• Nenhum resultado encontrado

Rufener etall 2017 Bayesian prediction in data poor fisheries

N/A
N/A
Protected

Academic year: 2021

Share "Rufener etall 2017 Bayesian prediction in data poor fisheries"

Copied!
10
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Ecological

Modelling

j o u r n al ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / e c o l m o d e l

Bayesian

spatial

predictive

models

for

data-poor

fisheries

Marie-Christine

Rufener

a,b,∗

,

Paul

Gerhard

Kinas

a

,

Marcelo

Francisco

Nóbrega

b

,

Jorge

Eduardo

Lins

Oliveira

b

aLaboratóriodeEstatísticaAmbiental,InstitutodeMatemática,EstatísticaeFísica,UniversidadeFederaldoRioGrande,AvenidaItláliakm8,Carreiros,

CEP:96201-900,RioGrande,RioGrandedoSul,Brazil

bLaboratóriodeBiologiaPesqueira,DepartamentodeOceanografiaeLimnologia,UniversidadeFederaldoRioGrandedoNorte,AvenidaCosteiras/n,Mãe

Luiza,CEP:59014-002,Natal,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1March2016

Receivedinrevisedform6January2017 Accepted20January2017

Keywords:

Bayesiangeostatisticalmodels

IntegratedNestedLaplaceApproximations StochasticPartialDifferentialEquations Essentialfishhabitats

Fisheriesecology

a

b

s

t

r

a

c

t

Understandingthespatialdistributionandidentifyingenvironmentalvariablesthatdriveendangered fishspeciesabundancearekeyfactorstoimplementsustainablefisherymanagementstrategies.Inthe presentstudyweproposedhierarchicalBayesianspatialmodelstoquantifyandmapsensitivehabitats forjuveniles,adultsandoverallabundanceofthevulnerablelanesnapper(Lutjanussynagris)presentin thenortheasternBrazil.Datawerecollectedbyfishery-unbiasedgillnetsurveys,andfittedthroughthe IntegratedNestedLaplaceApproximations(INLA)andtheStochasticPartialDifferentialEquations(SPDE) tools,bothimplementedintheRenvironmentbytheR-INLAlibrary(http://www.r-inla.org).Ourresults confirmedthattheabundanceofjuvenilesandadultsofL.synagrisarespatiallycorrelated,havepatchy distributionsalongtheRioGrandedoNortecoast,andaremainlyaffectedbyenvironmental predic-torssuchasdistancetocoast,chlorophyll-aconcentration,bathymetryandseasurfacetemperature.By meansofourresultsweintendedtoconsolidatearecentlyintroducedBayesiangeostatisticalmodelinto fisheriesscience,highlightingitspotentialforestablishingmorereliablemeasuresfortheconservation andmanagementofvulnerablefishspeciesevenwhendataaresparse.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Fisheries action as well as environmental fluctuations may inducemanychangesinfishstocks,whicharecommonlyrelated totheirabundance,sizeand spatialdistribution(Haddon,2001; King,2007).Inthissense,detectingthemainenvironmental fac-torsdrivingnaturalabundancefluctuationandunderstandinghow theseassociationsvaryoverspaceandtimearekeyconceptsin ecologyandinfisheriessciences(Rossetal.,2012).

The links betweenfish stock dynamics and its surrounding environment aretherefore of fundamental importancein order toimprovesustainablefisheries’management andconservation strategies(Babcoketal.,2005;Valavanisetal.,2008).Thewayin whichwemayaccessthespecies-environmentrelationshipsare commonlytreatedinthespecializedliteratureasSpecies

Distri-∗ Correspondingauthorat:LaboratóriodeEstatísticaAmbiental,Institutode Matemática,EstatísticaeFísica,UniversidadeFederaldoRioGrande,AvenidaItlália km8,Carreiros,CEP:96201-900,RioGrande,RioGrandedoSul,Brazil.

E-mailaddresses:machris55@hotmail.com(M.-C.Rufener),paulkinas@furg.br (P.G.Kinas),marnobrega@hotmail.com(M.F.Nóbrega),jorgelins@ufrnet.br (J.E.LinsOliveira).

butionModels(SDMs),andarefrequentlyanalyzedinthecontext ofstatisticaltoolstoevaluateaspeciesdistributionwithrespect to environmental variables (Franklin, 2010). The main goal of SDMsreliesontheprediction,identificationand understanding ofaspeciesspatialdistribution,andmaybeconsideredasthose habitats where itfulfills someof itsbiological process,suchas reproduction,spawningandfeeding.Whendealingwithmarine species,andparticularlywithfishes,theoutputprovidedbythe SDMsdesignatethetermEssentialFishHabitat(EFH),which con-stituteareasthatpromotethefishesmostfavorablehabitatsfor spawning,feeding,orgrowthtomaturity.

Overthepastthreedecadesahugeefforthasbeenspentinthe developmentofpowerfulstatisticalmodelstoexploremore real-isticscenariosregardingthespecies-environmentalrelationships. ArtificialNeuralNetworks(ANN,e.g.,SPECIES),MaximumEntropy (ME,e.g.,MAXENT),ClimaticEnvelops(CE,e.g.,BIOCLIM), Classifi-cationandRegressionTrees(CART,e.g.,BIOMOD)andregression modelssuchasGeneralizedLinearandAdditive(Mixed)Models (GLM/GLMM/GAM/GAMM)areamongthemanymethodological toolsthathavebeenproposedformodellingthespecies distribu-tion(Franklin,2010;GuisanandThuiller,2005).

http://dx.doi.org/10.1016/j.ecolmodel.2017.01.022 0304-3800/©2017ElsevierB.V.Allrightsreserved.

(2)

Althoughtheseapplicationsareconsideredrobust,theyusually addressonlyexplanatorymodelsthatsimplyaimtoverifythe rela-tionshipbetweentheresponsevariable(e.g.presenceorabundance ofthespecies)andsomeenvironmentalpredictors(e.g.bathymetry andchlorophyll-aconcentrationinmarinecontext),without con-sideringexplicitlythespatialcomponent(Ciannellietal.,2008). Thismayresultinapoorcharacterizationofthespeciesresponse toenvironmentalfactorsbyunderestimatingthedegreeof uncer-taintyinitspredictors(Latimeretal.,2006).

Consideringthatthemarineenvironmentisanextremely het-erogeneousdomain,andthatagivenmarinespecieshasbiological andecologicalconstraints,it iscommonly notedthat biological resources like most fish species present a gregarious distribu-tion. Hence, ignoring spatial autocorrelation violates the main assumptionof classical inference,which assumesthat thedata areindependentandidenticallydistributed,andthuscanleadto biasedestimates.Spatialcorrelationshouldthereforebe consid-eredsincespeciesaregenerallysubjecttosimilarenvironmental factors(Mu ˜nozetal.,2013).Suchspatialmodelsallowconstructing powerfulpredictivemodelsthatnotonlyprovidetheestimation ofprocessesthatinfluencespeciesdistribution,butalsopromote thepossibilityofpredictingtheiroccurrenceinunsampledareas (Chakrabortyetal.,2010).

Additionally,itisadvantageoustoincorporateBayesian infer-enceinpredictivemodels,giventhatitispossibletointegrateall typesofuncertaintiesusingexclusivelytheprobabilityasitsmetric. Combiningtheuncertaintyinthedata(expressedbythelikelihood) withextra-data information (expressed by prior distributions), posteriorprobabilitydistributionsarebuiltforallunknown quan-titiesofinterestusingBayes‘theorem(KinasandAndrade,2010).

