• Nenhum resultado encontrado

Synthesis of an O-alkynyl-chitosan and its chemoselective conjugation with a PEG-like amino-azide through click chemistry

N/A
N/A
Protected

Academic year: 2021

Share "Synthesis of an O-alkynyl-chitosan and its chemoselective conjugation with a PEG-like amino-azide through click chemistry"

Copied!
10
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Carbohydrate

Polymers

jo u r n al h om ep a ge : w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l

Synthesis

of

an

O-alkynyl-chitosan

and

its

chemoselective

conjugation

with

a

PEG-like

amino-azide

through

click

chemistry

José

Ricardo

Oliveira

a,b

,

M.

Cristina

L.

Martins

a

,

Luís

Mafra

c

,

Paula

Gomes

a,∗

aCIQ-UP,DepartamentodeQuímicaeBioquímica,FaculdadedeCiências,UniversidadedoPorto,RuadoCampoAlegre687,4169-007Porto,Portugal bINEBInstitutodeEngenhariaBiomédica,DivisãodeBiomateriais,UniversidadedoPorto,RuadoCampoAlegre823,4150-180Porto,Portugal cDepartmentofChemistry,CICECO,UniversityofAveiro,3810-193Aveiro,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received2March2011

Receivedinrevisedform22July2011 Accepted25July2011

Available online 3 August 2011 Keywords: Azide–alkynecoupling Bioadhesion Biomaterials Chitosan clickchemistry FTIR

Huisgen’s1,3-dipolarcycloaddition Size-exclusionchromatography Solid-stateNMR

XPS

a

b

s

t

r

a

c

t

N-Phthaloyl-chitosanO-prop-2-ynylcarbamatewaspreparedasabiopolymeramenabletoundergo chemoselectiveconjugationbyazide–alkynecoupling,whileallowingupturnofchitosan’saminesafter dephthaloylation.N-phthaloylchitosanwaspreparedaccordingtopreviouslydescribedmethodsand,due toitslowsolubilityincurrentorganicmedia,subsequentmodificationswereruninheterogeneous con-ditions.Activationofhydroxylswithcarbonyl-1,1-diimidazoleandcouplingtopropargylamineyielded N-phthaloyl-chitosanO-prop-2-ynylcarbamate,thencoupledtoamodelPEG-likeazidebyazide–alkyne coupling,givingthe expectedtriazolylconjugate.N-Dephthaloylationallowed recoveryofthefree amines,responsibleforchitosan’sbioadhesionandtissue-regenerationproperties.

ThestructuresofallpolymerswereconfirmedbyFourier-transformedinfra-red(FT-IR)andX-ray photoelectron(XPS)spectroscopies,aswellasbysolid-statenuclearmagneticresonance(SSNMR).All chitosanderivativeswerepoorlysolubleinbothaqueousandorganicmedia,whichmakesthem suit-ablefortopicalapplicationsorforremovaloftoxicsubstancesfromeitherthegastricintestinaltractor environmentalsources.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Some of the most appealing characteristics of chitosan are its bioadhesive properties and its ability to promote cell pro-liferation and, consequently, tissue regeneration (Berger, Reist, Mayer, Felt, &Gurny, 2004; Berger, Reist, Mayer, Felt, Peppas, et al., 2004). These properties of chitosan are of outmost importancefor biomedical engineering and are enhanced upon decreasingthepolymer’sdegreeofacetylation(Amaral,Lamghari, Sousa, Sampaio, & Barbosa, 2005), meaning that such proper-ties are intrinsically related with the polymer’s amino groups thatarecationicinacidic-neutralmedia(Batista,Pinto,Gomes,& Gomes,2006), likeinphysiological fluids.Many chemical mod-ifications have been carried out on chitosan’s d-glucosamine units,conferringtothenewmaterialssurprisingpropertiesand additional possibilities of engaging in a wide range of chemi-cal reactions for diverse applications (Muzzarelli, 1988; Kurita et al., 2002; Holappa, Hjálmarsdóttir, et al., 2006; Holappa, Nevalainen, Soininen, Másson, & Järvinen, 2006b; Rúnarsson, Holappa,Jónsdóttir,Steinsson,&Másson,2008;Rúnarssonetal.,

∗ Correspondingauthor.Tel.:+351220402563;fax:+351220402659. E-mailaddress:pgomes@fc.up.pt(P.Gomes).

2010),e.g.,biomedicalengineeringand/ordrugdelivery(Anitha etal.,2011;Iqbal,Sarti,Perera,&Bernkop-Schnürch,2011;Molnár, Barbu,Lien,Górecki,&Tsibouklis,2010;Muzzarelli,2009,2011). However,mostchitosanmodificationsdescribedintheliterature havebeencarriedoutexclusivelyorinclusivelyatthepolymer’s primary aminogroups, which is undesirablefor applicationsin which the polymer’samine-dependent bioadhesionand/or pH-dependentpropertiesshouldhaveakeyrole.Inviewofthis,we have workedon the synthesis and characterization of a novel chitosan derivative that conserves the primary amine groups unchanged,whilebeingselectivelymodifiedatitsprimaryalcohol functioninordertobearanalkynemoietyamenabletoundergo furthermodificationsbywell-knownorganicreactions,e.g., Huis-gen1,3-dipolarcycloaddition(a“clickreaction”correspondingto anazide–alkynecoupling)(Kolb,Finn,&Sharpless,2001)or Sono-gashiracoupling(Chinchilla&Nájera,2007).Thesereactionsmay serve,amongotherpurposes,forfacilechitosanconjugationwith drugsandotherbioactivemolecules,likeazide-modifiedpeptides orsugars,already availableinthemarketoreasilyproducedby currentorganicsynthesisprocedures(Lahann,2009).Therefore,a selectively N-protectedO-alkynylatedchitosan waspreparedby straightforwardmethodsandsubmittedtoatestazide–alkyne cou-plingreactionwithacommercialazide(PEG-likeazide)toserveas proof-of-concept,ashereindescribed.

0144-8617/$–seefrontmatter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.carbpol.2011.07.043

(2)

2. Materialsandmethods 2.1. Chemicals

ChitosanwasobtainedfromFrance-Chitine.Phthalicanhydride, tetrahydrofuran(THF),1,1-carbonyldiimidazole(CDI), propargy-lamine, copper (II) acetate, sodium ascorbate, ethylenediamine tetraaceticacid(EDTA)disodiumsalt,hydrazinemonohydrate,and 11-azido-3,6,9-trioxaundecan-1-aminewerefromSigma–Aldrich. Potassiumbromide(KBr)andallremainingorganicchemicalsand solventswerefromMerck.

2.2. Purificationofcommercialchitosan

Chitosanwaspurifiedbythereprecipitationmethod(Crompton etal.,2007).Briefly,1gofchitosanpowderwaspre-hydratedin 197.92mlofultrapurewater,for24hat4◦Cunderslowmagnetic stirring.Then,aceticacid(2.28ml)wasadded,andtheslurryleft overnightatroomtemperature. Aftercompletedissolution, the resultinggelwasfilteredthrougha 20micrometerporesize fil-tertoremoveundissolvedor gelatinousparticles.Chitosanwas thenprecipitatedthroughdropwiseadditionof1MaqueousNaOH, whilestirring.Finally,theregeneratedchitosanwaswashedwith ultrapurewaterbycentrifugationuntilneutrality,freeze-driedand groundedinalaboratorymilltoyieldafinepowder.

