 7] 19 9 6 St ra ig h t-r un bitu m en (v ar iou s undis clos ed cr ude oi ls ) 1– 5 Et hy le n e-propy le n e co p oly me rs (2–10 w t.%) Improv e st o ra ge st ab il it y o f p o ly mer -mo dified bitu m en P en; SP ;v is cosi ty ; rheo logical cu rv es; aspha ltenes; MW ; sto rage st ab ili ty ; mo rp holog y (i) P PA im p ro ves th e d isp ersio n o f the co p oly mer in the b it u men, shift in g it to w ar ds a gel st ru ct ur e w it h incr eas ed co n ten t and MW o f th e asp hal tenes fr ac ti o n (ii) PP A m o difica tio n im p ar ts hig her p enet ra ti o n index, vi sc o si ty ,and b et te r sto ra ge st ab il it y at h ig h te m p er atu re s (iii) The addi ti o n o f PP A ca n re d u ce co p o ly mer load (b y ca .5 0 % ) th u s lo w eri n g th e co st s [1 6] 1999 St ra ig h t-r un an d vi sb re ak er b it u m en (undis clos ed so ur ce) 1– 3 Et hy le n e-propy le n e co p oly me rs (2 or 5 w t.%) St ud y the co llo idal st ru ct ur e o f p o ly mer -mo dified bitu m en Pe n ;S P ;M W ; aspha ltenes; sto rage st ab ili ty ; rheo logical pa ra m et er s (i) Simila r p ro p er ties fo r PP A -mo dified b it umen an d ai r-b lo w n b it umen, ex cep t at lo w te m p era tur e (ii) Im p ro ved b eha vio r at hig h tem p era tu re ,u nc ha n ged b eha vio r at lo w tem p era tu re (F raas s b ri tt le p o in t) (iii) Shift in g fr o m so lt o ge lc o llo idal st ru ct ur e (iv) H ig h er p enet ra tio n index an d sto rage st ab il it y [1 4] 2000 V ac u um re sid u e (M iddle E ast) 1— Improv e th e rheo logical an d p h ysico chemical p ro p er ti es o f vac u um re sid u es P en; SP ;S ARA; 13C NMR; elemen ta l an al ys is ; rheo logical an d co ll o idal pa ra m et er s (i) H ig her st iff n ess, im p ro ved elast ici ty an d co llo idal st ab il it y, an d lo w er th er ma ls us cep ti b ili ty (ii) Shift in g to w ar ds a gel typ e st ru ct ur e (r ela te d to m o re ar o m at ic an d p o ly co nden se d asp hal tenes) (iii) C o n ver sio n o f mal tenes to asp h al te nes (i v) F o rm at io n o f asp ha lt ene-p h osp h o ro u s co m p lex es [13] 200 4 Bi tu men b lends (Sa udi Ara b ia, V enezuela, an d Cal if o rn ia ) 0.2– 0.6 SB S o r E V A p oly me rs (1 5 w t. % ) Stu d y as p h alt m ix tu re s p re p are d fr o m PP A /p oly me r-mo dified bitu m en P en; SP ;S ARA; rheo logical pa ra met er s; ag ein g (R TFO ,P A V); m o is tu re re si st an ce (i) P PA enables the re d u ct io n o f p oly mer co n ten t w it h o u t loss o f p er fo rm an ce p ro p er ti es (ii) Im p ro ved p ro cessin g co ndi tio n s, hig h tem p era tu re vi sc osi ty ,a n d st o ra ge st ab ili ty [4 3]

(11)