HierarchicalBayesianModels(HBMs)areverysuitableforsuch situations,astheyallowtointroducesequentiallythe uncertain-tiesassociatedwiththeentirefisheryphenomenon,aswellasa spatialrandomeffectintheformofaGaussianrandomfield(GRF) (Cosandey-Godinetal.,2015).TraditionallyHBMsreliedon sim-ulationtechniquessuchasMarkovChainMonte Carlo(MCMC). However, with increased model complexity the computational timerequiredtoapproximatetheposteriordistributionsbecame unfeasible.Tosidestepthislimitation,Rueetal.(2009)proposed analternativenumericalcomputationtoobtainposterior distribu-tions,calledIntegratedNestedLaplaceApproximations(INLA),and whichiscurrentlyimplementedintheRenvironmentbytheR-INLA package(http://www.r-inla.org).Ratherthanusingstochastic sim-ulationtechniques,INLAusesnumericalapproximationsbymeans oftheLaplaceoperator,whichrevealedtobemuchfaster,flexible andaccuratethanMCMCwheneverapplicable.

ThankstoIllianetal.(2013)andMu ˜nozetal.(2013), spatio-temporalmodelswereintroducedtotheecologicalcommunityin ordertofitpointprocessandpoint-referenceddatathroughthe INLAapproach.Inregardtomarineecologyandfisheriesresearch, morestudieshaveslowlyemergedsince thenusingexclusively INLAfor spatial andtemporal purposes (Cosandey-Godinet al., 2015;Mu ˜nozetal.,2013;Paradinasetal.,2015;Penninoetal.,2013, 2014;Quirozetal.,2015;Roosetal.,2015;Wardetal.,2015;Bakka etal.,2016;Damasioetal.,2016;Paradinasetal.,2016;Pennino etal.,2016).

However,mostofthesestudiesreliedon“data-rich”fisheries, wherecertainlyanyquantitativemethodwouldhavehadgood per-formance.Ontheotherhand,indevelopingcountriessuchasBrazil, fisheriestendtobepoorly documentedand inadequately man-agedduetolackofresearchfundingformonitoringandanalysis (Honeyetal.,2010).Conventionalanalyticalfisheriesstock assess-menttoolsthat demandbigdatasets maynotbeapplicablein “data-poor”situationslikethese.Therefore, flexibleandreliable statisticaltoolswithgoodperformancealbeitlimitedinformation areparamount(Bentley,2014).

Inordertoexpandtheuseofsuchtoolsindatalimitedfisheries, wewilldemonstratetheflexibilityandusefulnessoftheBayesian modellingapproachforsomeimportantfisheriesissues,suchas delimitingfishstocksintoagegroupingsandevaluatingthespatial distributionoftheseagegroupings.Specifically,ourmain objec-tivesare:(i)predictabundanceand agegroupingsofthetarget lanesnapper(Lutjanussynagris)alongafractionofthenortheastern coastofBrazil;and(ii)identifyenvironmentaldriversthataffect lanesnapper’sabundanceandso,provideimportantinsightsofits spatialdistribution.

Thispaperisorganizedasfollows:firstlywedescribethe impor-tanceofourstudysubject,how themaindatasetwasobtained andhowweachieveagegroupingsusingBayesianlogistic regres-sion.Thereafter,weapplyhierarchicalBayesianspatialmodelsinto EFH’s,anddiscuss theentiremodellingproceduresusedin this study.Finally,wedescribeanddiscussourresults,outlining oppor-tunitiesforfuturespatialfisheriesmanagement.

2. Material&methods

2.1. Casestudy

Asacasestudy,wemodelledthespatialoccurrenceofLutjanus synagris(Linnaeus,1758), popularlyknownaslanesnapperand whichisconsideredoneofthemostimportantfishingresource caughtwithintheLutjanidaefamily(Luckhurstetal.,2000).Lane snappersinhabitavarietyofhabitatsfromcoastalwaterstodepths upto400m,oftenoccurringincoralreefsandvegetationonsandy bottoms(Carpenter,2002),andarewidelydistributedthroughout thetropicalregionofthewesternAtlantic,fromNorthCarolinato southeasternBrazil,includingtheGulfofMexicoandtheCaribbean Sea(McEachranandFechhelm,2005).

Givenitshighcommercialandrecreationalvalue,thisspecies isoneofthemainstaysofartisanalfisheriesnotonlyinVenezuela andtheCaribbeanSea,butalsoinnortheasternBrazil(Gómezetal., 2001;Luckhurstetal.,2000;Rezendeetal.,2003).Accordingto Lessaetal.(2009),catchesoflanesnapperinnortheasternBrazil havebeenrecordedsincethelate1970swhereitissufferingstrong fishingpressurewhich,despitetheirhighabundance,isleadingto itsdeclineoverthepastfewdecades.

In general, most information about L. synagris relies on its biology,whereasitspopulationdynamicsandspatialdistribution remainpoorlyunderstood(Cavalcanteetal.,2012;Freitasetal., 2011,2014).Therefore,knowingtheirspatialdistributionand iden-tifyingenvironmentalvariablesthatdrivetheirabundancearekey factorstoimplementsustainablefisherymanagementstrategies. 2.2. Studyareaanddatasurvey

Situated inthenortheast of Brazil,theRio Grandedo Norte state (RN) is located in an important coastline transition zone which abruptlychanges itsdirection fromsouth-north to east-west.BetweenJuly2012andJune2014,aboutthreeexperimental fisheriesweremonthlyconductedbyfishingvesselsofthe arti-sanalfleetswhichoperatewithbottomgillnetsalongtheRNcoast. Throughoutthisperiod,126fishingeventswerereportedwhose depthsrangedfrom 5to50m(Fig.1).Biologicalsampling was recordedalongwithextrainformationforeachfisheryincluding geolocation(latitudeandlongitude),bathymetry(m),seasurface temperature(◦C),distancetocoast(km),month(fromJanuaryto December),gillnetlength(m)andheight(m),aswellasitssoaking time(h).

Itisnoteworthythatdatacollectedfromartisanalfleetswould usuallycharacterizeaclearexampleofpreferentialsampling,since fleetsare commerciallydriven tocatchtargetspecies hotspots.

(3)

Fig.1.(A)Studyareahighlightingthesamplestations(dots);(B)Triangulationused tocalculatetheGMRFfortheSPDEapproach.Thedotsarereferringifthespecies waspresent(red)orabsent(black)duringthesamplestations(Forinterpretation ofthereferencestocolourinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

Hence,thepreferredsampledfishinglocationstendtoberepeated producingfishery-biaseddata(fishery-dependentdata).Ifthisis ignoredduring thestatisticalmodelling process,it mayleadto biasedestimates(DiggleandRibeiro,2007;Penninoetal.,2016). Theexperimentaldesignofthisstudyavoidsthisproblemby cover-ingtheentirestudyareawithregulardistancesbetweenthefishing bidsandwithoutrepeatingthem.Thus, weclaim thatthe fish-ingeffortisstochasticallyindependentfromthesamplingstations, resulting in spatial fishery-unbiased data (fishery-independent data).

Allcapturedindividualswereweighted(g)andmeasuredforits totallength(TL,cm).Attheendofeachfishingevent,a representa-tivesubsamplewasrandomlyselectedandtakentothelaboratory. Sexandmacroscopicmaturationstatesweredeterminedforeach specimenaccordingtoVazzoler(1996).

2.3. Bayesianmodellingfordata-poorfisheries

Thissectionaims todescribe theuseof Bayesianmodelsin twoimportantfisheriesissues,namelytheestimationofthesize atwhichaspeciesreachesfirstmaturity(L50)andtheprediction ofaspeciesspatialdistribution.Definingagegroupingsofafish stockbymeansofL50representsamajorchallengeinmostcases, sincealargequantityofdataisneeded.Thishelpsexplainwhy spatialpredictionsforagegroupingsareusuallyscarcein scien-tificreports.Spatialpredictionforabundanceispreferredasthis kindofinformationtendstobemoreaccessible.AppendixAofthe supplementarymaterialsummarizeshowtheestimationofL50is connectedtothespatialmodellingprocedures.

2.3.1. Bayesianestimationofmeanlengthatfirstmaturity

Theknowledgeofpopulationparametersisessentialfor mon-itoring fisheries dynamics since theyare potential exploitation indicators(King,2007).Amongtheseparameters,thesizeatfirst maturation(L50)stands out, which corresponds tothe average length at which 50% of the individuals reach sexual maturity (Vazzoler,1996).OneofthemainobjectivesofdeterminingL50 istodelimittheyoung(meanlength<L50)andadultstocks(mean lengthL50).

