• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número4"

Copied!
5
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Amazon

emulsions

as

cavity

cleansers:

antibacterial

activity,

cytotoxicity

and

changes

in

human

tooth

color

Cristiane

Coelho

De

Bari

a

,

Fábio

Sampaio

b

,

Nikeila

Conde

a

,

Luanny

Moura

a

,

Valdir

Veiga

Júnior

c

,

Gleyce

Barbosa

d

,

Marne

Vasconcellos

d

,

Carina

Toda

a

,

Gisely

Venâncio

a

,

Maria

Fulgência

Bandeira

a,∗

aFaculdadedeOdontologia,UniversidadeFederaldoAmazonas,Manaus,AM,Brazil

bDepartamentodeOdontologiaClínicaeSocial,LaboratóriodeBioquímicaeMicrobiologiaOral,CentrodeCiênciasdaSaúde,UniversidadeFederaldaParaíba,JoãoPessoa,PB,Brazil

cDepartmentodeQuímica,InstitutodeCiênciasExatas,UniversidadeFederaldoAmazonas,Manaus,AM,Brazil

dFaculdadedeCiênciasFarmacêuticas,UniversidadeFederaldoAmazonas,Manaus,AM,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received10October2015 Accepted1March2016 Availableonline21May2016

Keywords:

Dentistry Emulsions Cytotoxicity Fabaceae Phytotherapy

a

b

s

t

r

a

c

t

Thecopaibaoleoresin,CopaiferamultijugaHayne,Fabaceae,isaphytotherapeuticagentwith

antimicro-bialactivity.Thisstudyevaluatedtheantibacterialactivityandcytotoxicityof,andtoothcolorchanges

causedbyfourcopaibaoilemulsions(Emulsion1,10%CM;Emulsion2,10%C.multijuga+1%biotech

product;Emulsion3,30%C.multijuga;andEmulsion4,30%C.multijuga+1%biotechproduct).The

antibac-terialactivitiesagainstmicroorganismscausingdentalcaries(StreptococcusmutansATCC25175,S.oralis

ATCC10557,S.salivariusATCC7073,andLactobacilluscaseiATCC7469)weretestedusingthree

param-eters:minimuminhibitoryconcentration,minimumbactericidalconcentration,andcellviabilityby

fluorescencemicroscopy.Theemulsionswereassessedforcytotoxicitybymeansofthehemolyticassay

andcellculture(murinefibroblastcellsNHI3T3)usingAlamarBlueTM.Thedentincolorchangecaused

bytheemulsionswasexaminedat10s,30s,and10min.Theemulsionsshowedantibacterialactivity

againstthemicroorganismstestedwithanMICof125␮l/ml.Theminimumbactericidalconcentration

washigherthanminimuminhibitoryconcentrationforthetestedmicroorganismandthefluorescence

confirmedthatthecellswereviableatminimuminhibitoryconcentrationvalues.Theemulsionshada

hemolyticactivityof71.16%(Emulsion3)and44.67%(Emulsion4)ataconcentrationof30␮l/ml.Incell

cultureassay,NHI-3T3cellstreatedwiththeemulsionsshowed6–16%viability.Emulsion1caused

clin-icallyimperceptiblecolorchangeindentinat10s(E=3.21),Emulsion2at30s(E=2.70)and10min

(E=3.08),andEmulsion4at10min(E=3.03).Emulsion3causedcolorchangeatalltimestested.This

researchdocumentedpositivedataregardingantibacterialactivity,cytotoxicity,andtoothcolorchanges

whenusingcopaibaoleoresinemulsions,showingitspotentialforuseindentistry.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen

accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Copaiba(Copaifera multijuga Hayne, Fabaceae) oleoresin has greatsocialandeconomicvalueinphytotherapyespeciallyinthe Amazonregion,whereitisnativeandwidelyusedasan antibac-terial,anti-inflammatory,anesthetic,andantitumoragent,andfor healingwounds(Bandeiraetal.,1999;VeigaJunioretal.,2007; Vasconcelosetal.,2008).

Cariesisoneofthemaindentaldiseasesaffectinghumanity.It isconsideredamultifactorialdiseasethatinvolvesbehavioraland

∗ Correspondingauthor.

E-mail:fulgencia@ufam.edu.br(M.F.Bandeira).

social factorscoupledwithinteractions amongmicroorganisms, host,anddiet(FejerskovandKidd,2011).