Thedegreeofacetylationandmolecularweightofthepurified chitosanweredeterminedusingFT-IRFouriertransforminfrared spectroscopy(seeSection2.8)andhighperfomancesize-exclusion chromatography(HP-SEC,seeSection2.10),respectively.

2.3. PreparationofN-phthaloyl-chitosan(2)

Thechemicalroutetowardsthetargetchitosan derivativeis giveninScheme1andbeganwiththesynthesisof N-phthaloyl-chitosan(2),accordingtothemethoddevelopedbyKurita,Ikeda, Yoshida,Shimojoh,andHarata (2002).Briefly,purified chitosan, 1(1.0g,6.20mmol)andphthalicanhydride (2.76g,18.60mmol) weresuspendedin30mlDMFcontaining5%(v/v)waterandthe mixtureheatedat120◦Cwithmagneticstirring,underargon atmo-sphere.After8h,themixturewascooledtoroomtemperatureand pouredintoicewater.Theresultingpaletanprecipitatewas col-lectedonaG4filterfunnel,thoroughlywashedwithcoldmethanol, anddriedinairtogive1.4gofN-phthaloyl-chitosan(2).

2.4. PreparationofN-phthaloyl-chitosanO-prop-2-ynyl carbamate(3)

N-phthaloyl-chitosan2(0.6g,2mmol),pre-washedwithTHF, wassuspendedin9mlof30mg/mlCDIinTHF,andtheslurrytaken to40◦Cunderargonatmosphereandgentlemagneticstirring.After 5h,thesolidfractionwascollectedonaG4filterfunnelandwashed thoroughlywithTHFtoremove CDIexcess.Theprecipitatewas transferredtoanewflasktowhichwereadded6mlof30mg/ml propargylamineinTHF.Theslurrywasgentlystirredatroom tem-peraturefor24h,afterwhichthesolidfractionwascollectedon aG4filterfunnel,washedwithmethanolanddriedinairtogive N-phthaloyl-chitosanO-prop-2-ynylcarbamate(3).

2.5. PreparationofN-phthaloyl-chitosan

O-(11-amino-3,6,9-undecan)triazolylcarbamate(4)

N-Phthaloyl-chitosan O-prop-2-ynyl carbamate 3 (0.4g 0.9mmol),copperacetate(0.06g,0.45mmol),sodiumascorbate (0.12g, 0.64mmol) and the PEG-like azide (11-azido-3,6,9-trioxaundecan-1-amine)(0.2g,0.9mmol)weremixedin16mlof tert-butanol/H2O(1:1,v/v)andthemixtureleftovernightunder

gentlemagneticstirring,atroomtemperature.Thesolidfraction, N-phthaloyl-chitosanO-(11-amino-3,6,9-undecan)triazolyl carba-mate4,wascollectedonaG4filterfunnelandthoroughlywashed firstwith0.1MEDTAandthenwithmethanol,andfinallydriedin air.

2.6. RemovaloftheN-phthaloylprotectinggroupfrom4: synthesisofchitosanO-(11-amino-3,6,9-undecan)triazolyl carbamate(5)

N-Phthaloyl-chitosanO-11-amino-3,6,9-undecantriazolyl car-bamate 4 (0.15g, 0.25mmol) was reacted with hydrazine monohydrate (1ml, 18mmol) in 10ml ethanol, at 40◦C with gentle stirring. After 18h, the solid fraction was collected by centrifugation, thoroughlywashed withethanol and water and freeze-driedtogivethedeprotectedchitosan O-(11-amino-3,6,9-undecan)triazolylcarbamate5.

2.7. XPSanalysis

Chitosan,1,anditsderivatives3–5wereanalysedbyXPS. Sam-pleswerepreparedbycompressingthepowderedpolymersinto 1mm-thickpellets.MeasurementswerecarriedoutonaVG Sci-entific ESCALAB 200Aspectrometer usingaluminum (15kV)as a radiation source. Photoelectrons were analysed at a take-off anglenormaltotheinterface.Surveyspectrawerecollectedover the0–1100eV rangewith analyserpass energyof 50eV. High-resolutionC1s,N1sandO1sspectrawerecollectedwithanalyser passenergyof20eV.Thebindingenergyscaleswerereferenced bysettingtheC1sbindingenergyto285.0eV.Spectrawerefitted usingtheXPSPEAK(version4.1)software.

2.8. FT-IRanalysis

FT-IR spectra of chitosan, 1, and its derivatives 3–5, were obtainedusingaPerkin-ElmerSystem2000FT-IRspectrometer. AllthesampleswererecordedasKBrpelletspreparedby blend-ing2mgofthepowderedpolymer,previouslydriedovernightat 60◦Cunderreducedpressure,with200mgKBr,previouslydriedat 105◦Cfor24h.Theinfraredspectrawereobtainedbyaccumulation of100interferograms,at4cm−1spectralresolution,between4000 and400cm−1andafternitrogenpurgeofthesamplecompartment for2mintominimizebandsthatcouldarisefromresidualair com-ponents(CO2andH2O).SpectrawerefittedusingtheSpectrumGX FT-IR(version5.3)software.TheDAwasestimatedaccordingtothe methodproposedbyBrugnerottoetal.(2001),wheretheamideIII (C–Nstretchingvibration)band(1320cm−1)wasusedasthe ana-lyticalbandandthebandat1420cm−1(inplaneO–Hdeformation vibration)wasusedastheinternalreferenceband.

2.9. SSNMRmeasurements

Carbon-13 cross-polarization/magic angle spinning nuclear magneticresonance(13C-CP/MASNMR)spectrawererecordedona 9.4TWB(400MHz,1HLarmorfrequency)BrukerAvance spectrom-eter(DSXmodel).A4mmdouble-resonancemagicanglespinning probewasemployedat400.1(1H)and100.6MHz(13C)Larmor fre-quencies.SampleswerespuninZrO2rotorsusingaspinningrateof 12kHz.13C-CP/MASNMRspectrawererecordedusingarampstep (varyingfrom100%to50%inamplitudeusing100points);contact time:1.5ms;1H90excitationpulse:3.75␮s;1Hand13C radio-frequencyfieldstrengthforcrosspolarizationwassetto87kHz and68kHz,respectively;numberofscans:1k;recycledelay:5s. TPPM-15decoupling(Bennettetal.,1995)wasemployedduring thesignalacquisitionusinga4.8␮spulselengthforthebasicTPPM

(3)

N N N O O O NH2 O HO OH O HO NH O O CH3 O N O O OH n (a) (b) (c) (d) 2 1 3 4 5 R O HO OH O HO NH O O CH3 O NH2 OH n O HO O O HO NH O O CH3 O N O O OR n N H O O HO O O HO NH O O CH3 O N O O OR1 n N H O R1 (b) N N N O O O NH2 O HO O O HO NH O O CH3 O NH2 OR1 n N H O R1

Scheme1.Chemicalroutetowardscationicchitosan5,obtainedafteranazide-alkyneconjugationreactioninvolvingtheO-alkynylatedchitosanderivative3:(a)phthalic anhydride,DMF,120◦C,8h;(b)CDI,THF,40◦C,5h;propargylamine,THF,rt,24h;(c)copper(II)acetate,sodiumascorbate,11-azido-3,6,9-trioxaundecan-1-amine, tert-butanol/H2O,rt,overnight;(d)hydrazinemonohydrate,H2O,100◦C,18h.Forsimplicity,onlymodifiedmonomersof2–5areconsideredintheScheme.

pulseunitalongthe1Hchannel,employinga1Hradio-frequency fieldstrengthof100kHz.