Ta b le 7: C o n ti n u ed . Ye ar Bitu me n ty p e (s o u rce) PP A, wt.% Ot her addi ti ve s a A imo fP PA mo difica tio n Pa ra m et er s an al yz ed b P rinci p al o bs er va ti o n s R ef er ence 2005 B it u men (Sa udi A ra b ia, V en ezue la) 0.6–1.2 — Stu d y th e me cha n isms fo r PP A m o difica tio n SARA; M W ; 31 P NMR; mo rp holog y (AFM) (i) P PA st iff en s the ma tr ix (mal te nes) o r th e d isp er sed p h as e (asp h al te nes) dep endin g o n b it umen co m p osi tio n (i .e ., so ur ce) (i i) C o n ve rs ion of sa tu ra te s in to as p h alt en es (S au d i Ara b ia) o r resin s in to sa tura tes an d asp ha lt enes (V enezuela) (iii) F o rm at io n o f asp hal tene-p h osp h o ro u s co m p lex es [4 4] 2006 Bitu me n (V enezuela, M iddle Ea st ) 0.4–1 — Stu d y th e lo w-t em p era tur e pe rf o rm an ce (− 25 ∘ Ct o+ 5 ∘ C) P en; SP ;F raas sT ; rheo logical an d th er m al pa ra m et er s (i) P PA sh o w ed so m e posi ti ve eff ects o n th e lo w-t em p era tur e rheo logical b eha vio r, and th is infl uence dep ends m ai n ly o n the b it u men co m p o si ti o n (i.e., so ur ce) (ii) PP A lo w er s the st iff ness (a t− 25 ∘ C) an d h as ma rg inal eff ec ts on du ct il it y (a t + 5 ∘ C) [22] 2007 Bitu me n (V enezuela, M iddle Ea st ) 0.4–1 — St ud y hig h/medi um te m p era tur e pe rf o rm an ce (+ 5 ∘ C to + 10 0 ∘ C) P en; SP ;a ge in g (R TFO ,P A V); rheo logical an d th er m al pa ra met er s; F TIR (i) P PA h as a posi ti ve eff ect o n th e rh eo logical be h avio r, p ro vidin g the hig hest st iff enin g eff ec ts in the ra n ge 25 to 90 ∘ C (ii) The eff ec t o f P PA o n th e rheo log ica lp ro p er ti es dep ends m ai n ly o n the b it u men co m p o si ti o n (i.e., so ur ce) [45] 2008 Bitu me n m o d el co m p o u nds (is o q uino line; 1-m et h yl -2 -q uino lo n e) 16.7 — Stu d y th e re ac ti on wi th p yr idine and p yr idino n e gr o u p s FTIR (i) P yr idine and p yr idino n e func tio nal gr o u p s fo rm io n pa ir s w it h P PA th ro ug h h yd ra ti o n o r by re so na nce , dep endin g o n the dielec tr ic co n st an t (ii) The diss o cia ti o n an d re ac tio n o f P PA wi th b it u men w ill o cc u r p re fe re n tiall y in enc la ve s o f hig h dielec tr ic co n st an t [7] 2008 Bitu me n m o d el co m p o u nds (sulf u r; te trah y-dr o thio p h ene; b enzo thio p h ene; te tr ame th yl ene sulf o xide) 16.7 — Stu d y th e re ac ti on wi th sulfide an d sulf o xide gr o u ps FTIR; TL C (i) A li p h at ic an d ar o ma ti c sulfide gr o u ps w er e iner t, at 15 0 ∘ C, th us in valida ti n g th e h yp o thesis o f P PA ind u ced n u cl eo p h il ic disp lacemen t re ac tio n s (ii) Su lf o xide gr o u ps w er e ve ry re ac ti ve wi th PP A sug gest in g th at o xidized an d n o n o xidized b it u men w ill re ac t diff er en tl y [15] 2008 Bitu me n m o d el co m p o u nds (indo le) 3.2 and 16.7 — Stu d y th e re ac ti on wi th p yrr o le fu n cti o n al gr o u p s FTIR (i) Th e amine and do ub le b o nd o f indo le ar e b o th re ac ti ve (ii) The amine gr o u p under go es p hosp ho ry la ti o n (iii) N–N b ridgin g incr eas es MW an d st iff n ess (i v) Disr u p ti o n o f th e h yd ro ge n b o n d n etw o rk (in vo lv in g p yr rol e N – H gr oup s) affe ct s the aspha lte ne s-ma lte n es eq uilib ri u m (v) C o m p et in g b ridgin g and ri n g o p enin g re ac tio n s exp la in the incr ea se /d ecr eas e o f st iff n ess in P PA -mo dified bitu m en [4 6]

(12)