Theprocessofcariesoccurswhenmicroorganismslike Strepto-coccusmutans,S.oralis,S.salivarius,andLactobacilluscasei,present inbiofilmordentalplaque,producemetabolitesthatcause fluctua-tionsinpH.Theresultismineraltoothlossandformationofdental cavity(Kidd,2011).

Theuseofrotarytoolsduringtherestorationproceduresand afterestablishmentofthecavitylesion,resultsintheformation ofasmearlayer.Thelayerconsistsofsaliva,blood,bacteria,and residueoilsofrotaryinstruments.Thesmearlayerisremovedby theapplicationofcleaning agent,whichsubstantially decreases the cariogenic microorganisms and prevents the recurrence of caries. The procedure reduces the occurrence of microleakage restorations and thus, reduces the possibility of postoperative

http://dx.doi.org/10.1016/j.bjp.2016.03.010

(2)

sensitivity,marginalstaining,marginalfractures,andinjuriesto thepulp–dentincomplex(ReisandLoguercio,2007).

Thegoalofthestudywastoevaluatetheuseofcopaibaoleoresin emulsionsascavity cleansers and determinetheirantibacterial activityandcytotoxicityasreportedintheliteraturefordifferent bioactiveAmazonianproductsthathaveimportantdentistry func-tionsagainstperiodontaldiseasesanddentalcaries(Souzaetal., 2011a,2011b;Pierietal.,2012).

Materialsandmethods

Collectionofcopaibaoleoresinandbiotechproduct(BP)

CopaiferamultijugaHayne,Fabaceae(CM),wascollectedatthe AdolphDuckeReserve,atManaus,Amazonasstate(Brazil),and catalogedunderN◦69bytheInstitutoNacionaldePesquisasda

Amazônia(INPA).Oncetheplantmaterialwasidentified,avoucher specimenwasdepositedintheINPAherbariumunderthe regis-trationN◦270709.Thebiotechproduct(BP)wasextractedfroma

naturalpitchoftheBurseraceaefamily.

Identificationofchemicalsandemulsionsformulation

Identificationof copaiba components wasperformedby gas chromatographycoupledwithaflameionizationdetector(GC-FID) andgaschromatographycoupledwithmassspectrometricdetector (GC-MSD)(Vasconcelosetal.,2008).

Fourtest emulsionswith differentconcentrations (Emulsion [EM]1,10%CM;EM2,10%CM+1%BP;EM3,30%CM;andEM4,30% CM+1%BP)andapH=∼4.598wereformulatedattheSchoolof Den-tistry,FederalUniversityofAmazonas,followingtherequirements oftheBrazilianPharmacopoeia(Brasil,2010).Theemulsions,which arecurrentlyunderthepatentregistrationprocess,werecomposed ofdistilledwater(DW),Tween®80(Merck,Germany),CM,andBP.

The experiments were carried out after approval from the FederalUniversity of Amazonas/Institutional EthicalCommittee (number0312.0.115.000-08/2009).

Antibacterialactivity

S. mutans (ATCC25175), S. oralis (ATCC10557), S. salivarius (ATCC7073), and L. casei (ATCC7469) were used for assessing antibacterial activity. The microorganisms were reactivated in BrainHeartInfusionbroth(BHI, Himedia,Mumbai,IN),at37◦C

for24hinaerophiliafor S.oralis, S.salivarius, andL. casei, and in a microaerophilia for S. mutans. Inoculants were standard-ized at #0.5 McFarland scale (Probac of Brazil, São Paulo, SP, BR).

Minimuminhibitoryconcentration(MIC)andminimum bactericidalconcentration(MBC)

TheMICof test emulsionswasdeterminedaccordingtothe methoddescribedbyCLSI(2007),Andrews(2001),andSampaio etal.(2009).Theemulsionsweredilutedin1:1ratiowithdimethyl sulfoxide(DMSO)(Vetec,Germany)toformastocksolution(SS). The2%chlorhexidinedigluconate(FGM–Joinville,SC,Brazil)was usedasapositivecontrolandtheemulsionvehicle(Tween®80)

wasusedasanegativecontrol.