Ofthesubsamplestakentothelaboratory,89individualsoflane snapperwereanalyzed(TableD.1ofsupplementaryAppendixD). TheL50iscommonlycalculatedusingalogisticregression,whose parameters(ˇ0 andˇ1)aretraditionallyestimatedbyMaximum Likelihoodmethod(KarnaandPanda,2011).However,whenthe sampleissmall,thismethodgivesbiasedestimatesandconfidence limitscannotbeadequatelycalculated(Peduzzietal.,1996). There-forewereliedonBayesianinferencetoestimateL50(DollandLauer, 2013).

Initially,klengthclasseswereestablishedforthesetofdata, wherethetotalnumberofindividualsinsizeclassi(ni)andthe numberofmatureindividuals(Yi)wereregisteredforeachclass (TableD.1ofsupplementaryAppendixD).Wedefinedas“mature” allindividualsthatwereatleastinstageC.Thenumberofmature individualsbysizeclasswasmodelledaccordingtoalogistic regres-sionasdescribedbyKinasandAndrade(2010),whoseprobability ofanindividualoflength-classi(fori=1,2,...,k)beingmature assumesabinomialdistribution:

Yi∼Binomial(ni,pi) g (pi)=log



pi/1−pi



=ˇ0+ˇ1(xi− ¯x) ¯x=



xi/k= (x1+x2+...+xk) /k

wherepidenotestheprobabilityofanindividualofthei-th length-classbesexuallymature;g(pi)representsthelogitlinkfunction; ˇ0isthelogitprobabilitythatanindividualwiththemeanlength ¯x issexuallymature;ˇ1istheaverageincreaseinthelogitofpifor eachcentimeteraddedtolength;xidenotestheaveragelengthof sizeclassi,andkrepresentsthenumberoflengthclassesthatwas establishedforthedataset.

EstimatesofL50wereprovidedfromtheequation[(−ˇ0/ˇ1)+¯x]. Whereastheparametersofthelogisticregressionwereestimated byaBayesianframework,apriorsensitivityanalysisforits param-eterswaspreviouslyconducted.Fourdifferentprioralternatives wereevaluated:aGaussianN(0,100),aGaussianN(0,10000),a heavy-tailedStudent(5degreesoffreedom)andaCauchy distri-bution(withscale2.5).Sincetheresultingposteriordistribution forL50hadnegligibleeffectbetweeneachoftheevaluated alter-natives (Fig.D.1 ofSupplementaryAppendix D), weassumed a Normalvaguepriordistributionforthemeanandthevariancefor theparameters(ˇ0∼N(0,100);ˇ1∼ (0,100)).

The posterior probability distributions were simulated by meansofMarkovChainMonteCarlo(MCMC)methodsusingthe R2jagspackage(SuandYajima,2014).Wesimulatedthreedifferent situations,wheretheparameterswerederivedfromgroupedsexes (females+males−case1)orseparatedsexes(malesonly−case2; femalesonly−case3).ForeachofthesecasesweranthreeMCMC chainssimultaneouslyforatotalof60,000iterations,wherethe first20,000iterationswerediscardedasaburn-inperiodandeach 20thstepwasstored(thinning)inordertoreduceautocorrelation. The chains’ convergence was assessed using conventional graphicalmethodssuchasiterationandautocorrelation graphs, andbyconvergenceindicator ˆRwhichdenotestheratioof vari-ancebetweenandwithinchains(Gelman,1996).Finally,aBayesian hypothesistestwasperformedtoassesswhethertherewere sig-nificantdifferencesbetweentheposteriordistributionsoffemale

(4)

L50andmaleL50.Forthispurpose,theposteriordistributionofthe differenced=L50male−L50femalewasobtainedandevaluatedwith respecttotheprobabilityratiop(d≥0)/p(d<0);withratiosaway fromone(e.g.,largerthan5orlowerthan1/5)suggesting rele-vantdifferences.Theposteriormedianwastakenaspointestimate ofL50,andusedascutofftodelimitthelanesnapperstocksinto youngandadultgroupings.

2.3.2. Bayesianspatialmodellingforabundanceandage groupings

WeusedhierarchicalBayesianspatialmodelsinorderto esti-mateand predictoverall abundance(case1),number of adults (case2)andnumberofjuveniles(case3)ofL.synagriswithrespect toseveralenvironmentalpredictors.Asabundanceindexweused catch-per-unit-effort(CPUE),whichwasdefinedaslanesnapper’s totalcatch(g)weightedbythefishingeffort.Fishingeffortwas definedasgillnetarea(m2)multipliedbysoakingtime(h).

SimilartoaGLMapproach,theresponsevariableYiisassumed tohaveaprobabilitydistributionthatbelongstotheexponential family,withmeani=E (Yi) linkedtoastructuredadditive pre-dictorithroughalinkfunctiong (· ) suchthatg (i)=␩i:Wherei istheindexforeachsamplingstatio

␩i=ˇ0+ M



m=1 ˇmXmi+ L



l=1

fl(

vli

)+offset (i) ;i=1,...,n

whereiistheindexforeachsamplingstation,nrepresentsthetotal numberofsamplingstations,iisthelinearpredictoreitherfor CPUEorforcountdata,ˇ0isascalarrepresentingtheintercept,M denotesthetotalnumberoflinearcovariates,␤misthecoefficient whichquantifiestheeffectofsomecovariatesXmontheresponse, Lreferstothetotalnumberofnon-linearcovariates,andfl(· ) are functionsdefinedvlforasetofcovariates.

Thef (· ) termscanbeusedeithertorelaxthelinearityofthe covariates(e.g.smootheffects),ortointroducerandomeffects(e.g. spatialand/ortemporal effect)(Rueet al.,2009).Inthepresent studyweusedthef (· ) totestsmootheffectsforsomepredictors andtoincludeaGaussianMarkovRandomField(GMRF)(See sup-plementaryAppendixCfordetails),whichconcernsthespatially structuredrandomeffect(W).

TomodelCPUEdata,wetestedbothGammaandlog-Normal distributionsastheyarecommonlyusedtomodelsuchkindof fisheriesdata(VenablesandDichmont,2004).Becauseneitherof thesetwodistributions cancontainzeros,we addeda constant equalto10%oftheCPUEsmediantoalldataprevioustomodel fitting.Withrespecttothecountmodelsforadultsandjuveniles, weexpectedtoobserveahighamountofzerosastherecouldbe spatialsegregation.Thus,fourdifferentdistributionsweretested: Poisson(P),zero-inflatedPoisson(ZIP),NegativeBinomial(NB)and zero-inflatednegative-binomial(ZINB).Also,anoffsetwasusedin thecountdatamodelsinordertoaccountforthefishingeffort.

Toevaluatelane snappershabitatsuitabilitywithrespectits abundanceandagegroupings,weusedmonthorseasonandsix environmentalpredictors:seasurfacetemperature(SST,◦C), dis-tancetocoast(km),bathymetry(m),rugosity(index),slopeofthe seabed(◦)andchlorophyll-aconcentration(mg/m3)(See supple-mentaryAppendixB).

Bayesianparameterestimates and predictionin theform of marginal posterior distributions were obtained throughout the INLAapproach. Default priorswereassigned for allfixed-effect parameters as recommended by Held et al. (2010), which are approximationsofnon-informativepriorsdesignedtohavelittle influenceontheposteriordistribution.Forthespatialcomponent (W)weusedtheSPDEapproach(SeesupplementaryAppendixCfor details).AsrecommendedbyLindgrenandRue(2013),

multivari-ateGaussiandistributionswithmeanzeroandspatiallystructured covariancematrixwereassumedforthespatialcomponent.