Ta b le 7: C o n ti n u ed . Ye ar Bitu me n ty p e (s o u rce) PP A, wt.% Ot her addi ti ve s a A imo fP PA mo difica tio n Pa ra m et er s an al yz ed b P rinci p al o bs er va ti o n s R ef er ence 2008 Bitu me n m o d el co m p o u nds (b isphe n ol A ;but yl p h en yl et her ; acet o p heno ne; b enzo ic acid) 16.7 — Stu d y th e re ac ti on wi th o x yg en at ed fu n cti o n al gr o u p s FTIR; TL C (i) Th e re ac tiv it y o f the fu nc ti o n al gr o u ps fol lo w s the o rder phe n ols > ke ton es > ca rb o x yl ic acids > et her s (ii) Bisphenol A was frag m en te d (i.e., lo w er MW ) w her eas th e o th er co m p o u nds w er e co n den sed in to hig her M W st ru ct ur es (iii) Phosp h o ry la tio n o f h yd ro x yl gr o u p s did no t o cc ur , sho w ing tha t p hospha te esters ca nno t exist in PP A -mo dified b it umen [4 7] 2008 Bitu me n A BD (S HRP lib ra ry ) c 1.5 SB S o r E lv al oy  p oly me rs (3 w t. % ) St ud y the re ac ti o n s be tw ee n P PA an d bitu m en o r p o ly mer -mo dified bitu m en 31 P N MR; st o ra ge st ab il it y (i) P PA h ydr o ly zes b ac k to o rt h o p hosp ho ri c acid by re ac ti ng w it h re si du al w at er eve n tu al ly p re se n t in bitu m en (ii) The fo rm at io n o f o rg an o p hosp ha te est er s was n o t det ec ted (iii) Ther e is no ev idence o f re ac tio n b etw een SB S o r E lvalo y p o ly mer s an d b it umen in th e p re se nce o f P PA (0.2 wt.%) [3 2] 2008 AAD-1, AAM-1, an d A B D bitu m en (S HRP lib ra ry ) c 1.5 — St ud y the va ri at io n o f th e rheo logical an d chemical p ro p er ti es o f PP A -mo dified aspha lts w it h agei ng ti me R h eo logical an d th er m al pa ra met er s; F TIR; 31 P N MR; ag ein g (P A V ); st o ra ge st ab il it y (i) P PA addi ti o n im p ro ves b it u men rheo logical p ro p er ti es (i.e., hig her st iff n ess and gr ea ter el ast ic mo d u lu s) w it h o u t significa n t cha n ges in b it u men co m p o si ti o n (ii) The eff ec t o f P PA dep ends o n the ch emical co m p osi tio n o f the b as e b it u men (i .e ., its so ur ce) (iii) F o rm at io n o f o rg anic p h osp h at e est er s w as no t obs er ve d [20] 2009 AAA, AA U ,AAX, an d A B D bitu m en (S HRP lib ra ry ) c 0-1 — Stu d y th e re ac ti on be tw ee n P PA an d bitu m en w it h kn o w n co n te n ts o f org an ic fu n ct ion al gr o u ps SARA; M W ; mo rp holog y (AFM); th er mal pa ra m et er s (i) P PA ac ts at th e in ter face b etw een asp hal tenes an d ma lt enes, w it h resin s (p o la r ar o ma ti cs) p la yin g a cr u cia l ro le in th e d isr u p tio n o f the h ydr og en b o nd netw o rk (ii) PP A ac ts o n func tio nal gr o u p s w it h hig h dielec tr ic co n st an ts (i .e ., co m p o unds wi th ni tr og en, o x yg en, o r sulf ur) (iii) The h ydr o x yl gr o u ps ar e n o t p h osp h o ry la ted (i v) Tg o f ma lt enes decr ea se s and Tg o f asp h al te nes incr ea se s (v) H ig h tem p era tu re p er fo rma nce grade (PG) co rr ela tes line ar ly wi th PP A co n te n t, d ep endin g o n b it umen co m p osi tio n [4 8] 20 10 Bitu me n (R ep sol, Sp ain) 2 Cr um b tir e rub b er (10 w t.%) Stu d y th e p ro p er ti es o f cr um b rub b er mo dified b it umen P en; SP ; rheo logical an d th er m al p ar ame te rs ;s to ra ge st abi lit y; in so lu bl e so li d s (i) Sma ll q u an ti ti es o f PP A im p ro ve th e elast ic p ro p er ti es of bitu m en ,du e to sol -g el tr ans it ion ;T g w as u n affe ct ed (ii) The st ag e at w hic h P PA is added (b ef o re o r aft er mixin g w it h cr u m b ru b b er) ap p ar en tl y h as no infl uence (iii) PP A im p ro ve s st o ra ge st ab ili ty b u t is no t sufficien t to av o id sedimen ta ti o n o f cr um b rub b er p ar ti cl es at hig h te m p era tur e [41]

(13)