Copaibaemulsionsweredilutedandaddedto96-wellplates with each well containing 100␮l of differing concentrations (400–125␮l/ml). A volume of inoculum (20␮l) standardized at 108CFU/ml and complemented with BHI was added. The

1st plate column represented the sterility test substance (medium+emulsion). The 12th column represented the bacte-ria viability (bacteria+medium). The antibacterial activity of

each emulsion was tested in triplicate. The well plates were sealed with parafilm after filling and incubated at 37◦C for

24h. After 24h, 30␮l of 0.01% resazurin(Sigma Aldrich, USA) was added and the plates were incubated for another 30min. Absence of color change was interpreted as microorganism sensitivity to the tested emulsion during the reading of the plates. For MBC, 100␮l of copaiba oil emulsions was placed in the wells at different concentrations, plated on BHI agar, and incubated at 37◦C under microaerophilic and aerophilic

conditions. Testing of microorganisms was performed after 24h.

Cellviabilityanalysisbyfluorescencetechnique

Theeffectoncellviabilityfor emulsionsthat showedbetter MBC(EM3 andEM4)wasdeterminedaccordingtofluorescence techniqueagainstS.mutans(ATCC25175)andL.casei(ATCC7469) (Filocheetal.,2007).

Initially,thedilutionofthetestemulsions(DTE)wasperformed byadding1mlofemulsion+1mlofTween® 80+1mlofDMSO.

TheDTEwasfurtherdilutedformingthreesolutions:SS1:500␮l ofDTE+500␮lofBHI;SS2:500␮lofDTE+2500␮lof BHI;and SS3:500␮lofDTE+4500␮lofBHI.TheMICofthesolutionswas between4.5and120␮l/ml.

The reading of cell viability was performedby fluorescence techniqueusingtheLive/Dead®BacLightTMBacterialViabilityKit

L13152(MolecularProbes,Eugene,USA).Inthissystem,viablecells withoutwalldamagearestainedgreen(ComponentA:SYTO9)and cellswithdamagetothecellmembranearestainedred (Compo-nentB:propidiumiodide).

Forthepreparationofbacterialsuspensions,tubeswereused toidentifyviableandnon-viablebacteriaand3mlofBHIbroth containingtheinoculantaccordingtothetestmicroorganismswas added.Thepreparationswerecentrifugedfor15minandthe super-natantwasremoved.Theinfranatantwasresuspendedin240␮l of sodiumchloride (NaCl) and homogenized. NaCl(4.8ml) and 4.8mlof70%isopropylalcoholwereaddedtothetubes contain-ingdeadbacteria.Bothtubeswereincubatedatroomtemperature for60min,stirringevery15min,andthenwerecentrifugedagain for15min.Thesupernatantwasremovedandtheinfranatantwas resuspendedin2.4mlofNaCl.

Thepatternofbacterialcellswaspreparedinproportionsof knownconcentrationsofviableandnon-viablebacteria,asfollows: 0:100;20:80;50:50;80:20,and100:0.Constructionofstandard curvesused96-wellplateswithblackcolor(Greiner-Bio-One). Con-centrationratiosofviableandnon-viablebacteria(100␮l)were insertedintowellsA1–A5.InwellsB1–B5wereplaced100␮lof theratesofMICresultsconsideringtwoconcentrationsforward andtwoafter.

EqualvolumesofSYTO9andpropidiumiodidewereprepared andhomogenizedusing3minofvortex.Themixture(30␮l)was addedtoafluorescenceplateandthewellswereincubatedunder lightatroomtemperaturefor15min.

Thereadingwasevaluatedasfluorescenceintensityreadusing themicroplatereadermultimodetype(FluorStarOptima,BMGLab Tech,Germany)underanexcitationfilterof485nmandemission wavelengthof520and620nmforthedetectionofgreenandred color,respectively.

CytotoxicityevaluationofC.multijugaoilemulsions

Hemolyticassay

Thetestwasperformedin96-well platesusinga 2%human erythrocytesuspensionin0.85%NaClcontaining10mMcalcium chloride(CaCl2)(Jimenezetal.,2003).ThesubstancesEM1,EM2,

EM3,EM4,freshcopaibaoleoresin,Tween®

(3)

andchlorhexidine(control)weretestedatconcentrationsranging from0.234to 30␮l/ml.The supernatant wasremoved andthe releasedhemoglobinwasmeasuredspectrophotometricallyatan absorbanceat540nmafterincubationatroomtemperaturefor1h andcentrifugation.