Forallmodels,variableselectionproceededbyamanually for-wardstepwiseentry.Inordertocomparethegoodness-of-fitof thesemodels,weusedtheDevianceInformationCriterion(DIC) whichisequivalenttotheAkaikeInformationCriterion(AIC)but bettersuitedforHBMs(Spiegelhalteretal.,2002), andwhichis alsodirectlycomputedbyR-INLA.Additionally,asusedbyMu ˜noz etal.(2013)andPenninoetal.(2014),weevaluatedthelogarithmic scoreofConditionalPredictiveOrdinate(LCPO)asameasurement ofpredictivepower.LowervaluesforbothDICandLCPOare indica-tiveofbetterfitandpredictivepower,respectively.Abest(and parsimonious)modelwaschosenbasedonacombinationoflow valuesforLCPOandDIC,containingonlyrelevantpredictors;i.e., thosepredictorswith95%credibilityintervalsnotcoveringzero.

Finally,selectedmodelswerealsoevaluatedforgoodness-of-fit accordingtostandardgraphicalchecks,suchasobservedversus predictedscatterplotsandresidualsQuantile-Quantileplots.Since linearity is expected between theobserved and predicted val-ues,Pearson’scorrelationcoefficient()wascalculatedandtested. Modelswith≥0.7andp-value≤0.05wereconsideredacceptable andthususedforfinalprediction.

3. Results

3.1. Lengthatfirstmaturity&agegrouping

Graphical evaluation of the logistic models revealed good convergence of the chains for all cases. Fig. 2 shows thejoint distribution of the logistic regression parameters for grouped andseparatedsexes.Despiteallthreecaseshadareasonablefit, groupedsexesrevealedaslightlybetterfitasthejointdistribution ofmodel’sparameterswasalmostentirelyconcentratedwithinthe rightupperquadrantwhere␤1>0(Fig.2).

Table1givesbasicstatisticsummariesoftheposterior distribu-tionforthelogisticmodels.Agoodconvergencewasalsoobserved bythenumericaloutputs,whose ˆRvalueswereallsituatedcloseto 1.0.WithrespecttheL50estimation,bothmeanandmedianvalues eitherforfemalesandmaleswereverysimilar(Table1)(Fig.3A andB).

The Bayesian hypothesis test pointed out that there was no relevant difference between the L50 of males and females (p(d0)/p(d<0)=1.32)(Fig.3D).Baseduponthisinformation,we decidedtousetheL50estimationderivedfromthegroupedsexes modelanduseditsmedian(25.17cm)tosplitthesampledlane snapper’sintojuvenilesandadultsforthemodelsofthenext sec-tion.

3.2. Dataoverview

Among the 126 sample stations, lane snapper occurred at 83 (66.14%)whose distance tocoastranged from2.8 to41km (mean=11.58km; sd=7.86) and depths from 5.1 to 52.7m (mean=16.8m; sd=8.85). The total weight caught during this periodwas259.808kg,whereasCPUErangedfrom0to6.12g/m2*h (mean=0.35g/m2*h;sd=0.85).Totallengthofallspecimenvaried from18.5cmto46cm(mean=30.1cm;sd=3.92).Accordingtothe adoptedL50wecountedatotalof101juvenilesand505adults indi-viduals,therebyevidencingthatcatchesweremostlycomposedby adultindividuals (83.3%).Whereasadultsoccurredinalmostall samplestations(81),juvenilesoccurredin36samplestationonly. 3.3. Modelselection

Amongallenvironmentalpredictors,onlybathymetryand dis-tancetocoastwerehighlycorrelated(␳>0.7),andthereforenever

(5)

Fig.2. Posteriorjointdistributionoflogisticregressionparametersforfemales(A),males(B)andgroupedsexes(C).

Table1

Summaryofparametersandtheirassociatedstatisticsresultedfromthelogisticmodel(Sd=standarddeviation;CI95%=95%credibleinterval).

Sex Parameters Mean Median Sd CI95% Rˆ

Q0.025 Q0.975 Females ␤0 0.835 0.820 0.387 0.112 1.633 1.001 ␤1 0.230 0.227 0.103 0.041 0.450 1.001 L50 25.332 25.870 12.757 16.835 29.002 1.063 Deviance 16.728 16.163 2.004 14.749 22.280 1.001 Males ␤0 0.306 0.297 0.331 −0.322 0.978 1.001 ␤1 0.128 0.125 0.080 −0.022 0.291 1.001 L50 25.375 25.072 77.786 10.546 37.669 1.068 Deviance 24.368 23.758 2.111 22.37 29.831 1.001 Females& Males ␤0 0.457 0.456 0.238 −0.010 0.927 1.002 ␤1 0.161 0.159 0.061 0.044 0.285 1.002 L50 24.653 25.174 5.996 18.701 28.094 1.038 Deviance 35.062 34.443 2.026 33.075 40.667 1.001

Fig.3. Posteriordistributionhistogramsoffemales(A),males(B),females&males(C)andthedifferencebetweenmalesandfemales(D)totallength(TL)simulations.(For interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

usedtogetherduringthemodellingprocedures. Severalmodels withdifferentprobabilitydistributionsweretestedaccordingto datanature.Wealsotestedmodelsthatincludedquadraticterms and/orsmoothingeffectswhich,however,didnotshowany rele-vantfitimprovement.

TableD2(seesupplementaryAppendixD)summarizesthemost relevantmodelsregardingdifferentcombinationsof environmen-talpredictorsforlanesnappersCPUE.LCPOandDICdidnotdiffer greatlyamongmodelsofeachdistribution.However,DICdiffered significantly between models withdifferent distributions, with Gammamodelsalwayshavingabetterfit.Thebestmodelincluded onlydistancetocoastandthespatialeffect(model1,TableD.2of supplementaryAppendixD).

With respect to models for adult and for juvenile individ-uals, both agree on the NB distribution when LCPO and DIC wereanalyzedsequentially(SeeTableD.3and D.4,respectively, in supplementaryAppendix D).The bestselectedNBmodelfor adults count data included as relevant predictors distance to coast,chlorophyll-a concentrationand thespatialeffect (model 8,TableD.3ofAppendixD),whereasforjuvenilescountdatathe selectedmodelcontainedseasurfacetemperature,bathymetryand the spatial effectas relevant predictors (model 7, TableD.4 of supplementaryAppendixD).Posteriorsummarystatisticsforall parameterofeachselectedmodelareshowninTable2.

Fig.4denotes2typesofmodelsfitevaluation.Predictedversus observedCPUE,numberofadultsandnumberofjuvenilesare

(6)

dis-Fig.4.Observedversuspredictedvaluesforlog(CPUE)(A),numberofadults(C)andnumberofjuveniles(E).Therightpanelsshowquantile-quantileplotsforeachevaluated case.

Table2

Summaryofthemarginalposteriordistributionformodelparametersprovidedby theselectedmodelforeachconsideredcase.Thehyperparameters␸Gand␸NBare

theprecisionparametersofthegammaandnegativebinomialobservations, respec-tively,and␶and␬representsthevarianceandscalingparameterofthespatialeffect, respectively.

Responsevariable Parameters Mean Sd CI95%

Q0.025 Q0.975 CPUE (model1) (Intercept) −1.957 0.224 −2.410 −1.525 DC 0.572 0.204 0.170 0.976 ␶ −5.576 0.593 −6.796 −4.472 ␬ 3.996 0.458 3.140 4.937 (km) 0.053 0.020 0.015 0.109 G 0.961 1.441 0.709 1.274 Adults (model8) (Intercept) −8.222 0.255 −8.762 −7.756 DC 0.951 0.264 0.441 1.487 CHLa 0.650 0.308 −0.059 1.279 ␶ −6.002 0.757 −7.549 −4.582 ␬ 4.281 0.529 3.284 5.359 (km) 0.040 0.018 0.009 0.091 NB 1.322 0.455 0.658 2.421 Juveniles (model7) (Intercept) −10.330 0.834 −12.135 −8.617 SST −0.702 0.318 −1.368 −0.113 B 0.615 0.296 0.077 1.250 ␶ −4.066 1.160 −6.114 −1.596 ␬ 2.438 0.992 0.332 4.743 (km) 0.233 0.242 0.018 1.371 NB 0.748 0.435 0.218 1.858

playedintheleftpanelsofFig.4.Asitcanbenoticed,forallthree casesthepredictedversusobservedvalueswerepositivelyand sig-nificantlycorrelated(0.45<<0.89,p<0.05)(Fig.4A,CandE).Q-Q plotsshowedreasonablenormaldistributionfortheresidualsof theselectedCPUEmodel.Someoutlierswerepresentedfor juve-nilesandadults,suggestingthatsomeobservedcountsaremuch higherthanthemodelwouldpredict(rightpanelsofFig.4B,D andF).TheCPUEmodelwasabletopredictfairlynon-zero val-ueswhilevaluesaroundzerowerehighlyoverestimated(Fig.4A). Thus,togetherwiththerespectiveQ-Qplotbothfiguresclearly sug-geststhatourdataissplittedintotwodata-sets,oneregardingthe zerosandanotherregardingnon-zerovalues.Foradultsand juve-niles,bothmodelswereabletopredictwithmoreaccuracysmall tomediumvalues(Fig.4CandE).