13Cchemicalshiftsarequotedinpartspermillion(ppm)and calibratedwithrespect totheexternal reference,glycine(C O, 176.03ppm).

2.10. HP-SECmeasurements

Themolecularweightofchitosan(1)wasdeterminedbyHP-SEC using a modular system composed of an isocratic pump (K-1001,Knauer),avacuumdegasser(Wellchrom2channelK-5002, Knauer),aviscometer/rightanglelaserlightscattering(RALLS)dual detector(T60AViscotek)andarefractiveindexdetector(K-2301 Knauer)operating thesame wavelength as the RALLSdetector (670nm).PLaquagel–OHmixedcolumnswereusedfor separa-tions.Thesamplesweredissolvedinthemobilephase(0.5Macetic acid/0.2Msodiumacetatewith0.01%(v/v)NaN3)at1mg/ml, fil-teredandinjectedthroughamanualinjectionvalveequippedwith a100␮lloop.Theflow-ratewasmaintainedat1.0ml/min.

3. Resultsanddiscussion

Chitosan (1) obtained after purification of the commercial powder presented a molecularweight of 283.000–472.000 and a DAof 16%, determinedasdescribed in theprevioussections. Thisstartingmaterialwasthensubjectedtochemical modifica-tionsdepicted in Scheme1. The stepwiseprocedureemployed isnecessarysince thereactivity ofchitosan’sprimaryaminesis considerably higher than that of the primary hydroxyls, so N-protectionfollowedbyO-activationisasuitableapproach.Chitosan aminegroupswereprotectedbyN-phthaloylationtoyield2,as N-phthaloylationisnowacurrentandversatileprocedure when-everchemoselectiveO-modificationofthebiopolymerisdesirable (Kuritaetal.,2002;Kurita, Yoshida,&Umemura,2010).The N-phthaloyl derivative 2 was poorly soluble in a wide range of commonorganicandaqueous/organicsolvents,asexpectedfrom previousfindingsbyKuritaetal.(2002).Theseauthorsascribed suchphenomenon toan increasedcrystallinity of themodified polymer,whichcouldbeconfirmedbyusthrough dephthaloyla-tion(accordingtotheprocedurein2.6)ofN-phthaloylchitosan(2) backtoits“unmodified”form,whichwasfoundtobenolonger solubleinacidicaqueousmedia,aswastheoriginalpolymer(1).

(4)

Thelowsolubilityof2 madeuscarryout subsequentreactions underheterogeneousconditions,asrecentliteratureshowsthat chemicalmodificationsofchitosancanbeensuccessfullyachieved undersuchconditions(Elkholy,Khalil,&Elsabee,2011;Li,Yuan, Gu,&Re, 2010;Shen, Ji,Yang, &Zheng, 2007;Wan, Gao,&Li, 2010).

N,N-Carbonyldiimidazole (CDI) was used for activation of hydroxylsin2towardssubsequentcouplingwithpropargylamine toyield3;CDIisacheapandefficientcouplingagentusedin indus-trialproductionofpeptides(Montalbetti&Falque,2005), which hasbeen successfullyemployed inthemodificationof polysac-charidesascellulose,dextranorchitosanformultipleapplications (Chirachanchai,Lertworasirikul,&Tachaboonyakiat,2001;Oh,Lee, &Park,2009;Önal&Telefoncu,2003).Propargylaminewasselected asthealkynedonor,asit providesahydrophilicandstable,yet chemo-reversible,carbamategrouplinkedtotheterminalalkyne throughaflexiblemethylene.Obviously,thisapproachis applica-bletootheralkynyl–aminesfortailoredspacersizeandflexibility. Thestructuresofchitosanderivatives2and3wereconfirmed,as demonstratedthroughtheuseofatoolboxofspectroscopic tech-niques,discussedfurtherbelow.

Toofferproof-of-conceptregardingtheabilityofpolymer3to undergoachemoselectivecouplingtoanazidemoiety,wehave submittedthis polymertoaHuisgen’s1,3-dipolar cycloaddition with11-azido-3,6,9-trioxaundecan-1-amine,takenas representa-tiveofanyazide-modifiedbiomolecule(drug,peptide,etc.).This testazidewaschosengiven itscommercialavailability, reason-ablecost,mediumsizeandoverallhydrophiliccharacter(PEG-like chain witha terminal primary amine). Recent reports describe successfulapplicationoftheazide–alkynecouplingreactionto cre-atenovelchitosan-basedbiomaterials(Lietal.,2010;Yuan,Zhao, Gu,&Ren,2010;Yuan,Li,Gu,Cao,&Ren,2011;Yuan,Zhao,Gu, Ren,&Ren,2011;Zhangetal.,2011).Inmostcases,theclassical Cu(I)/N,N,N,N,N-pentamethyldiethylenetriamine(PMDETA) sys-temhasbeenused(Lietal.,2010;Yuanetal.,2010;Yuan,Li,etal., 2011;Yuan,Zhao,etal.,2011)topromotetheclickreaction,assome authorshavepreviouslyreportedthatinsitugenerationofCu(I)by meansoftheCu(II)/ascorbatesystemleadstosevere depolimeriza-tionofthechitosanbackbone(Lallana,Fernández-Megía,&Riguera, 2009;Kulbokaiteetal.,2009).Interestingly,nosuchproblemwas reportedonalatestworkwheretheCu(II)/ascorbatesystemhas beenusedtocreatechitosan-basedmicrocapsulesthrough multi-layerassembly byclickchemistry(Zhangetal.,2011).Anyway, westartedbyusingtheCu(I)/PMDETAsystem,butsoondiscarded thisoptionduetotheinefficientremovalofexcesscopperfrom thepolymermatrix,evenafterextensiveworkupwithEDTA(data notshown).Thisproblem,alsoreportedbyotherauthors(Lallana, Fernández-Megía&Riguera,2009),wasnotobservedwhenusing Cu(II)/ascorbate,whichthereforebecameoursystemofchoice.In ordertoavoidoratleastminimizethedepolimerizationproblems allegedlyassociatedtoCu(II)/ascorbate,wehaverunthe cycload-ditionreactionatroomtemperaturefornolongerthan12h.

Asdemonstratedbystructuralanalyses(seediscussionbelow), thecycloadditionoccurredasexpected toyield4. Thelow sol-ubility of this product in a wide range of aqueous buffers and aqueous/organiceluents, prevented us toaccurately determine the polymer’s molecular weight by HP-SEC. Nonetheless, the insolubilityof4indirectlysuggeststhatthisisstillahigh molecular-weight polymer. Furthermore, based on a previous work by CabreraandVanCutsem,whousedmatrix-assistedlaser desorp-tionionization–time-of-flightmassspectrometry(MALDI-TOFMS) todetectchitooligosaccharides(Cabrera&VanCutsem,2005),we usedthistechniquetoanalysepolymer4,butnopeakswerefound below100kDa(datanotshown).