Cellcultureassay

TheNHI-3T3celllineofmousefibroblastswasgrownin RPMI-1640mediumsupplementedwith10%fetalbovineserum,2mM glutamine,100␮g/mlstreptomycin,and100U/mlpenicillin,and incubatedat37◦Cwitha5%atmosphereofcarbondioxide(CO

2).

ThegroupstestedwereEM1,EM2,EM3,EM4,freshcopaiba oleo-resin,Tween®80(emulsionvehicle),andchlorhexidine(control).

Thecellswereplatedin96-wellplates(2.5×104cellsperwell)and

theAlamarBlueTMassaywasperformedusingpreviouslydescribed

proceduresofAhmedetal.(1994).After24h,thecompoundswere dissolvedinDMSOandaddedtoeachwelltogivefinal concen-trationsof5␮l/ml.Controlgroupshadfinalwellconcentrationsof 0.1%DMSO.Plateswereincubatedfor72hand3hbeforetheend oftheincubation,10␮lofAlamarBlueTMwasaddedtoeachwell.

Thefluorescentsignalwasmonitoredwithamultiplatereaderat excitationwavelengthof530–560nmandemissionwavelengthof 590nm.

Influenceofthetimeoftestemulsionapplicationonhumantooth colorchange

Thefabricationof150testspecimens(TS)of75humanteeth extractedfororthodonticand/orsurgicalreasonswasperformed accordingtothemethodologyproposedbyAraújoetal.(1998)and therulingsoftheEthicsCommittee.Afterextraction,theteethwere storedin2%thymolforaminimumof24hfordecontamination. Thecrownwasseparatedfromtherootatthecementumenamel junctionwiththeaidofacutter(PresiMecatome,Grenoble,France, p100)andfittedwithadouble-sideddiamonddisk.Thecrownwas sectionedinamesiodistaldirectiontoobtaintwotestspecimens of each sectioned tooth. Each specimen wasstored in individ-ualvialscontainingdeionizedwater and keptat atemperature of37◦C.

TenTSwereusedforeachtestemulsion,whichwereimmersed inthetestemulsionsforthetimeintervalsof10s,30s,and10min. Thecontrolusedinthestudywas2%chlorhexidine(FGM,Joinville, SC,Brazil).

The color measurement of TS was performed withthe Vita Easyshade(Easyshade®,Vivadent,Brea,CA,USA)

spectrophotome-terattheinitialtime(T0)withouttreatmentandexperimentaltime intervals.Colorwasdeterminedinaccordancewiththeparameters oftheCIElabsystem(L*a*b*),inwhichL*indicatesthe bright-nesswheretheaveragerangesfrom0(black)to100(white).The a*andb*representthehuewitha*asthesaturationred–green axis and b* the saturation in blue–yellow axis. Comparison of thecolorchangeofteethbeforeandafterimmersioninthetest substanceswasobservedandrepresentedbytheequation:E* ab=([L*]2+[a*]2+[b*]2)0.5.

Statisticalanalysis

The antibacterial activity was analyzed in descriptive form. Thehemolyticassaywasperformedusingtheaverage percent-agestandarddeviationandlinearsigmoidregressiontocalculate theeffectiveconcentrationof50%ofcelllysis(EC50).Thecell

cul-tureassaywasevaluatedbyone-wayanalysisofvarianceusing Dunnett’stest(p<0.05)formultiplecomparisonsadjustment.The medianandquartiles(Qi)wereusedtosummarizethechromatic changeoftheTS.Forcomparisonofthemedians,Kruskal–Wallis tests wereapplied for comparison of thedifferent groups, and Mann–Whitneytestswereusedforthecomparisonoftwomedians (p<0.05).

Resultsanddiscussion

ChromatographicanalysisofCMrevealedsesquiterpenes, espe-cially␤-caryophyllene (9.2%),␣-humulene (1.8%),germacrened (3.5%),caryophylleneoxide(11.5%),bisabolol(7.2%),labdane diter-peneskeleton-containingcompoundssuchascopalicacid(2.1%), 3␤-hydroxy-copalic(1.7%),andpinipholic(1.3%)asthemajor com-ponents.TheseresultsweresimilartotheresultsofBandeiraetal. (1999),CasconandGilbert(2000),VeigaJuniorandPinto(2002),

Limaetal.(2003),Vasconcelosetal.(2008),Souzaetal.(2011a, 2011b),andBarbosaetal.(2013),whoreportedthesesquiterpenes

ˇ-caryophylleneandcaryophylleneoxideasthemaincomponents. TheMIC(125␮l/ml)ofalltestedemulsionsshowed antibac-terialactivityagainstS.mutans,S.oralis,S.salivarius,andL.casei.