3.4. Predictionofessentialfishhabitatforthelanesnapper

Whencombiningboththefixedeffectsandthemodeloutput fromtherandomfield,wecaneasilydisplaythemeanandstandard deviationoftheposteriormeanofthelinearpredictoraswellfor therandomfielditself.Fig.5displaysmeanpredictionandstandard deviationmaps.Accordingtothelinearpredictormaps(Fig.5A, CandE),CPUE,adultsandjuvenileshadsimilarpatchy distribu-tionsalongtheentirecoast,differingsolelyontheirspatialextent. Specifically,itwaspossibletoidentifyfourmajorhotspots,twoof themlocatedontheeastcoastandtwo onthenorthcoast.The standarddeviationmapsforalllinearpredictors(Fig.5B,Dand

(7)

Fig.5. Posteriormean(leftpanels)andstandarddeviation(rightpanels)ofthepredictivedistributionoflanesnappersCPUE(A,B),numberofadults(C,D)andnumberof juveniles(E,F).Smallpanelsrepresentthemeanandstandarddeviationofthespatialrandomeffectfortheirrespectiveresponsevariable.Itisworthmentioningthatall mapsarelog-scaled.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

F),asexpected,showedseveralsmallerpatchesoflowerstandard deviationvalues,whichcorrespondtoareaswheredatawere sam-pled.Comparatively,higherstandarddeviationsweremoreorless constantalongtheentiredomaininnon-sampledareas.

Thesmallerpanels in each figurereflect thespatialrandom effectandindicatestheintrinsicvariabilityofthelanesnappers dis-tributionwhenremovingallcovariables.Itmayreflectotherhidden factorsthatwerenotaccountedforinthemodels,suchasbiotic pro-cesses(e.g.,competitionandpredation)andabioticcharacteristics (e.g.,seasurfacesalinityandcurrents).Again,forallthree consid-eredcasesthepatternsofmeanspatialrandomeffectbehavedin asimilarway,withahighernumberofaggregationspotsalong thecoastandwhichdifferedonlyintheirspatialextent(smaller panelsofFig.5A,CandE).Regardingthestandarddeviationofthe spatialcomponent,allthreecaseshadsimilardistributionpatterns asobservedforthestandard deviationoftheirrespectivelinear predictors,withsmallerandhighervaluescorrespondingto sam-pledandnon-sampledareas,respectively(smallerpanelsofFig.5 B,DandF).

4. Discussion

4.1. Biologicaldiscussion:sizeatfirstmaturity

Thefirstpartofourresultaimedtoestimatethesizeoffirst maturity for L.synagris. Although differencesin this parameter

amongsexesarecommonlyreportedforlanesnappersfrom dif-ferentregions(Aiken,2001;Figuerolaetal.,1998;Freitasetal., 2014;Luckhurstetal.,2000;Manickchand-Dass,1980),ourresults indicatedotherwise.Thusanoverallsizeforbothsexeswas esti-matedatlengthsof25.17cm.Ourestimationagreedwiththose fromCavalcanteetal.(2012)alsoconductedintheRNstate,which reportedmediansizesof25.7cmforgroupedsexes,wellwithinthe posterior95%credibilitybounds.

4.2. Modeldiscussion

The Bayesian spatial modelling analysis yielded some clear resultswithrespecttotheenvironmentalpreferencesofadults, juvenilesandtheiroverallabundance(CPUE).Despitemost mod-elsfittedwelltothedata,someofthemsuggestedthattheywere inappropriate(producingbyNAand–Inf.inTableD.2–D.4of sup-plementaryAppendixD).Moreover,whenattemptedtothecount models(TableD.3andD.4ofsupplementaryAppendixD),itseemed thatthenumberofadultsandjuvenilesalwaysfittedbetter(lower DICs)accordingtoPoissonoritsZero-inflatedversionwhen com-pared to thealternative models belonging to otherprobability distributions.Nevertheless,thesemodelsalsodisplayedtheworst predictivemeasures(higherLCPOs).Thiscouldbeexplainedsince extremelowvaluesofCPOareindicativeofoutliersandinfluential observations.Thus,thelowerCPOvaluesthehigherLCPOvalues

(8)

which,inturn,revealthatthesemodelparameterswerebiased andconsequentlyinappropriateforpredictionpurposes.

Regarding the modelsfor CPUE, we concluded that besides thespatialeffect,onlydistancetocoastwasstatisticallyrelevant toexplain the variability in CPUE (Table D.2 of supplementary AppendixD).TableIIrevealedapositiverelationshipbetweenthe responseandthefixedeffect,indicatingthattheCPUEofL.synagris increasestowardoffshoreareas.Theremainingparametersarethe hyperparametersthatspecifytherelevanceofthespatialeffectin themodel.

R-INLAusuallyprovidesthesimplestinternalrepresentationof theseparameters,namelylog(␶)=␪1 andlog(␬)=␪2.However,it ismorenaturaltoconstructtheseparametersasafunctionofthe spatialcorrelationrange(␳),since␶and␬havejointinfluenceon themarginalvariancesoftheresultingspatialfield.Forpractical purposes,weexposedallhyperparameters,butmainlyfocusedon ␳asithasamoreintuitiveinterpretation.Inthisway,themean valueof(␳)was0.053whichrepresentsthedistanceatwhich cor-relationisreducedtoapproximately0.13.Theposteriormeanof theprecisionforthegammaobservations()was0.961.Itisworth notingthattheselectedCPUEmodelsuggestedthatourdatawould haveprobablybeenbetterfitted,ifwehadconditionedthezero values.Thus,ifwehadmodelledourCPUEaccordingaGamma hur-dlemodelasdonebyQuirozetal.(2015)withPeruviananchovies biomass,thenwemaybecouldhavehadmorepreciseestimations andpredictions.

Withrespecttothecountmodelsappliedtonumberofadults andjuveniles,we wereabletoaffirmthat theyrespond differ-entlytodistinctenvironmentalpredictors.Distancetocoastand chlorophyll-aconcentrationwerestatisticallyrelevanttoexplain thevariation inthenumber ofadults(Table D.3of supplemen-tary Appendix D). Furthermore, Table 2 revealed that all fixed effectshadalsopositivecoefficients,indicatingthatthenumber ofadultsincreasestowardoffshoreareasandhigher chlorophyll-aconcentration.Numberofjuveniles,instead,showedadifferent responsepattern,whereseasurfacetemperatureandbathymetry werestatisticallyrelevant(TableD.4ofsupplementaryAppendix D).AccordingtoTable2,itwasfoundthatnumberofjuveniles increasestowardareaswithlowerseasurfacetemperatureaswell astowardoffshoreareas(higherbathymetry).

Concerningthehyperparametersfromboth countmodels,it wasnotedthatjuvenilesshowedslightlyhighervaluesforthemean varianceandsmallervaluesforthescalingparameterwhen com-paredtoadults(Table2).Themeanspatialcorrelationrange(␳)for adultsandjuvenileswere0.04and0.233,respectively(Table2). ContrastingthesenumberswiththatfromCPUE(0.053),itseems thatdespiteanoverallweakspatialcorrelationinallcases,itis apparentlystrongerforjuveniles.