N-Deprotectionof4toyieldtheO-modifiedcationicchitosan 5wascarried out usinghydrazine,commonly employedfor

N-Table1

Elementalanalysisdata(%C,N,O)asdeterminedbyXPSanalysisofpolymers1–5.

Polymer Atomic% C(1s) O(1s) N(1s) 1 58.5 33.6 7.9 2 67.4 27.6 5.0 3 66.8 26.3 7.0 4 65.6 25.8 8.7 5 62.3 27.9 9.9

dephthaloylationofN-phthaloyl-chitosanderivatives(Kuritaetal.,

2010).Again,givenpriorreportsonsignificantbreakdownofthe chitosan’sbackboneinthecourseofN-dephthaloylation(Makuˇska &Gorochovceva,2006),wehaverunthedeprotectionfor18hat only40◦C.Structuralanalysesdescribedbelowallowedconfirming fullremovaloftheN-phthaloylprotectinggrouptogivepolymer 5.

Finally,itshouldbenotedthat,inallcases,productpolymers keptthefinepowderstructureofthestartingmaterials,and no grindingwasrequiredinanystep.

3.1. Comparativeanalysisofchitosan(1)anditsderivatives (2–5)byXPS

Table1showstherelativeatomicpercentagesofcarbon,oxygen andnitrogenofunmodifiedchitosan(1)andchitosanderivatives (2–5),calculatedfromhighresolutionXPSspectra.Theresolved XPShighresolutionspectraofC1s,O1sandN1sofunmodified chi-tosanandchitosanderivatescanbevisualizedatFig.1.Therelative atomicpercentagesofcarbonindifferentenvironments,obtained fromtheC1sXPShighresolutionspectraofunmodifiedand modi-fiedchitosan,aredescribedinTable2,whereassimilarinformation referringtoO1sandN1sisgiveninTable3.

Resultsobtainedforunmodifiedchitosanwereasexpectedand agreedwithdata reportedby otherauthors (Amaral, Granja, & Barbosa, 2005; Beamson & Briggs, 1992). The C1s spectrum of unmodifiedchitosanwasfittedusingthreepeaksasdescribed else-where (Amaral, Granja,et al., 2005).The peak at285.0eV was assignedtoC–Cand C–Htypecarbonsmixedwith–CH2–from a surface contaminant (Amaral, Granja, et al., 2005); the peak at 286.4eV wasassigned to C–NH2, C–OHand C–O–C carbons, whereasthepeakat281.1eVwasassigned tocarbonsfromthe O–C–OandN–C Ogroups.RegardingtheresolvedO1sspectrum, threepeakswereindentified:at531.6eV,assignedtoN–C Oin N-acetylatedglucosamineunitsandCO–N–CO;at532.8eV,assigned to C–O–C and C–OH; and at 534.0eV,assigned to O–C–O.The resolvedN1sspectrumrevealedthreepeaks:at399.7eV,assigned tonitrogens in C–N and CO–N bonds; at 400.7eV, assigned to CO–N–COandN–CO–O;andat401.8eV,assignedtoaminogroups intheammoniumform(NH3+).

AfterN-phthaloylation,i.e.,regardingderivative2ascompared tostartingmaterial1,therewasanincreaseintheatomic percent-ageofcarbonaccompaniedbyasmalldecreaseinthepercentages ofnitrogenandoxygen,anexpectedconsequenceofthe incorpora-tionofthephthaloylgroup.Theincreaseofthepeakat285.0eVwas ascribedtotheinsertionofC Ctypecarbonsfromthephthaloyl group.Consequently,thecarbonpeakat286.4eVhasdecreaseddue tothedisappearanceofC–NH2typecarbonsafterN-phthaloylation. Althoughthecarbonpeakat288.1eVdidnotshowanyrelevant changeinintensity,acloseinspectionofthispeakinFig.1showsa smallshiftofthebindingenergythatcouldberelatedwithinsertion ofCO–N–COcarbons.IntheresolvedO1sspectrum,theincreaseof thepeakat531.6eVwasascribedtotheinsertionofCO–N–COfrom thephthaloylgroup.N1sXPSspectrumdemonstratedtheinsertion ofthephthaloylgroupbythedisappearanceofthepeakat401.8eV

(5)

Fig.1.XPShighresolutionspectraof:(a–c)unmodifiedchitosan(1);(d–f)N-phthaloyl-chitosan(2);(g–i)N-phthaloyl-chitosanO-prop-2-ynylcarbamate3;(j–m) N-phthaloyl-chitosanO-(11-amino-3,6,9-undecan)triazolylcarbamate4,and(n–p)O-triazolylchitosan5powders.O1s,N1sandC1sregionsareshown.

(6)

Table2

C(1s)surfaceatomiccompositionofthedifferentpolymers1–5.

Polymer Atomic%C(1s)

C C C–C/C–H/C C C–NH2/C–OH/C–O–C O–C–O/N–C O/CO–N–CO N–CO–O

283.7eV 285eV 286.4eV 288.1eV 289.2eV 1 – 16 65 19 – 2 – 42 40 18 – 3 3 42 36 15 4 4 – 38 48 11 3 5 – 28 58 12 2 Table3

O(1s)andN(1s)surfaceatomiccompositionofthedifferentpolymers1–5.

Polymer Atomic%O(1s) Atomic%N(1s)

N–C O/CO–N–CO C–O–C/C–OH O–C–O C–N/CO–N CO–N–CO/N–CO–O NH3+

531.6eV 532.8eV 534.0eV 399.7eV 400.7eV 401.8eV 1 6 87 7 93 – 7 2 22 64 14 72 28 – 3 28 57 15 65 35 – 4 17 61 22 52 32 16 5 13 71 16 52 33 15

assignedtoNH3+andtotheemergenceofanewpeakappearedat

400.7eV,assignedtoCO–N–COandN–CO–O(Table3).

Ascomparedtoits N-phthaloylchitosan2 precursor,the O-alkynylderivative3presenteda decreasein thepercentagesof carbonand oxygenalong withasmall increasein the percent-age of nitrogen, compatible with insertion of propargylamine. TheresolvedC1sspectrumof3revealedtwonewpeaks:oneat 283.7eV, assigned tothealkyne group(C C), and theother at 289.2eVascribedtothecarbamategroup(N–CO–O).Thedecrease of thepeak relative intensityat 286.4eV wascompatible with partialmodificationoftheC–OHtype carbons.For theO1s sur-faceatomic percentage,there wasa smallincrease of thepeak at531.6eV,duetoN–C Ofromthecarbamatebondformed.In theresolvedN1sspectrum,theexpectedincreaseofthepeakat 400.7eV, ascribed tothe carbamate group (N–CO–O), wasalso observed.