Bandeiraetal.(1999),Vasconcelosetal.(2008),andPierietal. (2012)alsoreportedtheantibacterialactivityofcopaibaoilagainst microorganismsintheoralcavity.

Theantibacterialactivityobservedinemulsiontestsis possi-blyrelatedtotheCMcomponents,includingthediterpenes,afact corroboratedbyVasconcelosetal.(2008)andSouzaetal.(2011a, 2011b).TheMBCandMICanalysisresultsareshowninTable1.

Table1showsthedifferentconcentrationsofemulsionsthat showedbactericidalactivityagainstS.mutans,S.oralis,andL.casei. However, no bactericidal activity against S. salivarius could be detected.Pierietal.(2012)demonstratedthebacteriostaticactivity ofcopaibaoilsolutionsatconcentrationsupto100␮l/ml,whereas theresultsofthisworkshowedbactericidalactivityat concentra-tionsabove100␮l/ml.

Allofthe2%chlorhexidineconcentrationstestedshowed bacte-ricidalactivity,similartotheresultsofSouzaetal.(2011b),which showedthattheMBCofchlorhexidinewas3.5-foldhigherthan thatoftheextractedcopalicacidoilofC.langsdorffi,confirmingthat chlorhexidineisthegoldstandardforantibacterialactionagainst oralpathogens.

CellviabilityanalysisofEM3at9and12␮g/mlbyfluorescence techniqueshowed8.59%viableS.mutanscellsand6.59%viableL. caseicells,respectively.TheMICofandcellviabilityupontreatment withEM4were45␮l/mland11.22%forS.mutans,respectively; theMICforandcellviabilityofL.caseiwere60␮l/mland11.20%, respectively.CellviabilitycanbelessthantheMICfoundinthefirst

Table1

Minimumbactericidalconcentration(MBC)andMinimuminhibitoryconcentration(MIC)ofCopaiferamultijugaoilemulsionsagainstbacteria.

Testedemulsions MBCandMICofemulsions(␮l/ml)againstbacteria

S.mutans S.oralis S.salivarius L.casei

MBC MIC MBC MIC MBC MIC MBC MIC

EM1 175 125 125 125 Notknown 125 350 125

EM2 150 125 125 125 Notknown 125 300 125

EM3 125 125 125 125 Notknown 125 300 125

(4)

Table2

Medianscoredistributionandquartilesoffinalcolorchangeinhumanteethat10s,30sand10minimmersioninchlorhexidineandCopaiferamultijugaoilemulsions.

Groups Score pa

10s 30s 10min

Med Q1/Q3 Med Q1/Q3 Med Q1/Q3

Chlorhexidine 3.60b 1.93/4.32 3.81b 1.51/4.68 1.22c 0.85/1.80 0.009

EM1 3.21 2.24/6.11 10.00 3.98/12.72 7.41 2.66/14.69 0.059

EM2 3.88 1.96/5.66 2.70 1.97/3.57 3.08 2.20/5.52 0.703

EM3 13.73 7.28/20.12 8.35 4.05/17.87 7.49 5.12/21.86 0.532

EM4 3.48 2.08/6.19 4.39 2.12/5.62 3.03 2.04/4.06 0.802

Med,median;Q,quartile.

Italicizedvalueindicatestatisticaldifference(p<0.05).

aKruskal–Wallistest. b andcstatisticallydifferent.

testowingtodilution.Thepresenceofviablecells,suggests bacte-riostaticactivityatconcentrationsthatinducebactericidalactivity, 125␮l/ml.

CytotoxicityassessmentofC.multijugaoilemulsions

Hemolyticassay

Thefreshcopaibaoleoresin,thevehicleoftheemulsions,and 2%chlorhexidineshowed0.72%,0.71%,and1.87%celllysis, respec-tively.