Itisworthmentioningthateachselectedmodeldiscussedin thissectionwasalsotestedwithoutspatialeffect(seepenultimate modelsinTableD.2toD.4ofsupplementaryAppendixD)asthey hadsmallspatialcorrelationranges.Thesemodelsusedtohave higherDICsand LCPOswhen compared totheremaining mod-els,whichrevealsthatthespatialeffect,despitesmall,wasindeed relevantinallthreecases.

4.3. Ecologicaldiscussion

ThroughtheHBMswewereabletoinvestigatetherelationship betweenthelifestagesofL.synagrisandenvironmentalpredictors, andthereforequantifyanddefinesuitablehabitatsaccordingto rel-evantpredictors.Althoughallthreeconsideredcaseshadslightly differentenvironmentalpreferences,theyshowedsimilarspatial distributions.Specifically,distancetocoastandbathymetrywere themainpredictorsthatdrovethespatialdistributionofL.synagris, indicatingpreferencetowardsoffshoreareas.Bymeansofour

pre-dictionmaps,weidentifiedfourmainhotspotslocatedinoffshore areas,whichalsocuriouslycorrespondtothemajorreef,beachrock andsandcomplexespresentintheRNcoast(Vitaletal.,2010).

Moreover,regardingparticularlythedifferencesbetweenadults and juveniles of L. synagris, they showed specific preferences for chlorophyll-a concentration and sea surface temperature, respectively. Both predictors are commonly related to marine productivity, and may be used as potential indicators of ther-mal and productivity-enhancing fronts (Valavanis et al., 2008). Duetohighernutrientavailabilityandsunlightincidence,higher chlorophyll-aconcentrationoccurmainlyincoastalareasandin upwelling fronts, the latter being characterized by cold water temperatures.Reefs,inparticular,areareasofhighprimary produc-tivity,andthussupporthighertrophicfoodwebsfromwhichadults andjuvenilesofL.synagrisalsobenefit(Crosslandetal.,1991).

Althoughjuvenilesappearedtobemorewidelydistributedthan theadults,theirspatialdistributionmostlyoverlappedwiththatof adults.Inthissense,ourresultsweresomewhatsurprisingsince a spatialsegregationbetweenadultand juvenilesis commonly reportedforL.synagris(RodríguezandPáramo,2012)and,toa widerextent,formarinefauna(Gillanderset al.,2003).The lit-eratureusuallyreports theoccurrenceofjuvenilelanesnappers overmuddybottomsneartomarineestuariesandseagrassbeds, whereasadultstendtopreferconsolidatedbottomstowards off-shoreareas (Doncel and Paramo, 2010;Rodríguez and Páramo, 2012).

However,webelievethatourresultsprobablyreflectmorea limiteddefinitionofjuvenilesinthiswork.Sincethecatcheswere predominatelycomposedbyadults,thisstudyrevealedthatthe fishinggearusedinthisworkhadaclearsizeselectivityforthe L. synagris populations. Among the few catches of juveniles, it wasobservedthattheyalreadyhadrelativelylargesizes measur-ingatleast18.5cm.Whereastheterminologyjuvenilesisusually appliedtoindividualswithsizesshorterthan10cm(Franksand VanderKooy,2000; Lindemanet al., 1998;Mikulas and Rooker, 2008;PimentelandJoyeux,2010),weconcludedthatindividuals denotedasjuvenilesinthisstudyshouldbebetterregardedas sub-adults.Thus,whatwe mightbeobservingis,in fact,thespatial segregationamongadultandsub-adultsofL.synagris.

5. Concludingremarks

Asetofstatisticalapproacheswasusedinordertoextendthe scopeofadata-poorfishery. BymeansofBayesianmodelsand GeographicInformationSystems(GIS)schemesweprovidedsome novelinsightsofthepotentialspatialdistributionforabundance anddifferentlifestagesofthevulnerablelanesnapper.However, ourcasestudyattemptedtopresentanemergingSDMtool,rather thanfocusingsolelyontraditionalbiologicalandecological discus-sions.

Marineecosystemsconstitutedynamicareas,wherefisheries experimentsarealmostimpossibleandvulnerabletoseveralerror sourcesassociatedwithobservations,samplingprocedures,model structureandparameters.Inthissense,itisconvenienttoapply Bayesianinferenceintofisheriesmodellingprocedures,sincethe posteriordistributionitselfisadynamicprocessinitiallyshaped accordingtoourpriorbeliefs,whichturnsoutarelevantmodel stabilizingfactorindata-poorsituationsandadaptsitself automat-icallyasweacquiremoreandmoredata.

ThehierarchicalBayesianspatialmodelsproposedinthisstudy areextremelypowerfulandsuitperfectlyinfisheriesscience,by quantifyingboththespatialmagnitudeandthedifferentsources ofuncertainty.Spatialpredictions,therefore,becamemuchmore accurateandconsistentwithreality.Furthermore,asweare deal-ingwithinaBayesianframework,posteriorpredictivedistribution

(9)

mapssuchasthosedefiningtheprobabilityofthemostfavorable areasforconservation,would beantagonisticwithintraditional frequentistconceptsofprobabilitybutareofenormousvaluefor fisheriesmanagement.

However,itisnoteworthythatthemodelspresentedin this studyare limited not onlyin space butalso in time. Thus,the fittedandpredictedmodelsrevealedonlyasnapshotofthe eco-logicalprocess.Sincefisheriesaredynamicinspaceandtime,we encouragetheuseofbotheffectsastheymayimproveevenmore thewantedrealism.Bayesianspatio-temporalmodelswerealready appliedinsomeimportantfisheriesissues,suchasdiscardand by-catchproblems(Cosandey-Godinetal.,2015;Penninoetal.,2014). Moreover,whendealingwithfishery-dependentdata,itis impor-tanttoaccountfordistinctsourcesofbiasesasthosearerelatedto fisher’sbehavior,andwhichhasalsobeenintroducedrecentlyby Roosetal.(2015)andPenninoetal.(2016).

Ourstudy,demonstratedoncemorehoweasyitisnowadaysto accountforrandomeffectsinHBMswhenperformedthroughthe INLAmethodology.R-INLArevolutionizedthewaywemay per-formeasilyinotherwisesophisticatedBayesianinference,sinceits interfaceissimilartotheconventionalglmfunctioninRandthus wedonothavetowriteminutelythemodelsasneededinBUGS andJAGS,althoughMCMCisstillaslightlymoreflexibleapproach. Besidesthis,R-INLAiscontinuouslyevolvingandgreatlyextending thescopeofBayesianmodelsforappliedscientists.UsingR-INLA enablesustofitcomplexmodelsatconsiderablelessertimeand withmoreaccuracywhencomparedtostandardMCMCmethods. Finally,it isworthmentioningthat R-INLAcanalsobeused tofitmodelsthatdonothavenecessarilyspatialand/ortemporal componentsinitsstructure.Rueetal.(2009)providesomeother examples,whichincludegeneralizedlinearandadditive(mixed) models,dynamiclinearmodels,survivalmodels,spline smooth-ingandsemiparametricregressions,amongmanyothers.Inthis way,wealsoencouragetheuseofR-INLAwhenperforming eco-logicalBayesianmodellingwithconventionalGLMsorGAMs,since thepackage’sinterfacedisplayssimilaritywithalreadyexistingglm andgamtoolsinR.Atleast,wehaveshownthat,evenfor “data-poor”fisheries,thismodellingapproachhasgoodperformance.

Acknowledgments

AuthorswouldliketogratefullythankDr.MariaGraziaPennino forhervaluabletechnicalsupportintheusageofR-INLA.Thefirst authorisalsogratefultotheBrazilianNationalResearchCouncil (CNPq)thatprovidedfinancialsupportduringherM.Sc.Research, whichwasdevelopedundertheguidanceofthesecondauthor. Finally,allauthorswishtothanktoallfishermen,researchersand (under)graduatestudentswhichcontributedwithbothfieldand laboratoryworks,andthereforeenabledthisstudy.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.ecolmodel.2017. 01.022.