Ta b le 7: C o n ti n u ed . Ye ar Bitu me n ty p e (s o u rce) PP A, wt.% Ot her addi ti ve s a A imo fP PA mo difica tio n Pa ra m et er s an al yz ed b P rinci p al o bs er va ti o n s R ef er ence 20 10 Pav in g b it u m en (L an zho u ,C hina) 1– 3 SB R ,s u lf u r (0–6 wt.%) Stu d y th e p ro p er ti es o f b it u men m o dified wi th SB R ,sulf ur , an d P PA P en; SP ;F TIR; ag ein g (R TFO); mec h anical , th er m al ,a n d rheo logical pa ra m et er s; mo rp holog y; sto rage st ab ili ty (i) P PA shifts the st ru ct ur e fr o m so lt o ge li m p ro vin g th e hig h-t em p era tur e p h ysical and rheo logical p ro p er ti es o f bitu m en (ii) The addi ti o n o f SB R ca n re d u ce th e unfa vo ra b le eff ec t o f PP A o n the lo w-t em p era tur e d uc ti li ty (iii) The addi ti o n o f sulf ur to PP A/S B R -mo dified b it umen im p ro ves th e hig h-t em p era tur e rheo logical p ro p er ti es, wi th a sm all eff ect o n th erm al st ab il it y [4 9] 20 11 AAD ,AAM, and ABD b it umen (S HRP lib ra ry ) c 1.5 Hy d ra te d li m e (10 w t.%); do lo mi ti c and gra n it e fill er s (10–3 0 wt.%) St ud y the eff ec t o f h ydra ted lime an d o ther fi ll ers o n the rheo logical an d ch emical p ro p er ti es o f PP A -mo dified bitu m en A gein g (R TFO , PA V ); 31 P N MR; rheo logical pa ra m et er s (i) P PA incr ea se s b it umen st iff ness (ii) The addi ti o n o f gra n it e filler s to P PA -mo dified b it u men h as li tt le eff ec t o n st iff n ess w her eas do lo mi te re d u ces st iff ness (iii) The addi ti o n o f h ydra ted lime ca ncels the st iff enin g eff ec t o f P PA b u t slo ws do wn th e o xida ti ve ag ein g p ro cess of bitu m en (i v) H ydra ted lime re ac ts wi th PP A yieldin g calci um pho spha te s (v) Th e in terac ti o n b etw een h yd ra te d lime ,PP A, an d the b inder s is diff er en t fo r so l-typ e an d gel-typ e b it umen [5 0] 20 11 PG58-22 b it umen (I ra n) 1-2 Cr um b rub b er (5–15 w t.%); Ve st n am er  (4.5 wt.% o f cr um b ru b b er ) St ud y the eff ec t o f PP A + V est namer (syn th et ic ru bb er) o n cr um b rub b er mo dified b it umen P en; SP ;a ge in g (R TFO ,P A V); mo rp holog y; rheo logical pa ra m et er s (i) SP incr eas es an d P en decr ea se s line arl y w it h P PA co n ten t (i i) Th e pre fe rre d con te n t of P PA is 1 w t. % ,s in ce b itu m en p er fo rm an cei si m p ro ve db o tha th ig ha n d at lo w te m p era tur es (iii) V est na mer re ac ts chemicall y wi th cr um b rub b er and b it u men to cr ea te a unif o rm m acr o p o ly mer n etw o rk (i v) The addi ti o n o f PP A p ro mo te s the unif o rm dist ri b u ti o n o f cr um b rubb er and sy n thet ic rubb er pa rt ic les in the b it u men, th us im p ro vin g its rheo logical p ro p er ti es [1 7] 20 12 Bitu me n (R u ss ia , Sa udi Ara b ia, and V enezuela) 0.5–1.5 — St ud y the eff ec t o f PP A o n b it umen be h av io r at lo w te m p era tur e (< 5 ∘ C) P en; SP ;F raas sT ; aspha ltenes; wax co n ten t; rheo logical an d th er m al pa ra m et er s (i ) P PA im prov es th e low -t em p er at u re p er for m an ce o f b it u men (i .e ., st iff n ess incr eas es an d T g is lo w er ed) u p to 1w t. % (ii) The eff ec t o f P PA at lo w tem p era tu re is st ro n gl y dep enden t o n b it umen co m p osi tio n (i .e ., w ax an d asp h al te ne co n ten t) [21] 20 12 St ra ig h t-r un bitu m en (V enezuela) 1-2 — Stu d y th e mole cu la r st ru ct ur e and mec h anical b eh av ior of PP A -mo dified bitu m en 1 H-NMR sp in-sp in re la xa ti o n ti m es; rheo logical pa ra m et er s (i) 1% o f P PA shifts the so l-g el tra n si tio n tem p era tu re to hig her va lues w it ho u t b it u men loss o f st ab ili ty ,w her eas 2% o f PP A im p ar ts undesir ed h et er og eneo us st ru ct ur es (ii) The dist ri b u ti o n o f p ro to n re laxa ti o n ti mes p ro vides us ef ul inf o rma ti o n ab o u t the macr ost ruc tu re o f b it u men [5 1]

(14)