Theresultsofhemolyticactivityindicatedthatat30␮l/ml,all formulationsshowedhighhemolyticactivitywith70.82%,47.58%, 71.16%, and 44.67% cell lysis with EM1, EM2, EM3, and EM4, respectively. However,owing to thehigh hemolyticactivity of thesesubstances andasasafety precaution,it isrecommended tousetheseemulsionsatlowEC50values,11.15␮l/mlforEM1and

16.55␮l/mlforEM3.

Thetestemulsionsshowedhemolyticactivity,similartothat reportedbyCosta-Lotufoetal.(2002),whoevaluatedkaurenoic acidfromC.langsdorffioleoresin.KaurenoicacidshowedanEC50of

54.6␮Mforhumanerythrocytes.

Thefreshcopaibaoleoresinshowednosignificanthemolytic activity,whichisindisagreementwiththeresearchofCosta-Lotufo etal.(2002),whotestedkaurenoicacid,acompoundofcopaibaoil dilutedinDMSOandwater.Thisresultmaybeattributabletothe absenceofadetergenttolysetheCMmacromolecules,preventthe contactofCMwiththesolutionoferythrocytes,andthus,induce celllysis.

Cellcultureassay

Cell culture assay showed that all test emulsions and fresh copaibaoleoresinweretoxictoNHI3T3cells,causingadecrease incellviability(Fig.1).

0 20 40 60 80 100 120

% viable cells

Control Copaiba Vehicle EM1 EM2 EM3 EM4

Fig.1.CellviabilitytestingofCopaiferamultijugaoilemulsionsinthecellline NHI3T3.

ThedecreasedcellviabilityofNHI3T3,non-neoplasticmurine fibroblasts,validatetheresultsofCosta-Lotufoetal.(2002),Lima etal.(2003),andVeigaJunioretal.(2007),whodemonstrateda decreaseinviabilityoftumorcells.Cellviabilitywithoutcopaiba was52.33%indicatingthatthehighcytotoxicityinthisstudymay berelatedtothevehicleusedintheemulsion.

ThevehicleusedintheformulationofemulsionswasTween®

80,whichisanonionicsurfactantthatistoxictobiological mem-branesandconsistsofthefattyacidester,polyoxyethylene.Toxicity ofTween®80asavehicleincellcultureispossiblyrelatedtoits

abilitytoalterthesurfacemorphologyandcellwallviaitsdetergent action(Dominguesetal.,2000).

Influenceofthetimeoftestemulsionapplicationonhumantooth colorchange

Influenceoftimeoftestemulsionapplicationonhumanteeth colorchangeisshowninTable2.

ResultsofEvaluesequaltoorlowerthan3.3areconsidered clinicallyinsignificantfromthedailyclinicalperspectiveofvisual appearance;thatistosay,thecolorchangeofhumanteethofthis magnitudewouldbeclinicallyimperceptible(Vichietal.,2004). Basedonthesefacts,thetestemulsionsforwhichthecolorchanges ofteethwouldnotbeclinicallyperceptiblewereEM1at10s,EM2, at30s,and2%chlorhexidine,EM2,andEM4at10min.

Chlorhexidinewasusedinthepresentexperimentasasolution for cavity and tooth surface cleaning and for short-term non-stainingproceduresofthetoothstructure.

Useofcopaibaoleoresinemulsions,abiotechnologicalproduct fromtheAmazonianregion,contributedsignificantlytothe reduc-tionofcolorchange(expressedinEvalues);however,nostudies reportedintheliteraturesupportthedataobtainedinthisresearch. The copaiba emulsion tests demonstrated the potential of copaibaemulsionsforuseindentistry,especiallyEM1andEM2. Furtherresearchontheclinicalapplicationisnecessary.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thattheproceduresfollowedwereinaccordancewiththe regula-tionsoftherelevantclinicalresearchethicscommitteeandwith thoseoftheCodeofEthicsoftheWorldMedicalAssociation (Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

(5)

Authors’contributions

CNCDB,FCS,CT,andNCOCcontributedtothedevelopmentof theexperimentalphasefortheemulsionformulationsand antibac-terialactivity.VVJcontributedtothechemicalanalysisoftheraw material.MCVandGSBcontributedtothecytotoxicityassay.MFCLB coordinatedtheprogressofallexperimentalphasesanddata anal-ysis.CNCDB,LGM,andGNVdraftedthearticle.Alltheauthorshave readthefinalmanuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

This study was supported by CNPq. Project MCT/CNPq/CT-Amazon (Process N◦ 575752/2008-4 and Process N406457/

2013-1).