References

Aiken,K.A.,2001.Aspectsofreproduction,ageandgrowthofthelanesnapper, Lutjanussynagris(Linnaeus,1758)inJamaicancoastalwaters.Proc.GulfCarib. Fish.Inst.52,116–134.

Babcok,E.A.,Pikitch,E.K.,McAllister,M.K.,Apostolaki,P.,Santora,C.,2005.A perspectiveontheuseofspatializedindicatorsforecosystem-basedfishery managementthroughspatialzoning.ICESJ.Mar.Sci.62,469–476. Bakka,H.C.,Vanhatalo,J.,Illian,J.,Simpson,D.P.,Havard,R.,2016.Accountingfor

physicalbarriersinspeciesdistributionmodellingwithnon-stationaryspatial randomeffects.arXiv,1608.03787:arxiv201621.

Bentley,N.,2014.Dataandtimepovertyinfisheriesestimation:potential approachesandsolutions.ICESJ.Mar.Sci.72,186–193.

Carpenter,K.,2002.TheLivingMarineResourcesoftheCentralWesternAtlantic. Volume3:BonyFishesPart2(OpistogonathidaetoMolidae),SeaTurtlesand MarineMammals.Roma,FAO.

Cavalcante,L.F.M.,Oliveira,M.R.,Chellappa,S.,2012.Aspectosreprodutivosdo ariacó,LutjanussynagrisnaságuascosteirasdoRioGrandedoNorte.Bio. Amaz.2,45–50.

Chakraborty,A.,Gelfand,A.E.,Wilson,A.M.,Latimer,A.M.,Silander,J.A.,2010. Modellinglargescalespeciesabundancewithlatentspatialprocesses.An. Appl.Stat.4,1403–1429.

Ciannelli,L.,Fauchald,P.,Chan,K.S.,Agostini,V.N.,Dingsor,G.E.,2008.Spatial fisheriesecology:recentprogressandfutureprospects.J.Mar.Syst.71, 223–236.

Cosandey-Godin,A.,Krainski,E.T.,Worm,B.,Flemming,J.M.,2015.Applying BayesianspatiotemporalmodelstofisheriesbycatchintheCanadianArctic. Can.J.Fish.Aquat.Sci.72,1–12.

Crossland,C.J.,Hatcher,B.G.,Smith,S.V.,1991.Roleofcoralreefsinglobalocean production.CoralReefs10,55–64.

Damasio,L.M.A.,Lopes,P.F.M.,Pennino,M.G.,Carvalho,A.R.,Sumalia,U.R.,2016. Sizematters:fishinglessandyeldingmoreinsmaller-scalefisheries.ICESJ. Mar.Sci.73,1494–1502.

Diggle,P.J.,Ribeiro,J.P.J.,2007.Model-basedGeostatistics,firsted.Springer,New York.

Doll,J.C.,Lauer,N.T.E.,2013.Bayesianestimationofageandlengthat50% maturity.Trans.Am.Fish.Soc.142,1012–1024.

Doncel,O.,Paramo,J.,2010.Hábitosalimenticiosdelpargorayado,Lutjanus synagris(PerciformesLutjanidae),enlazonanortedelCaribecolombiano.Lat. Am.J.Aquat.Res.38,413–426.

Figuerola,M.,Matos-Caraballo,D.,Torres,W.,Creswell,R.L.,1998.Maturationand reproductiveseasonalityoffourreeffishspeciesinPuertoRico.Proc.Gulf. Carib.Fish.Inst.50,938–968.

Franklin,J.,2010.MappingSpeciesDistributions:SpatialInferenceandPrediction, firsted.CambridgeUniversityPress,NewYork.

Franks,J.S.,VanderKooy,K.E.,2000.Feedinghabitsofjuvenilelanesnapper LutjanussynagrisfromMississippicoastalwaters:withcommentsonthediet ofgraysnapperLutjanusgriseus.Gulf.Carib.Res.12,11–17.

Freitas,M.O.,Moura,R.L.,Francini-Filho,R.B.,Minte-Vera,C.V.,2011.Spawning patternsofcommerciallyimportantreeffish(LutjanidaeandSerranidae)in thetropicalwesternSouthAtlantic.Sci.Mar.75,135–146.

Freitas,M.O.,Rocha,G.R.,Chaves,P.T.C.,Moura,R.L.,2014.Reprdouctivebiologyof thelanesnapper,Lutjanussynagris,andrecommendationsforitsmanagement ontheAbrolhosShelf,Brazil.J.Mar.Biol.Assoc.U.K.1,1–10.

Gómez,G.,Guzmán,R.,Chacón,R.,2001.Parámetrosreproductivosypoblacionales deLutjanussynagrisenelGolfodeParia,Venezuela.Zootec.Trop.19,335–357. Gelman,A.,1996.Inferenceandmonitoringconvergence.In:Gilks,W.R.,

Richardson,S.,Spiegelhalter,D.J.(Eds.),MarkovChainMonteCarloinPractice. ChapmanandHall/CRC,Florida,pp.131–143.

Gillanders,B.M.,Able,K.W.,Brown,J.A.,Eggleston,D.B.,Sheridan,P.F.,2003. Evidenceofconnectivitybetweenjuvenileandadulthabitatsformobile marinefauna:animportantcomponentofnurseries.Mar.Ecol.Prog.Ser.247, 281–295.

Guisan,A.,Thuiller,W.,2005.Predictingspeciesdistribution:offeringmorethan simplehabitatmodels.Ecol.Lett.8,993–1009.

Haddon,M.,2001.ModellingandQuantitativeMethodsinFisheries,firsted. Chapman&Hall/CRC,NewYork.

Held,L.,Schrödle,B.,Rue,H.,2010.Posteriorandcross-validatorypredictive checks:acomparisononMCMCandINLA.In:Kneib,T.,Tutz,G.(Eds.),Statiscial ModellingandRegressionStructures.Physica-Verlag,Berlin,pp.111–131. Honey,K.T.,Moxley,J.H.,Fujita,R.M.,2010.Fromragstofishes:data-poormethods

forfisherymanagers.In:Starr,R.M.,Culver,C.S.,Pomeroy,C.,McMillan,S., Barnes,T.,Asteline-Neilson,D.(Eds.),ManagingData-poorFisheries:Case Studies,ModelsandSolutions.CaliforniaSeaGrandCollegeProgram,San Diego,pp.155–180.

Illian,J.B.,Martino,S.,Sorbye,S.H.,Gallego-Fernández,J.B.,Zunzunegui,M., Esquivias,M.P.,Travis,M.J.,2013.Fittingcomplexecologicalpointprocess modelswithintegratednestedLaplaceapproximation.Meth.Ecol.Evol.4, 305–315.

Karna,S.K.,Panda,S.,2011.Growthestimationandlengthatmaturityofa commerciallyimportantfishspeciesi.e.:Dayscieaenaalbida(Boroga)in ChilikaLagoon,India.Euro.J.Exp.Biol.1,84–91.

Kinas,P.G.,Andrade,H.A.,2010.Introduc¸ãoàAnáliseBayesiana(comR),firsted. MaisQnada,PortoAlegre.

King,M.,2007.FisheriesBiology:AssessmentandManagement,seconded. BlackwellPublishing,Queensland.

Latimer,A.M.,Wu,S.,Gelfand,A.E.,Silander,J.A.J.,2006.Buildingstatisticalmodels toanalyzespeciesdistributions.Ecol.Appl.16,33–50.

Lessa,R.,Bezerra,J.J.L.,Nóbrega,M.F.,2009.DinâmicaDasFrotasPesqueirasDa RegiãoNordesteDoBrasil.Martins&CordeiroLtda,Fortaleza.