Ta b le 7: C o n ti n u ed . Ye ar Bitu me n ty p e (s o u rce) PP A, wt.% Ot her addi ti ve s a A imo fP PA mo difica tio n Pa ra m et er s an al yz ed b P rinci p al o bs er va ti o n s R ef er ence 20 13 B it u men (Sa udi Ara b ia, C hina) 0.5–2 — St ud y the eff ec t o f PP A o n chemical co m p osi tio n, p h ysica lp ro p er ti es, and m or phol o gy o f bitu m en P en; SP ;d uc ti li ty ; vi sc osi ty ;SARA fr ac ti o n s; mo rp holog y (AFM) (i) P PA ap p ar en tl y co n ver ts th e resin s in to asp hal tenes (ii) The effe ct o f P PA dep ends o n the ty p e o f b it u men, ha vin g a lo w er infl uence o n b it umen wi th hig her co n te n ts o f re si ns and lo w er aspha lte ne s co n te n t (iii) In ge neral ,vis cosi ty and SP incr ea se wi th PP A co n te n t w h er ea s P en an d d uc ti li ty decr ea se (i v) M o rp ho log y and ch emical co m p osi tio n o f PP A -mo dified b it umen co rr ela tes st ro n gl y wi th th e co ll o idal index [3 2] 20 13 Bitu me n (R u ss ia , Sa udi Ara b ia, and V enezuela) 0.5–1.5 — St ud y the ch an ge s ind u ced by P PA in bitu m en to re la te it s rheo logical p ro p er ti es an d mo rp holog y P en; SP ; mo rp holog y (S EM); rheo logical pa ra m et er s (i) P PA im p ro ves th e hig h-t em p era tur e p ro p er ties (i .e ., extends the ra nge o f vis co el ast ic b eha vio r), m ai n ly d ue to th e size red uc ti o n o f asp h al te nes micella r ag gr ega te s w hic h im p ro ves so lv at io n p heno mena an d co llo idal st ab ili ty (ii) The tr an si ti o n te m p era tur e fr o m so lt o ge li ncr eas es w it h P PAc o n ce n tr at io nu pt o1 w t. % an dn o t so m u ch fo r hig her co n cen tr at io n s (dep endin g o n asp hal tene co n te n t) sug gest in g th e exist ence o f sa tu ra ti o n eff ec ts [2] 201 4 B it u men (USA) 0.5 SB S; P P M A o xidized PE (2-3 wt.%); cr u m b ru bb er (10 w t.%) St ud y the hig h te m p era tur e rheo logical p ro p er ti es o f p o ly mer -mo dified bitu m en R h eo logical pa ra met er s; ag ein g (R TFO ,P A V) (i) Th e addi ti o n o f PP A (0.5 w t.%) ca n red uce p o ly mer loadin g (f ro m 3% to 2%) req uir ed to o b ta in th e sa m e bitu m en gr ad e (ii) The rheo log y o f m o dified b it umen is so ur ce-dep enden t (iii) O xidized PE an d P PMA p ro vided b it umen wi th lo w er vi sc o si ty va lu es co m p ar ed to SB S an d cru m b ru b b er ,t h u s needin g lo w er ener gy fo r mixin g/co m p ac ti o n o f th e mixt u re s [5 2] 20 14 Bitu me n (P et ro b ras, B razi l) 0.5–1.2 LD PE (3–6 wt.%) St ud y hig h/medi um te m p era tur e pe rf o rm an ce o f LD PE-mo dified bitu m en R h eo logical pa ra met er s; ag ein g (R TFO ,P A V) (i) P PA im p ro ves th e rheo log ical p ro p er ti es (r u tt in g an d fa ti gue resist ance) o f th e b as e b it umen, ret ainin g pe rf o rm an ce gr ad e (ii) A ddi ti o n o f PP A alo ne p ro vides b et te r im p ro ve men ts th an mo difica tio n w it h L D P E (wi th an d w it ho u t PP A) [5 3] aEV A: et h ylene vin yl acet at e, H D P E: hig h den si ty p o ly et h yl ene , LD PE: lo w den si ty p o ly et h yl ene , PE: p o ly et h yl ene , PPMA: p o lyp ro p ylene-ma leic an h ydr ide , SB R: styr ene-b u ta diene rubb er , an d SBS: styr ene-b u ta diene-styr ene b lo ck co p o ly mers. b AFM: at o m ic fo rc e m icr o sc o p y, F raassT :F raass b re akin g p o in t tem p era tu re ,F TIR: F o ur ier tra n sf o rm inf ra re d sp ec tr o sc o p y, GPC: ge l-p er m ea tio n ch ro ma to gra p h y, M W :mo lec u la r w eig h t, NMR: n ucle ar magnetic re so na nce sp ec tr o sc o p y, PA V :p ressur e ag ein g vess el test (lo n g-t er m ag ein g A ST M D 65 21), P en: p enetra tio n d ep th ;R TFO: ro llin g thin fi lm o ven te st (s ho rt -t er m ag ein g A ST M D 28 72 ), SARA: ana ly sis o f sa tura tes, aroma ti cs ,re si ns ,a nd as ph al te ne s, SE M :s can n ing el ec tr on m ic ro sc o p y, SP: so fte n ing te m p er at u re (r ing and b al lm et ho d ), T g: gl as s tr ans it io n te m p er at u re, and T LC :t h in -l aye r ch roma to gr aph y. cSH RP: Stra tegic H ig h wa y R es ea rc h P ro gra m .

