• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número3"

Copied!
9
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

article

Induction

of

apoptosis

by

Moutan

Cortex

Radicis

in

human

gastric

cancer

cells

through

the

activation

of

caspases

and

the

AMPK

signaling

pathway

Cheol

Park

a

,

Min-Ho

Han

b

,

Shin-Hyung

Park

c

,

Su-Hyun

Hong

d

,

Gi-Young

Kim

e

,

Sung-Kwon

Moon

f

,

Wun-Jae

Kim

g,∗

,

Yung

Hyun

Choi

d,h,∗

aDepartmentofMolecularBiology,CollegeofNaturalSciencesandHumanEcology,DongeuiUniversity,Busan,RepublicofKorea bNaturalProductsResearchTeam,MarineBiodiversityInstituteofKorea,Seocheon,RepublicofKorea

cDepartmentofPathology,DongeuiUniversityCollegeofKoreanMedicine,Busan,RepublicofKorea dDepartmentofBiochemistry,DongeuiUniversityCollegeofKoreanMedicine,Busan,RepublicofKorea

eDepartmentofMarineLifeSciences,SchoolofMarineBiomedicalScience,JejuNationalUniversity,Jeju,RepublicofKorea

fDepartmentofUrology,ChungbukNationalUniversity,CollegeofMedicineandInstituteforTumorResearch,Cheongju,RepublicofKorea gSchoolofFoodScienceandTechnology,Chung-AngUniversity,Ansung,RepublicofKorea

hAnti-AgingResearchCenter&Blue-BioIndustryRIC,DongeuiUniversity,Busan,RepublicofKorea

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6September2016 Accepted18November2016 Availableonline24December2016

Keywords:

MoutanCortexRadicis

Gastriccancer Apoptosis Caspase AMPK

a

b

s

t

r

a

c

t

MoutanCortexRadicis,therootbarkofPaeonia×suffruticosaAndrews,Paeoniaceae,hasbeenwidely usedintraditionalmedicinetherapy.Althoughithasbeenshowntopossessmanypharmacological activities,themolecularmechanismsofitsanti-canceractivityhavenotbeenclearlyelucidated.Inthe presentstudy,weinvestigatedthepro-apoptoticeffectsoftheethanolextractofMoutanCortexRadicis

inhumangastriccancerAGScells.MoutanCortexRadicistreatmentinhibitedthecellviabilityofAGScells inaconcentration-dependentmanner,whichwasassociatedwithapoptoticcelldeath.MoutanCortex Radicis’sinductionofapoptosiswasconnectedwiththeupregulationofdeathreceptor4,deathreceptor 5,tumornecrosisfactor-relatedapoptosis-inducingligand,Fasligand,andBax,andthedownregulation ofBcl-2andBid.MoutanCortexRadicistreatmentalsoinducedthelossofmitochondrialmembrane potential( m),theproteolyticactivationofcaspases(-3,-8,and-9),andthedegradationof poly(ADP-ribose)polymerase,anactivatedcaspase-3substrateprotein.However,thepre-treatmentofacaspase-3 inhibitorsignificantlyattenuatedMoutanCortexRadicis-inducedapoptosisandcellviabilityreduction.In addition,MoutanCortexRadicistreatmenteffectivelyactivatedtheadenosinemonophosphate-activated proteinkinasesignalingpathway;however,aspecificinhibitorofAMPKsignificantlyreducedMoutan

CortexRadicis-inducedapoptosis.Overall,theresultssuggestthattheapoptoticactivityofMoutanCortex Radicismaybeassociatedwithacaspase-dependentcascadethroughtheactivationofbothextrinsic andintrinsicsignalingpathwaysconnectedwithadenosinemonophosphate-activatedproteinkinase activation,andMoutanCortexRadicisasanactivatorofadenosinemonophosphate-activatedprotein kinasecouldbeaprospectiveapplicationtotreathumancancers.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Apoptosisisawell-knowntypeofprogrammedcelldeath medi-atedbytheextrinsicandintrinsicpathways.Theextrinsicpathway isactivatedbyaninteractionbetweendeathreceptors(DR)and theirligandsattheplasmamembrane,whichcausesthe subse-quentactivationofcaspase-8(FuldaandDebatin,2006;Kantari

∗ Correspondingauthors.