References

Ahmed,S.A.,Gogal,R.M.,Walsh,J.E.,1994.Anewrapidandsimplenon-radioactive assaytomonitoranddeterminetheproliferationoflymphocytesanalternative to[3H]thymidineincorporationassay.J.Immunol.Methods170,211–224. Andrews,J.M.,2001.Determinationofminimuminhibitoryconcentration.J.

Antimi-crob.Chemoth.48,5–16.

Araújo,M.A.J.,Rode,S.M.,Villela,L.C.,Gonc¸alves,R.D.,1998.Avaliac¸ãoqualitativa doefeitodeagentesdelimpezanacamadadelamadentinária:estudo ultra-estruturalemmicroscopiaeletrônicadevarredura.Rev.Odontol.Univ.SãoPaulo 12,99–104.

Bandeira,M.F.C.L.,Oliveira,M.R.B.,Benatti-Neto,C.,CamelliLia,R.C.,1999.Estudo comparativodacompatibilidadebiológicaemmolaresderatodoóleoessencial edaresinadaCopaiferamultijuga(óleodeCopaíba)associadosaohidróxidode cálcio.J.Bras.Clin.Estet.Odontol.16,42–49.

Barbosa,P.C.S.,Wiedemann,L.S.M.,Medeiros,R.S.,Sampaio,P.T.B.,Vieira,G., Veiga-Junior,V.F.,2013.Phytochemicalfingerprintsofcopaibaoils(Copaiferamultijuga Hayne)determinedbymultivariateanalysis.Chem.Biodiv.10,1350–1360. Brasil,2010.FarmacopeiaBrasileiraVol.2,AgênciaNacionaldeVigilânciaSanitária.

Brasília:Anvisa.

Cascon,V.,Gilbert,B.,2000.Characterizationofthechemicalcompositionof ole-oresinsofCopaiferaguianensis Desf.CopaiferaduckeiDwyer andCopaifera multijugaHayne.Phytochemistry55,773–778.

CLSI,2007.PerformanceStandardsforAntimicrobialSuceptibilityTesting; Seven-teenthInformationalSupplementM100-S17,vol.27.CLSI,pp.1–177. Costa-Lotufo,L.V.,Cunha,G.M.A.,Farias,P.A.M.,Viana,G.S.B.,Cunha,K.M.A.,Pessoa,

C.,Moraes,M.O.,Silveira,E.R.,Gramosa,N.V.,Rao,V.S.N.,2002.Thecytotoxic andembryotoxiceffectsofkaurenoicacid,aditerpeneisolatedfromCopaifera langsdorffiióleo-resin.Toxicon40,1231–1234.

Domingues,F.C.,Queiroz,J.A.,Cabral,J.M.,Fonseca,L.P.,2000.Theinfluenceof cul-tureconditionsonmycelialstructureandcellulaseproductionbyTrichoderma reeseiRutC-30.EnzymeMicrob.Technol.26,394–401.

Fejerskov,O.,Kidd,E.,2011.CárieDentária:ADoenc¸aeseuTratamentoClínico. Santos,SãoPaulo.

Filoche,S.K.,Coleman,M.J.,Angker,L.,Sissons,C.H.,2007.Afluorescenceassayto determinetheviablebiomassofmicrocosmdentalplaquebiofilms.J.Microbiol. Methods69,489–496.

Jimenez,P.C.,Fortier,S.C.,Lotufo,T.M.C.,Pessoa,C.,Moraes,M.E.A.,Moraes,M.O., Costa-Lotufo,L.V.,2003.Biologicalactivityinextractsofascidians(Tunicata, Ascidiacea)fromthenortheasternBraziliancoast.J.Exp.Mar.Biol.Ecol.287, 93–101.

Kidd,E.,2011.Theimplicationsofthenewparadigmofdentalcaries.J.Dent.39,s2, s3–s8.

Lima,S.R.,Junior,V.F.,Christo,H.B.,Pinto,A.C.,Fernandes,P.D.,2003.Invivoand invitrostudiesontheanticanceractivityofCopaiferamultijugaHayneandits fractions.Phytother.Res.17,1048–1053.