(15)

References

[1] EN 12597: Bitumen and Bituminous Binders—Terminology, European Committee for Standardization, Brussels, Belgium, 2000.

[2] N. Baldino, D. Gabriele, F. R. Lupi, C. Oliviero Rossi, P. Caputo, and T. Falvo, “Rheological effects on bitumen of polyphosphoric acid (PPA) addition,” Construction and Building Materials, vol. 40, pp. 397–404, 2013.

[3] J.-F. Masson, “Brief review of the chemistry of polyphosphoric acid (PPA) and bitumen,” Energy and Fuels, vol. 22, no. 4, pp. 2637–2640, 2008.

[4] D. R. Jones, “SHRP asphalt research program,” Technical Mem-orandum #4, Center for Transportation Research, University of Texas, Austin, Tex, USA, 1992.

[5] A. M. Kharrat, J. Zacharia, V. J. Cherian, and A. Anyatonwu, “Issues with comparing SARA methodologies,” Energy & Fuels, vol. 21, no. 6, pp. 3618–3621, 2007.

[6] D. Lesueur, “The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modifica-tion,” Advances in Colloid and Interface Science, vol. 145, no. 1-2, pp. 42–82, 2009.

[7] J.-F. Masson and M. Gagn´e, “Ionic pairs in polyphosphoric acid (PPA)-modified bitumen: insights from model compounds,” Energy & Fuels, vol. 22, no. 5, pp. 3390–3394, 2008.

[8] A. Rosinger, “Beitr¨age zur Kolloidchemie des Asphalts,” Kolloid-Zeitschrift, vol. 15, no. 5, pp. 177–179, 1914.

[9] F. J. Nellensteyn, “The constitution of asphalt,” Journal of the Institution of Petroleum Technologists, vol. 10, pp. 311–323, 1924. [10] J. P. Pfeiffer and R. N. J. Saal, “Asphaltic bitumen as colloid system,” The Journal of Physical Chemistry, vol. 44, no. 2, pp. 139–149, 1940.

[11] C. Y. Cheung and D. Cebon, “Deformation mechanisms of pure bitumen,” Journal of Materials in Civil Engineering, vol. 9, no. 3, pp. 117–129, 1997.

[12] B. Brˆul´e, G. Ramond, and C. Such, “Relationships between composition, structure, and properties of road asphalts: state of research at the French Public Works Central Laboratory,” in Proceedings of the 65th Annual Meeting of the Transportation Research Board, pp. 22–34, Transportation Research Board, Washington, DC, USA, 1986.

[13] C. Giavarini, D. Mastrofini, M. Scarsella, L. Barr´e, and D. Espinat, “Macrostructure and rheological properties of chem-ically modified residues and bitumens,” Energy & Fuels, vol. 14, no. 2, pp. 495–502, 2000.

[14] F. Bonemazzi and C. Giavarini, “Shifting the bitumen structure from sol to gel,” Journal of Petroleum Science and Engineering, vol. 22, no. 1-3, pp. 17–24, 1999.

[15] J.-F. Masson and P. Collins, “FTIR study of the reaction of polyphosphoric acid and model bitumen sulfur compounds,” Energy and Fuels, vol. 23, no. 1, pp. 440–442, 2009.

[16] C. Giavarini, P. De Filippis, M. L. Santarelli, and M. Scarsella, “Production of stable polypropylene-modified bitumens,” Fuel, vol. 75, no. 6, pp. 681–686, 1996.

[17] G. Yadollahi and H. Sabbagh Mollahosseini, “Improving the performance of Crumb Rubber bitumen by means of Poly Phos-phoric Acid (PPA) and Vestenamer additives,” Construction and Building Materials, vol. 25, no. 7, pp. 3108–3116, 2011.

[18] G. L. Baumgardner, “Why and how of polyphosphoric acid modification: an industry perspective,” in Proceedings of the Workshop on Polyphosphoric Acid Modification of Asphalt Binders, Minneapolis, Minn, USA, 2009.

[19] ASTM, “Standard test method for penetration of bituminous materials,” ASTM Standard D5-05, ASTM International, West Conshohocken, Pa, USA, 2005.

[20] S.-C. Huang, T. F. Turner, F. P. Miknis, and K. P. Thomas, “Long-term aging characteristics of polyphosphoric acid-modified asphalts,” Transportation Research Record, vol. 2051, pp. 1–7, 2008.

[21] N. Baldino, D. Gabriele, C. O. Rossi, L. Seta, F. R. Lupi, and P. Caputo, “Low temperature rheology of polyphosphoric acid (PPA) added bitumen,” Construction and Building Materials, vol. 36, pp. 592–596, 2012.