XPS analysis of N-phthaloyl-chitosan O-(11-amino-3,6,9-undecan)triazolyl carbamate (4) showed a decrease in the percentagesofcarbonandoxygenandconcomitantincreaseinthe percentageofnitrogen,supportingtheoccurrenceofthedesired azide–alkynecouplingtoyieldatriazolestructure.WhentheC1s spectrumof4iscomparedtothatofitsprecursor3,thecarbon peakat283.7eVdisappears,whichbyitselfdemonstratesthe con-versionoftheC Cgroupintosomethingdifferent.Furthermore, anincreaseofthepeakat286.4eVcanbeascribedtotheinsertion ofadditionalC–O–Ctypecarbons,present inthePEG-likechain fromtheazideusedinthecycloaddition.Thiswasalsoobservedin theresolvedO1sspectrum,frompeaksat532.8eVand534.0eV, duetoC–O–CandO–C–Obonds,respectively,whichincreaseupon insertionof thePEG-likechain. Forthe resolvedN1sspectrum, thepeakat401.8eV,duetoNH3+,reappearsasaconsequenceof insertionoftheamino-terminatedligand.

Finally,XPSanalysisrevealedthatthedephthaloylation reac-tiontogivepolymer5ledtoadecreaseintheatomicpercentage ofcarbonalongwithanincreaseintheatomicpercentageofall theotherelements,asexpectedfromtheremovalofthephthaloyl group. This interpretation was supported by the almost com-plete disappearanceof the peak at 285eV (C C type carbons) togetherwithaclearincreaseintherelativeintensityofthepeakat 286.4eV(C–O–C+C–NH2typecarbons).IntheresolvedO1s spec-trum,theexpecteddecreaseofthepeakat531.6eVascribedto

CO–N–COwasobserved,duetophthaloylremoval.Fortheresolved N1sspectrum,onlychangesonrelativeatomicpercentageswere observed, since thetypes ofnitrogen atoms already present in precursor 4 remained the same after dephthaloylation to give 5.

3.2. Analysisofchitosan(1)anditsderivatives(2–5)byFT-IR FT-IRwasalsousedtomonitorthestructuralchangescaused bythestepwisechemicalmodificationofchitosan(1)alltheway throughintermediatepolymers2–4untilthefinalcationicpolymer 5.TheobtainedinfraredspectraarethusdisplayedinFigs.2and3. TheIRspectrum(Fig.2)ofunmodifiedchitosan(1)presented theexpectedcharacteristicbands(Gomes,Gomes,Batista,Pinto, &Silva,2008),like:broadintensebandat3450–3200cm−1 due tooverlappingcontributions ofdifferenthydrogen-bondedX–H stretchingvibrations,asO–Hstretchingat3426cm−1,NH2 asym-metricstretchingat3377cm−1andN–Hstretchingat3303cm−1; C–Hstretchingat2878cm−1;characteristicvibrationmodesfrom GlcNHAcunits,asamideIat1656cm−1(C Ostretchingfrom

sec-Fig.2.FT-IRspectra(KBrpellets)of(1)unmodifiedchitosanand(2)N-phthaloyl chitosanpowders.

(7)

Fig.3. FT-IRspectra(KBrpellets)of(3)N-phthaloyl-chitosanO-prop-2-ynyl car-bamate,(4)N-phthaloyl-chitosanO-(11-amino-3,6,9-undecan)triazolylcarbamate and(5)chitosanO-(11-amino-3,6,9-undecan)triazolylcarbamatepowders.

ondaryamides),amideII(inplaneN–Hdeformationcoupledwith C–Nstretchingfromsecondaryamides)andtheN–Hbendingofthe primaryamineat1597cm−1,amideIIIat1322cm−1(C–N stretch-ing)and –CH3 symmetricalangular deformation at1378cm−1; O–H planedeformation(primaryalcohol)at 1421cm−1; C–O–C stretching vibration in the glucopyranose ring at 1032cm−1; and the specific bands of the ˇ(1–4) glycoside bridge at 1153 and 897cm−1 (Socrates, 2001). The IR spectrum (Fig. 2) of N-phthaloylchitosan(2)displayedadditionalpeakswithrespectto theunmodifiedchitosan,characteristicofthephthalimidegroup (Socrates,2001)inserted:twoC Ostretchingbandsat1778and 1709cm−1 andimideC Cstretchingat1551cm−1; C–Houtof planedeformationat720cm−1andaromaticringdeformationat 530cm−1 from thearomaticringof thephthaloylgroup.These observationswereinagreementwithpreviouslyreporteddataon similarN-phthaloylchitosanderivativesdevelopedbyKuritaetal. (2002).

TheIRspectrum(Fig.3)ofN-phthaloyl-chitosanO-prop-2-ynyl carbamate, 3, herein proposed as a novel “clickable” chitosan, exhibitedthefollowingadditionalpeaks: C–Hstretching vibra-tion at 3291cm−1 and C C stretching vibration at 2122cm−1, typicalofmonosubstitutedalkynes(Socrates,2001);absorption due to CHN group (N–H deformation and C–N stretching) at 1530cm−1 and coupled C–N and C–O stretching vibration at 1251cm−1, from the carbamate group. These features were in complete agreementwithformation ofN-phthaloyl-chitosan O-prop-2-ynylcarbamate,3.

Afterreactingpolymer3withthePEG-likeazide under clas-sicalazide–alkynecouplingconditions,thetriazolylderivative4 wasobtained,whoseFT-IRspectrum(Fig.2)displayedtworelevant changes,ascomparedtoitsprecursor(3);abandat830cm−1, char-acteristicofN–C Ninplanebending(Krishnakumar&JohnXavier, 2004),arisingfromformationofthetriazolering;additional evi-denceoftheoccurrenceoftheazide–alkynecouplingwasprovided bythedisappearanceofthetypicalmonosubstitutedalkyne vibra-tionmodesat3291cm−1 ( C–Hstretching)and2122cm−1 (C C stretching).Giventhestructuralnatureoftheazideusedinthe cycloaddition, i.e.,ofits 3,6,9-trioxaundecan-1-aminebackbone, alladditionalvibrationmodesfromthis backbonewere expect-edlyoverlappedtosimilarmodesalreadypresentontheprecursor polymericmatrix.

Finaldeblockingoftheprimaryaminesbydephthaloylationled to5, whose FT-IRspectrum (Fig.2)revealed theexpected fea-tures,i.e.,disappearanceoftheaforementionedphthaloyl-related

bands,i.e.,C Ostretchingabove1700cm−1,imideC C stretch-ingat∼1550cm−1; C–Houtofplanedeformationat720cm−1 andaromaticringdeformationat530cm−1andaswelldescribe previouslytheappearanceofthepeakcharacteristicofNH2 asym-metricstretchingat3368cm−1withpreservationoftheremaining spectralfeatures.

Overall,FT-IRanalysisofthefivepolymerswasinagreement withXPS-derived data,providing further confirmation that the chemicalroutedepictedonScheme1wassuitabletointroduce thedesiredmodificationsontochitosan.