Pieri,F.A.,Mussi,M.C.M.,Fiorini,J.E.,Moreira,M.A.S.,Schneedorf,J.M.,2012. Bacte-riostaticeffectofcopaibaoil(Copaiferaofficinalis)againstStreptococcusmutans. Braz.Dent.J.23,36–38.

Reis,A.,Loguercio,A.D.,2007.Materiaisdentáriosdiretos–dosfundamentosà aplicac¸ãoclínica.Santos,SãoPaulo.

Sampaio,F.C.,Pereira,M.S.V.,Dias,C.S.,Costa,V.C.O.,Conde,N.C.O.,Buzalaf,M.A.R., 2009.InvitroantimicrobialactivityofCaesalpiniaférreaMartiusfruitsagainst oralpathogens.J.Ethnopharmacol.124,289–294.

Souza,A.B.,Martins,C.H.G.,Souza,M.G.M.,Furtado,A.J.C.,Heleno,V.C.G.,Sousa,J.P.B., Rocha,E.M.P.,Bastos,J.K.,Cunha,W.R.,Veneziani,R.C.S.,Ambrósio,S.R.,2011a. AntimicrobialactivityofterpenoidsfromCopaiferalangsdorffiiDesf.against car-iogenicbacteria.Phytother.Res.25,215–220.

Souza,A.B.,Souza,M.G.M.,Moreira,M.A.,Moreira,M.R.,Furtado,N.A.J.C.,Martins, C.H.G.,Bastos,J.K.,Santos,R.A.,Heleno,W.C.G.,Ambrósio,S.R.,Veneziani,R.C.S., 2011b.AntimicrobialavaluationofditerpenesfromCopaiferalangsdorffi oleo-resinagainstperiodontalanaerobicbacteria.Molecules16,9611–9619. Vasconcelos,K.R.,VeigaJunior,V.F.,Rocha,W.C.,Bandeira,M.F.C.L.,2008.Invitro

assessmentofantibacterialactivityofadentalcementconstitutedofaCopaifera multijugaHayneoil-resin.Rev.Bras.Farmacogn.18,733–738.

VeigaJunior,V.F.,Pinto,A.C.,2002.OGêneroCopaiferaL.Quim.Nova25,273–286. Veiga Junior,V.F.,Rosas,E.C.,Carvalho,M.V.,Henriques,M.G.M.O.,Pinto, A.C.,

2007.Chemicalcompositionandanti-inflammatoryactivityofcopaibaoilsfrom CopaiferacearensisHuberexDucke,CopaiferareticulataDuckeandCopaifera multijugaHayne–acomparativestudy.J.Ethnopharmacol.112,248–254. Vichi,A.,Ferrari,M.,Davidson,C.L.,2004.Colorandopacityvariationsinthree

Imagem

Table 1 shows the different concentrations of emulsions that showed bactericidal activity against S

Referências

Documentos relacionados

Porém, a ligação entre a câmara mencionada e a agitação marítima, é feita através de um pequeno canal de água vertical (por este motivo também chamado de U-OWC ou

Effect of HOTAIR and PKR on UVB-induced cell injury; A , Cell viability assay demonstrated overexpression of HOTAIR promoted UVB-induced cell viability inhibition by upregulation

As páginas sobre a circulação das ideias de Caio Prado Júnior acerca do tema da revolução brasileira, da maneira pouco entusiasmada como foram recebidas entre a intelectualidade

Fully automated vehicles (AVs) are not yet a reality but already cast speculation on the future of urban regions. Several impacts are expected at different levels, mostly

As opções pedagógicas de Elsa realizadas, durante o processo de construção do conhecimento pedagógico de conteúdo, flindamentaram-se em seis componentes do conhecimento

Contrapondo-se à anulação do protagonismo de diversos grupos sociais imposta pelos meios majoritários de produção discursiva, suas vozes evidenciam uma potencial capacidade

Dois instrumentos de medição de estilos de aprendizagem: o de Felder e Soloman (1991) e Keirsey e Bates (1984), que estão disponíveis em um banco de dados acessível pela Internet,

O espermatide perde, como dissemos, metade do seu núcleo, (metade represen- tada na fig. 2 por 2) e a parte subsistente, o espermato- zóide maduro S' é que vae ao encontro do