[22] Y. Edwards, Y. Tasdemir, and U. Isacsson, “Rheological effects of commercial waxes and polyphosphoric acid in bitumen 160/220—low temperature performance,” Fuel, vol. 85, no. 7-8, pp. 989–997, 2006.

[23] V. D. Molina, U. N. Uribe, and J. Murgich, “Correlations between SARA fractions and physicochemical properties with 1H NMR spectra of vacuum residues from Colombian crude oils,” Fuel, vol. 89, no. 1, pp. 185–192, 2010.

[24] C. Obiosa-Maife and J. M. Shaw, “Toward identification of molecules in ill-defined hydrocarbons using infrared, raman, and nuclear magnetic resonance (NMR) spectroscopy,” Energy & Fuels, vol. 25, no. 2, pp. 460–471, 2011.

[25] E. M. Dickinson, “Average structures of petroleum pitch frac-tions by 1H 13C n.m.r. spectroscopy,” Fuel, vol. 64, no. 5, pp. 704–706, 1985.

[26] E. M. Dickinson, “Structural comparison of petroleum fractions using proton and 13C n.m.r. spectroscopy,” Fuel, vol. 59, no. 5, pp. 290–294, 1980.

[27] P. W. Jennings, J. A. Pribanic, M. A. Desando et al., “Binder characterization and evaluation by nuclear magnetic resonance spectroscopy,” SHRP Report A-335, National Research Council, Washington, DC, USA, 1993.

[28] L. Michon, D. Martin, J.-P. Planche, and B. Hanquet, “Esti-mation of average structural parameters of bitumens by 13C nuclear magnetic resonance spectroscopy,” Fuel, vol. 76, no. 1, pp. 9–15, 1997.

[29] L. Michon, D. A. Netzel, B. Hanquet, D. Martin, and J.-P. Planche, “Carbon-13 molecular structure parameters of RTFOT aged asphalts: three proposed mechanisms for aromatization,” Petroleum Science and Technology, vol. 17, no. 3-4, pp. 369–381, 1999.

[30] M. N. Siddiqui and M. F. Ali, “Investigation of chemical transformations by NMR and GPC during the laboratory aging of Arabian asphalt,” Fuel, vol. 78, no. 12, pp. 1407–1416, 1999. [31] M. N. Siddiqui, “NMR fingerprinting of chemical changes in

asphalt fractions on oxidation,” Petroleum Science and Technol-ogy, vol. 28, no. 4, pp. 401–411, 2010.

[32] L. Gentile, L. Filippelli, C. O. Rossi, N. Baldino, and G. A. Ranieri, “Rheological and1H-NMR spin-spin relaxation time for the evaluation of the effects of PPA addition on bitumen,” Molecular Crystals and Liquid Crystals, vol. 558, pp. 54–63, 2012. [33] C. Jiang, S. R. Larter, K. J. Noke, and L. R. Snowdon, “TLC-FID (Iatroscan) analysis of heavy oil and tar sand samples,” Organic Geochemistry, vol. 39, no. 8, pp. 1210–1214, 2008.

[34] “Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in petroleum products and lubricants,” ASTM D5291-10, ASTM International, West Con-shohocken, Pa, USA, 2010.

[35] IP 336: petroleum products—determination of sulfur content— energy-dispersive-X-ray fluorescence method, Institute of Petroleum Standard Test Methods, 2004.

(16)

[36] J. G. Speight, The Chemistry and Technology of Petroleum, Taylor & Francis, 5th edition, 2014.

[37] P. De Filippis, C. Giavarini, and M. Scarsella, “Improving the ageing resistance of straight-run bitumens by addition of phosphorus compounds,” Fuel, vol. 74, no. 6, pp. 836–841, 1995. [38] L. O. Oyekunle, “Influence of chemical composition on the physical characteristics of paving asphalts,” Petroleum Science and Technology, vol. 25, no. 11, pp. 1401–1414, 2007.

[39] F. P. Miknis and K. P. Thomas, “NMR analysis of polyphosphoric acid-modified bitumens,” Road Materials and Pavement Design, vol. 9, no. 1, pp. 59–72, 2008.

[40] G. Orange, D. Depuis, J. V. Martin, F. Farcas, C. Such, and B. Marcant, “Chemical modification of bitumen through PPA: properties-microstructure relationship,” in Proceedings of the 3rd Euroasphalt and Eurobitume Consgress, Vienna, Austria, May 2004.

[41] P. De Filippis, C. Giavarini, and M. Scarsella, “Stabilization and partial deasphaltening of thermal residues by chemical treatment,” Energy & Fuels, vol. 8, no. 1, pp. 141–146, 1994. [42] M. Balci, Basic 1H- and 13C-NMR Spectroscopy, Elsevier Science,

Amsterdam, The Netherlands, 1st edition, 2005.