3.3. Characterizationofpolymers1–5bySSNMR

Duetoitsabilitytoprobe locallyand selectivelythe chemi-calenvironmentofeachcarbonnucleus,SSNMRspectroscopywas usedtounambiguouslyidentifyeachchitosanderivativewithhigh accuracy.Fig.4showstheensembleoftheSSNMRresultsusing the13C-CP/MASNMRmethod.The13C-CP/MASNMRspectrumof 1 (Fig. 4a) showsthat the startingbiopolymer has, as itsmain component, chitosan residues identified by the 13C resonances observedatcarbonchemicalshifts,ı105.4(C1),57.2(C2),75.1 (C3, C5), 83.1(C4)and 60.8 (C6) ppm. Twoadditional 13C res-onancesmaybeobservedat ı∼173.7and 23.5ppm, whichare assignedtothecarbonyl(C7)andmethyl(C8)functionalgroups typicallypresentinthechitinskeleton. Uponreactionof1with phthalicanhydride,polymer2wasobtained(Scheme1).The struc-tureofpolymer2maybeeasilyconfirmedbytheobservationof three13CresonancestypicaloftheN-phthaloylsubstituent appear-ingatı∼168.9,134.7,131.0and123.4ppm,whichcorrespondto theC7,C10,C8andC9carbonatoms,respectively(Fig.4b),and agreeswithdatapreviouslyreported(Kuritaetal.,2002).Theacetyl 13Cresonancesfromchitinmaystillbeobserved(C7).Polymer 3, obtainedaftercoupling 2 withpropargylamine,maybe also straightforwardlydetected,bythepresenceofthe13Cresonances typicalofthepropargylsubstituent(RgroupinFig.4c).For exam-ple,13Cpeaksobservedatı157.0and30.7ppmareassignedto theamidecarbonyl[C(1)]andtotheN–CH2carbon[C(2)], respec-tively.Thecarbonsinvolvedinthetriplebondaresuperimposed withthe13C resonancesfromthechitosanskeletonobservedin theregionbetweenı∼70and85ppm,hamperingtheirindividual assignment.

SSNMRalsoconfirmedthatpolymer 3wasconverted into4 throughtheHuisgen’s1,3-dipolarcycloadditionperformed,with concomitantformationofatriazoleringatpositionsC6andC6. Thisisclearlyshownbythe13Cresonancesatı50.9,40.1and 36.8ppm,whichdonotappearintheprevious13C-CP/MASNMR spectraof1–3(Fig.4a–c).Thesethreeresonancesareassignedto C[5],C[2]andC[7]carbonsfromthetriazolesubstituent(R1).Itis worthmentioningthattwoadditional13CpeaksfromtheR

1 moi-ety,resonatingatı∼156.7and145.4ppm,arealsoobservedat higherchemicalshifts.TheformerpeakisassignedtotheC O(C[1]; 156.7ppm)fromtheR1 side-chaininconfigurationA,whilethe latterresonanceisassignedtotheC O(C[3]*;145.4ppm),which belongtotheR1substituentfollowingthearrangementadoptedin configurationB(Fig.4d).SSNMRwas,thus,theonlymethodthat allowedtodiscriminatebetweenbothconfigurationsexistentin polymer4.Thisfactisaconsequenceofthetwopossible orien-tationsatwhichtheazide-alkynecycloadditionmaytakeplace, i.e.,theformationofboth the1,4and1,5cycloaddition adducts (Kolb,Finn&Sharpless,2001;Meldal&Tomøe,2008).This par-ticularfindingfurtherdemonstratestheoccurrenceofthedesired cycloaddition,whichconvertedtheO-alkynylatedchitosan3into theO-triazolylconjugate4.

Finally, SSNMR analysis of polymer 5 showed that the N-phthaloylprotectinggroup,presentin4,wasremovedasdesired.

(8)

Fig.4.SSNMRspectraofa)unmodifiedchitosan1,b)N-phthaloyl-chitosan2,c)N-phthaloyl-chitosanO-prop-2-ynylcarbamate3,d)N-phthaloyl-chitosan O-(11-amino-3,6,9-undecan)triazolylcarbamate4ande)chitosanO-(11-amino-3,6,9-undecan)triazolylcarbamate5.Selectedcarbonassignmentsaccordingtonumberinggiventostructures shownontheright.Asterisksdepictspinningsidebands.

Completeremovalofthisgroupmaybeconfirmedbythe disap-pearanceof thefour13C resonances(C7–10)atı168.9,131.0, 123.4and134.7ppm(Fig.4b–d).The13Cspectrumof5is essen-tiallythesameasthe13Cspectrumof1excludingtheadditional

peaksobservedin5(Fig.4e)duetotheR1substituent.Noticethat theanomericcarbon(C1)resonancesobservedinthespectrumof thechitosanmonomerin1and5(cf.Fig.4aandeemphasizedbythe reddashedline)havethesamechemicalshifts,whileinalltheother

(9)

13Cspectra(Fig.4b–d)thechemicalshiftpositionofC1carbonsare slightlyshiftedtohigherfieldsduetotheeffectoftheN-phthaloyl protectinggroupattachedtothenearbyC2carbonatom.

Inconclusion,itisdemonstratedthatthefinalpolymer,5,is obtainedfreeofanydetectableimpurities,bearingitsR1groupin twodifferentconfigurationsandhavinganaminegroupatposition C2,whichprovesthat5nolongercontainstheN-phthaloylamine protectinggroupatthatposition.

4. Concludingremarks

Straightforwardchemistrywasemployedforthesynthesisof N-phthaloyl-chitosanO-prop-2-ynylcarbamate,proposedasanovel polymer that may be conjugatedto other [bio]molecules by a chemoselectiveazide-alkynecoupling,whilepreserving bioadhe-sionandpH-dependentpropertiesassociatedtochitosan’sprimary amines. This polymer was then conjugated, by means of the Huisgen’s1,3-dipolarcycloaddition(azide-alkynecoupling)with amodelazide(PEG-like azide),producing astabletriazole link-agecompatiblewithsubsequentremovaloftheamine-protecting group,torecovertheoriginalchitosan’sprimaryaminesthatare responsibleformanyoftheattractivefeaturesofthisbiopolymer. Thestructuresofallstarting,intermediateandfinalmaterialswere characterizedandconfirmedbymeansofdifferentanalysis tech-niques,i.e.,XPS,FT-IRandSSNMR,alloftheminperfectagreement witheachother.

Thelowsolubilityofthepolymersobtainedineitheraqueous ororganicmediagivesthempotentialfortopicalapplications,e.g., treatmentofinfectedskinwounds(Batista,Gallemí,Adeva,Gomes, &Gomes, 2009;Dai,Tegos,Burkatovskaya,Castano,&Hamblin, 2009) or transdermal gene delivery (Özbas¸-Turan, Akbu˘ga, & Sezer,2010)orimmunization(Prabuh,Sundaramoorthi,Selvaraju, & Tamilselvi, 2011). Properly modified insoluble chitosans are alsointerestingfor removaloftoxic substancesfromeitherthe body(Park,Kwon,Choi,&Kim,2000)orenvironmentalsources (Bhatnagar&Sillanpää,2009).

Thereisagrowingnumberofcommerciallyavailablemolecules bearing an azide moiety for click conjugations. So, a chitosan derivativeas N-phthaloyl-chitosan O-prop-2-ynyl carbamate, 3, mayserveasapolymertemplateforchemoselectivecouplingto anyazide,fortailoredapplicationsandproperties.