Lindeman,K.C.,Diaz,G.A.,Serafy,J.E.,Ault,J.S.,1998.Aspatialframeworkfor assessingcrossshelfhabitatuseamongnewlysettledgruntsandsnappers. Proc.GulfCarib.Fish.Inst.50(385),416.

Lindgren,F.,Rue,H.,2013.Bayesianspatialandspatio-temporalmodellingwith R-INLA.J.Stat.Softw.63,1–26.

(10)

Luckhurst,B.E.,Dean,M.J.,Reichert,M.,2000.Age,growthandreproductionofthe lanesnapperLutjanussynagris(Pisces:Lutjanidae)atBermuda.Mar.Ecol. Prog.Ser.203,255–261.

Manickchand-Dass,S.,1980.Reproduction,ageandgrowthoflanesnapper, Lutjanussynagris(Linnaeus),inTrinidad,WestIndies.Bull.Mari.Sci.40, 411–429.

McEachran,J.,Fechhelm,J.,2005.FishesoftheGulfofMexico,Vol.2.Universityof TexasPress,Texas.

Mikulas,J.J.,Rooker,J.R.,2008.Habitatuse,growth,andmortalityof post-settlementlanesnapper(Lutjanussynagris)onnaturalbanksinthe northwesternGulfofMexico.Fish.Res.93,77–84.

Mu ˜noz,F.,Pennino,M.G.,Conesa,D.,López-Quílez,A.,Bellido,J.M.,2013. Estimatingandpredictionofthespatialoccurrenceoffishspeciesusing BayesianlatenteGaussianmodels.StochasticEnvrion.Res.RiskAssess.27, 1171–1180.

Paradinas,I.,Conesa,D.,Pennino,M.G.,Mu ˜noz,F.,Fernández,A.M.,López-Quílez, A.,Bellido,J.M.,2015.Bayesianspatio-temporalapproachtoidentifyingfish nurseriesbyvalidatingpersistenceareas.Mar.Ecol.Prog.Ser.528,245–255. Paradinas,I.,Marín,M.,Pennino,M.G.,López-Quílez,A.,Conesa,D.,Barreda,D.,

Gonzalez,M.,Bellido,J.M.,2016.Identifyingthebestfishing-suitableareas underthenewEuropeandiscardban.ICESJ.Mar.Sci.,http://dx.doi.org/10. 1093/icesjms/fsw114.

Peduzzi,P.,Contacto,J.,Kemper,E.,Holford,T.R.,Feinstein,A.R.,1996.Asimulation studyofthenumberofeventspervariableinlogisticregressionanalysis.J. Clin.Epidemiol.49,1373–1379.

Pennino,M.G.,Mu ˜noz,F.,Conesa,D.,López-Quílez,A.,Bellido,J.M.,2013.Modeling sensitiveelasmobranchhabitats.J.SeaRes.83,209–218.

Pennino,M.G.,Mu ˜noz,F.,Conesa,D.,López-Quílez,A.,Bellido,J.M.,2014.Bayesian spatio-temporaldiscardmodelinademersaltrawlfishery.J.SeaRes.90, 44–53.

Pennino,M.G.,Conesa,D.,López-Quílez,A.,Mu ˜noz,F.,Fernández,A.,Bellido,J.M., 2016.Fishery-dependentand−independentdataleadtoconsistent estimationsofessentialhabitats.ICESJ.Mar.Sci.73,2302–2310.

Pimentel,C.R.,Joyeux,J.C.,2010.Dietandfoodpartitioningbetweenjuvenilesof muttonLutjanusanalis,dogLutjanusjocuandlaneLutjanussynagrissnappers (Perciformes:lutjanidae)inamangrove-fringedestuarineenvironment.J.Fish Biol.76,2299–2317.

Quiroz,Z.C.,Prates,M.O.,Rue,H.,2015.ABayesianapproachtoestimatethe biomassofanchoviesoffthecoastofPerú.Biometrics71,208–217.

Rezende,S.M.,Ferreira,B.P.,Frédou,T.,2003.Apescadelutjanídeosnonordestedo Brasil:históricodaspescarias,característicasdasespécieserelevânciaparao manejo.Bol.Téc.Ci.doCEPENE11,257–270.

Rodríguez,A.,Páramo,J.,2012.DistribuiciónespacialdelpargorayadoLutjanus synagris(Pisces:Lutjanidae)ysurelaciónconlasvariablesambientalesenel caribeColombiano.Actu.Biol.34,55–66.

Roos,N.C.,Carvalho,A.R.,Lopes,F.M.,Pennino,M.G.,2015.Modelingsensitive parrotfish(Labridae:Scarini)habitatsalongtheBraziliancoast.Mar.Env.Res. 110,92–100.

Ross,B.E.,Hooten,M.B.,Koons,D.N.,2012.Anaccessiblemethodforimplementing hierarchicalmodelswithspatio-temporalabundancedata.PLoSOne7(11), e49395.

Rue,H.,Martino,S.,Chopin,N.,2009.ApproximateBayesianinferenceforlatent GaussianmodelsbyusingintegratednestedLaplaceapproximations.J.R.Stat. Soc.B71,319–392.

Spiegelhalter,D.J.,Best,N.J.,Carlin,B.P.,VanDerLinde,A.,2002.Bayesianmeasure ofmodelcomplexityandfit.J.R.Stat.Soc.64,583–639.

Su,Y.S.,Yajima,M.,2014.R2jags:ApackageforRunningjagsfromR.Rpackage version0.04-0,http://CRAN.R-project.org/package=R2jags/(Accessed18April 2015).

Valavanis,V.D.,Pierce,G.J.,Zuur,A.F.,Palialexis,A.,Saveliev,A.,Katara,I.,Wang,J., 2008.Modellingofessentialfishhabitatbasedonremotesensing,spatial analysisandGIS.Hydrobiologia612,5–20.

Vazzoler,A.,1996.Biologiadareproduc¸ãodepeixesTeleósteos:teoriaeprática, firsted.EDUEM,Ceará.

Venables,W.N.,Dichmont,C.M.,2004.GLMs,GAMsandGLMMs:anoverviewof theoryforapplicationsinfisheriesresearch.Fish.Res.70,319–337. Vital,H.,Gomes,M.P.,Tabosa,W.F.,Farzão,E.P.,Santos,C.L.A.S.,Júnior,J.S.P.,2010.

CharacterizationoftheBraziliancontinentalshelfadjacenttoRioGrandedo Nortestate,NE,Brazil.Braz.J.Oc.58,43–54.

Ward,E.J.,Jannot,J.E.,Lee,Y.-W.,Ono,K.,Shelton,A.O.,Thorson,J.T.,2015.Using spatiotemporalspeciesdistributionmodelstoidentifytemporallyevolving hotspotsofspeciesco-occurrence.Ecol.Appl.25,2198–2209.

Referências

Documentos relacionados

Nóvoa (coord.), As Organizações Escolares em Análise (pp. face ao trabalho escolar, enfim, de um ethos de escola. Ao recorrer ao termo ethos Rutter procura pôr em

Although he was invited by Professor Delfim Santos to be his assistant at the Faculty of Arts, his university career was stopped short due to the intervention of the

Considerando a diferença no nivelamento na dificuldade percebida na fala entre as duas escalas utilizadas entre este estudo e o supracitado, e a característica do

“Educação em Saúde”, “Atividades extracur- riculares”, “Ligas Acadêmicas” e “Odontologia”, nos idiomas inglês, português e espanhol. Os dados foram

Specification E val ua to r Source Model Target Model Transformation Script Target Data Count Target Model Count Data Transfer ratio Source Data Count Source Model

O TFT foi realizado com os seguintes exercícios: agachamento Smith, mesa flexora, remada máquina, supino horizontal máquina, elevação de ombros frontal com barra e

Roll forward for pension funds means to extend the liability for a year or n-months from the last actuarial valuation and project to any date in time, according to IAS19

Face a este cenário ex- cecional e conscientes dos impactes diretos infligi- dos nos sítios arqueológicos pelos incêndios e pelo seu necessário combate, bem como pelos impactes