[43] G. Orange, J.-V. Martin, A. Menapace, M. Hemsley, and G. L. Baumgardner, “Rutting and moisture resistance of asphalt mix-tures containing polymer and polyphosphoric acid modified bitumen,” Road Materials and Pavement Design, vol. 5, no. 3, pp. 323–354, 2004.

[44] G. L. Baumgardner, J. F. Masson, J. R. Hardee, A. M. Menapace, and A. G. Williams, “Polyphosphoric acid modified asphalt: proposed mechanisms,” Journal of the Association of Asphalt Paving Technologists: From the Proceedings of the Technical Sessions, vol. 74, pp. 283–305, 2005.

[45] Y. Edwards, Y. Tasdemir, and U. Isacsson, “Rheological effects of commercial waxes and polyphosphoric acid in bitumen 160/220—high and medium temperature performance,” Con-struction and Building Materials, vol. 21, no. 10, pp. 1899–1908, 2007.

[46] J.-F. Masson and M. Gagn´e, “Polyphosphoric acid (PPA)-modified bitumen: disruption of the asphaltenes network based on the reaction of nonbasic nitrogen with PPA,” Energy and Fuels, vol. 22, no. 5, pp. 3402–3406, 2008.

[47] J.-F. Masson, M. Gagn´e, G. Robertson, and P. Collins, “Reac-tions of polyphosphoric acid and bitumen model compounds with oxygenated functional groups: where is the phosphoryla-tion?” Energy & Fuels, vol. 22, no. 6, pp. 4151–4157, 2008. [48] F. Zhang and J. Yu, “The research for high-performance SBR

compound modified asphalt,” Construction and Building Mate-rials, vol. 24, no. 3, pp. 410–418, 2010.

[49] V. Gonz´alez, F. J. Mart´ınez-Boza, F. J. Navarro, C. Gallegos, A. P´erez-Lepe, and A. P´aez, “Thermomechanical properties of bitumen modified with crumb tire rubber and polymeric additives,” Fuel Processing Technology, vol. 91, no. 9, pp. 1033– 1039, 2010.

[50] J. F. Masson, P. Collins, J. R. Woods, S. Bundalo-Perc, and J. Margeson, “Chemistry and effects of polyphosphoric acid on the microstructure, molecular mass, glass transition tem-peratures and performance grades of asphalts,” Journal of the Association of Asphalt Paving Technologists, vol. 78, pp. 455–490, 2009.

[51] S.-C. Huang, F. P. Miknis, W. Schuster, S. Salmans, M. Far-rar, and R. Boysen, “Rheological and chemical properties of hydrated lime and polyphosphoric acid-modified asphalts with

long-term aging,” Journal of Materials in Civil Engineering, vol. 23, no. 5, pp. 628–637, 2011.

[52] K. Yan, H. Zhang, and H. Xu, “Effect of polyphosphoric acid on physical properties, chemical composition and morphology of bitumen,” Construction and Building Materials, vol. 47, pp. 92– 98, 2013.

[53] F. Xiao, S. Amirkhanian, H. Wang, and P. Hao, “Rheological property investigations for polymer and polyphosphoric acid modified asphalt binders at high temperatures,” Construction and Building Materials, vol. 64, pp. 316–323, 2014.

[54] M. R. Gray and W. C. McCaffrey, “Role of chain reactions and olefin formation in cracking, hydroconversion, and coking of petroleum and bitumen fractions,” Energy and Fuels, vol. 16, no. 3, pp. 756–766, 2002.

[55] S. Alexander, “Method of treating asphalt,” United States Patent 3751278, 1973.

(17)

Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Inorganic Chemistry International Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Photoenergy

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Carbohydrate

Chemistry

International Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Physical Chemistry

Hindawi Publishing Corporation http://www.hindawi.com Analytical Methods in Chemistry Journal of Volume 2014 Bioinorganic Chemistry and Applications

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Spectroscopy

International Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

The Scientific

World Journal

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Medicinal Chemistry

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Chromatography Research International

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Theoretical Chemistry

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Journal of

Spectroscopy

Analytical Chemistry

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Journal of Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014 Quantum Chemistry Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

International

Electrochemistry

International Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Referências

Documentos relacionados

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

Além disso, o Facebook também disponibiliza várias ferramentas exclusivas como a criação de eventos, de publici- dade, fornece aos seus utilizadores milhares de jogos que podem

Remelted zone of the probes after treatment with current intensity of arc plasma – 100 A, lower bainite, retained austenite and secondary cementite.. Because the secondary

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Tomando essa constatação como ponto de partida, neste artigo, através do relato sucinto de investigação longitudinal, respondemos à questão de pesquisa (que conhe- cimentos para