Acknowledgments

TheauthorsthankFundac¸ãoparaaCiênciaeTecnologia(FCT, Portugal)andFEDER(EuropeanUnion)forco-fundingthisproject (ref. PTDC/CTM/65330/2006 and ref. FCOMP-01-0124-FEDER-007135).PGthanksFCTforpluri-annualfundingtoResearchUnit CIQUP.LMacknowledgesFCTforfinancingthePortugueseNMR network(ref.REDE/1517/RMN/2005)and theproject PTDC/QUI-QUI/100998/2008,which allowedtheuseof theNMR facilities, efficiently.TheauthorsarealsoindebtedtoDrs.CristinaBarrias (INEB)andEliandredeOliveira(ParcCientíficdelaUniversitatde Barcelona,Spain)forcollaborationinmolecularweightanalysisby HP-SECandMALDI-TOFMS,respectively.

References

Amaral,I.F.,Granja,P.,&Barbosa,M.A.(2005).Chemicalmodificationofchitosan byphosphorylation:anXPS,FT-IRandSEMstudy.JournalofBiomaterialsScience, PolymerEdition,16,1575–1593.

Amaral,I.F.,Lamghari,M.,Sousa,S.R.,Sampaio,P.,&Barbosa,M.A.(2005).Ratbone marrowstromalcellosteogenicdifferentiationandfibronectinadsorptionon chitosanmembranes:theeffectofthedegreeofacetylation.JournalofBiomedical MaterialsResearch,75A,387–397.

Anitha,A.,Deepa,N.,Chennazhi,K.P.,Nair,S.V.,Tamura,H.,&Jayakumar,R.(2011). Developmentofmuchoadhesive,thiolatedchitosannanoparticlesfor biomedi-calapplications.CarbohydratePolymers,83,66–73.

Batista,M.K.S.,Gallemí,M.,Adeva,A.,Gomes,C.A.R.,&Gomes,P.(2009).Facile regioselectivesynthesisofanovelchitosan–pexigananconjugatewithpotential interestforthetreatmentofinfectedskinlesions.SyntheticCommunications,39, 1228–1240.

Batista,M.K.S.,Pinto,L.F.,Gomes,C.A.R.,&Gomes,P.(2006).Novelhighly-soluble peptide-chitosanpolymers:synthesisandspectralcharacterization. Carbohy-dratePolymers,64,299–305.

Beamson,G.,&Briggs,D.(1992).HighResolutionXPSofOrganicPolymers:TheScientia ESCA300Database.NewYork(USA):JohnWiley&Sons.

Bennett,A.E.,Rienstra,C.M.,Auger,M.,Lakshmi,K.V.,&Griffin,R.G.(1995). Het-eronucleardecouplinginrotatingsolids.TheJournalofChemicalPhysics,103, 6951–6958.

Berger,J.,Reist,M.,Mayer,J.M.,Felt,O.,&Gurny,R.(2004).Structureandinteractions inchitosanhydrogelsformedbycomplexationoraggregationfor biomedi-calapplications.EuropeanJournalofPharmaceuticsandBiopharmaceutics,57, 35–52.

Berger,J.,Reist,M.,Mayer,J.M.,Felt,O.,Peppas,N.A.,&Gurny,R.(2004).Structure andinteractionsincovalentlyandionicallycrosslinkedchitosanhydrogelsfor biomedicalapplications.EuropeanJournalofPharmaceuticsand Biopharmaceu-tics,57,19–34.

Bhatnagar,A.,&Sillanpää,M.(2009).Applicationsofchitin-andchitosan-derivatives forthedetoxificationofwaterandwastewater:ashortreview.Advancesin ColloidandInterfaceScience,152,26–38.

Brugnerotto,J.,Lizardi,J.,Goycoolea,F.M.,Argüelles-Monal,W.,Desbrières,J.,& Rinaudo,M.(2001).Aninfraredinvestigationinrelationwithchitinandchitosan characterization.Polymer,42,3569–3580.

Cabrera,J.C.,&VanCutsem,P.(2005).Preparationofchitooligosaccharideswith degreeofpolymerizationhigherthan6byacidorenzymaticdegradationof chitosan.BiochemicalEngineeringJournal,25,165–172.

Chinchilla,R.,&Nájera,C.(2007).TheSonogashirareaction:aboomingmethodology insyntheticorganicchemistry.ChemicalReviews,107,874–922.

Chirachanchai, S., Lertworasirikul,A., &Tachaboonyakiat, W.(2001). Carbaryl insecticideconjugationontochitosanviaiodochitosanandchitosancarbonyl imidazolideprecursors.CarbohydratePolymers,46,19–27.

Crompton,K.E.,Goud,J.D.,Bellamkonda,R.V.,Gengenbach,T.R.,Finkelstein, D. I., Horne, M. K., et al. (2007). Polylysine-functionalised thermore-sponsive chitosanhydrogelforneural tissueengineering.Biomaterials, 28, 441–449.

Dai,T.,Tegos,G.P.,Burkatovskaya,M.,Castano,A.P.,&Hamblin,M.R.(2009). Chi-tosanacetatebandageasatopicalantimicrobialdressingforinfectedburns. AntimicrobialAgentsandChemotherapy,53,393–400.

Elkholy,S.S.,Khalil,K.D.,&Elsabee,M.Z.(2011).Graftingofacryloyl cyanoaceto-hydrazideontochitosan.JournalofPolymerResearch,18,459–467.

Gomes,P.,Gomes,C.A.R.,Batista,M.K.S.,Pinto,L.F.,&Silva,P.A.P.(2008).Synthesis, structuralcharacterizationandpropertiesofwater-soluble N-(␥-propanoyl-aminoacid)-chitosans.CarbohydratePolymers,71,54–65.

Holappa,J.,Hjálmarsdóttir,M.,Másson,M.,Rúnarsson,Ö.,Asplund,T.,Soininen, P.,etal.(2006).AntimicrobialactivityofchitosanN-betainates.Carbohydrate Polymers,65,114–118.

Holappa, J., Nevalainen, T., Soininen, P., Másson, M., & Järvinen, T. (2006). Synthesis of novel quaternary chitosan derivatives via N-chloroacyl-6-O-triphenylmethylchitosans.Biomacromolecules,7,407–410.

Iqbal,J.,Sarti,F.,Perera,G.,&Bernkop-Schnürch,A.(2011).Developmentand invivoevaluationofanoraldrugdeliverysystemforpaclitaxel.Biomaterials, 32,170–175.

Kolb,H.C.,Finn,M.G.,&Sharpless,K.B.(2001).ClickChemistry:diversechemical functionfromafewgoodreactions.AngewandteChemieInternationalEdition,40, 2004–2021.

Krishnakumar,V.,&JohnXavier,R.(2004).FTRamanandFT-IRspectralstudiesof 3-mercapto-1,2,4-triazole.SpectrochimicaActa–PartA:MolecularandBiomolecular Spectroscopy,60,709–714.

Kulbokaite,R.,Ciuta,G.,Netopilik,M.,&Makuska,R.(2009).N-PEGylationofchitosan viaclickreactions.ReactiveandFunctionalPolymers.,69,771–778.

Kurita,K.,Ikeda,H.,Yoshida,Y.,Shimojoh,M.,&Harata,M.(2002).Chemoselective protectionoftheaminogroupsofchitosanbycontrolledphthaloylation:facile preparationofaprecursorusefulforchemicalmodifications.Biomacromolecules, 3,1–4.

Kurita,K.,Yoshida,Y.,&Umemura, T.(2010).Finelyselectiveprotectionsand deprotectionsofmultifunctionalchitinandchitosantosynthesizekey inter-mediatesforregioselectivechemicalmodifications.CarbohydratePolymers,81, 434–440.

Lahann,J.(2009).ClickChemistryforBiotechnologyandMaterialsScience.Chichester (UK):JohnWiley&Sons.

Lallana,E.,Fernández-Megía,E.,&Riguera,R.(2009).Surpassingtheuseofcopper intheclickfunctionalizationofpolymericnanostructures:astrainpromoted approach.JournaloftheAmericanChemicalSociety.,131,5748–5750.

Li,X.,Yuan,W.,Gu,S.,&Re,J.(2010).Synthesisandself-assemblyoftunable thermosensitivechitosanamphiphiliccopolymersbyclickchemistry.Materials Letters,64,2663–2666.

Makuˇska,R.,&Gorochovceva,N.(2006).Regioselectivegraftingofpoly(ethylene glycol)ontochitosanthroughC-6positionofglucosamineunits.Carbohydrate Polymers,64,319–327.

Meldal,M.,&Tomøe,C.W.(2008).Cu-catalyzedazide-alkynecycloaddition. Chem-icalReviews,108,2952–3015.

Molnár,E.,Barbu,E.,Lien,C.-F.,Górecki,D.C.,&Tsibouklis,J.(2010).Towarddrug deliveryintothebrain:synthesis,characterization,andpreliminaryinvitro

(10)

assessmentofalkylglyceryl-functionalizedchitosannanoparticles. Biomacro-molecules,11,2880–2889.

Montalbetti,C.A.G.N.,&Falque,V.(2005).Amidebondformationandpeptide coupling.Tetrahedron,61,10827–10852.

Muzzarelli,R.A.A.(1988).Carboxymethylatedchitinsandchitosans.Carbohydrate Polymers,8,1–21.

Muzzarelli,R.A.A.(2009).Chitinsandchitosansfortherepairofwoundedskin, nerve,cartilageandbone.CarbohydratePolymers,76,167–182.

Muzarelli,R.A.A.(2011).Chitosancompositeswithinorganics,morphogenetic proteinsandstemcells,forboneregeneration.CarbohydratePolymers, 83, 1433–1445.

Oh,J.K.,Lee,D.I.,&Park,J.M.(2009).Biopolymer-basedmicrogels/nanogelsfor drugdeliveryapplications.ProgressinPolymerScience,34,1261–1282. Önal,S.,&Telefoncu,A.(2003).ComparisonofchitinandamberliteIRA-938for

a-galactosidaseimmobilization.ArtificalCells,BloodSubstitutes,andBiotechnology, 31,19–33.

Özbas¸-Turan,S., Akbu˘ga,J.,&Sezer, A.D.(2010).Topicalapplication of anti-senseoligonucleotide-loadedchitosannanoparticlestorats.Oligonucleotides, 20,147–153.

Park,S.O.,Kwon,O.S.,Choi,C.W.,&Kim,C.-J.(2000).Glucosamine-mediated detox-ificationofp-benzoquinoneanditsremovalbychitosan.BiotechnologyLetters, 22,21–24.

Prabuh,K.,Sundaramoorthi,V.,Selvaraju,C.K.,&Tamilselvi,K.K.N.(2011).Topical immunizationandtheuseofchitosanascarrier.InternationalJournalofResearch inAyurvedaandPharmacy,2,90–94.

Shen,X.,Ji,Y.,Yang,Q.,&Zheng,X.(2007).Preparation,characterization,and rhe-ologicalpropertiesofdibutyrylchitin.JournalofMacromolecularScienceB,49, 250–258.

Socrates,G.(2001).InfraredandRamanCharacteristicGroupFrequenciesTablesand Charts(3rdedition).NewYork(USA):JohnWiley&Sons,Ltd.

Rúnarsson,Ö.,Holappa,J.,Jónsdóttir,S.,Steinsson,H.,&Másson,M.(2008). N-selective‘one-pot’synthesisofhighlysubstitutedtrimethylchitosan(TMC). CarbohydratePolymers,74,740–744.

Rúnarsson,Ö.,Holappa,J.,Malainer,C.,Steinsson,H.,Hjálmarsdóttir,M.,Nevalainen, T.,etal.(2010).AntibacterialactivityofN-quaternarychitosanderivatives: syn-thesis,characterizationandstructureactivityrelationship(SAR)investigations. EuropeanPolymerJournal,46,1251–1267.

Wan,A.,Gao,Q.,&Li,H.(2010).Effectsofmolecularweightanddegreeof acetyla-tiononthereleaseofnitricoxidefromchitosan-nitricoxideadducts.Journalof AppliedPolymerScience,117,2183–2188.

Yuan,W., Li, X.,Gu, S., Cao,A., & Ren,J. (2011).Amphiphilic chitosan graft copolymerviacombinationofROP,ATRPandclickchemistry:synthesis, self-assembly,thermosensitivity,fluorescence,andcontrolleddrugrelease.Polymer, 52,658–666.

Yuan,W.,Zhao,Z.,Gu,S.,&Ren,J.(2010).Synthesis,characterization,andproperties ofamphiphilicchitosancopolymerswithmixedsidechainsbyclickchemistry. JournalofPolymerScienceA,48,3476–3486.

Yuan,W.,Zhao,Z.,Gu,S.,Ren,T.,&Ren,J.(2011).Synthesisandself-assemblyof pH-responsivechitosangraftcopolymerbythecombinationofatomtransfer radicalpolymerizationandclickchemistry.MaterialsLetters,65,793–796. Zhang,J.,Li,C.,Xue,Z.-Y.,Cheng,H.-W.,Huang,F.-W.,Zhuo,R.-X.,etal.(2011).

Fab-ricationoflactobionic-loadedchitosanmicrocapsulesaspotentialdrugcarriers targetingtheliver.ActaBiomaterialia,7,1665–1673.

Referências

Documentos relacionados

“A própria sociedade se "droga” com as “drogas”, criando sua toxicomania, Buscando escapar, sobretudo, de problema sócios estruturais-culturais muito

Para a variável valor não se demonstraram ser relevantes as relações que se estabeleceram com o curso e IES frequentados (Tabela 8). e as IES privadas obtiveram a média mais

In this work, we report the synthesis and characterization of gold nanoparticles (AuNPs) stabilized with chitosan (Chit), as well as the capability of this material to form multilayer

The objective of this work was to evaluate the applicability of an enzymatic method to quantify glucose and sucrose in solution with chitosan, minimizing the effects of the chitosan

Based on the vulnerability curves presented in Figure 8 , it is possible to observe that a building with a vulnerability index value higher than 51, a common value either for

Por outro lado, as fases tardias da vida podem constituir momentos para a exploração de contextos até então inexplorados e para a integração de novos vínculos

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Therefore, the results of the use of chitosan in the manufacture of goat sausages, which was studied for the first time, indicated that the chitosan and modified chitosan