E-mails:wjkim@chungbuk.ac.kr(W.Kim),choiyh@deu.ac.kr(Y.H.Choi).

andWalczak,2011).Theintrinsicpathway,termedthe mitochon-drialpathway,isinitiatedbythelossofmitochondrialmembrane potential(MMP, m)andthereleaseofpro-apoptoticproteins, includingcytochromec,leadingtotheactivationofcaspase-9and -3(MacKenzieandClark,2008;Hensleyetal.,2013).The extrin-sicpathwaycanalsocrosstalkwiththeintrinsicpathwaythrough thecaspase-8-mediatedtruncationofBid,amemberoftheBcl-2 familyofproteins,withanultimateamplificationoftheintrinsic apoptoticpathway(Lovelletal.,2008;Shamas-Dinetal.,2011).

AMP-activated proteinkinase(AMPK)is ametabolic-sensing protein kinase and plays a critical role as an energy-sensor in

http://dx.doi.org/10.1016/j.bjp.2016.11.003

(2)

ATP-deprived conditions (Gwinn et al., 2008; Shackelford and Shaw,2009;Tranetal.,2016).AnincreasedADP/ATPratioleads toAMPKphosphorylationatThr172,contributingtotheactivation oftheATP-generatingcatabolicprocesses,suchasfattyacid oxida-tionandglycolysis,aswellasthesuppressionoftheATP-utilizing anabolicpathways,includingglycogen,protein,andlipidsynthesis (Woodsetal.,2003;Shawetal.,2004).Recently,avarietyofstudies havereportedthatAMPKregulatescellproliferationandapoptosis viamultiplesignalingpathways,suchasphosphorylationandthe subsequentstabilizationoftumorsuppressorp53,the upregula-tionofcyclin-dependentkinaseinhibitors,andthedownregulation ofthemammaliantargetofrapamycincomplex-1activity(Gwinn etal.,2008; Monteverdeetal.,2015).In particular,ithasbeen demonstrated that AMPKactivation is responsible for inducing apoptosisviathehmitochondrialpathway(Nieminenetal.,2013; Fiarolaetal.,2015;Chenetal.,2015).Ontheotherhand,AMPKis alsoknowntoplayaprotectiveroleincancercellsundermetabolic stressedconditionsviathemaintenanceofenergyhomeostasisand modulationofautophagy,makingitsinfluenceoncancer progres-sioncontroversial(Laderouteetal.,2006;Rubinszteinetal.,2007; Jeon,2016).

MoutanCortexRadicis,the rootbarkof Paeonia×suffruticosa

Andrews,Paeoniaceae,hasbeenwidelyusedtoregulatehuman sickness, such as eliminating heat, promoting blood flow, and removingbloodstasisintraditionalmedicine(Hiraietal.,1983; Poonetal.,2011).Italsohasbeenreportedthattheextractsof MoutanCortexRadicisanditsphenoliccompoundsexhibit anti-oxidant(Rho etal.,2005), hepato-protective(Park et al.,2011), neuro-protective(Kimetal.,2014),anti-inflammatory(Fuetal., 2012;Yunet al.,2013),and anti-tyrosinase effects (Penget al., 2013).Morerecently,theanti-canceractivitiesofMoutanCortex Radicishavebeensuggested.Extractsandseveralcomponents iso-latedfromMCRwereproventoinducecellcyclearrestintheG1 phase(Gaoetal.,2015)andapoptosis(Choietal.,2012;Mukudai etal.,2013;Fanetal.,2013;Lietal.,2014;Gaoetal.,2015),inhibit invasion(Wangetal.,2012),and overcomedrugresistance(Cai etal.,2014)inavarietyofcancercelllines.However,theeffects ofMoutanCortexRadicisonAMPKsignaling-mediatedapoptosisin cancercellsandtheunderlyingdetailedmechanismshavenotbeen elucidatedtodate.Inthecurrentstudy,weexploredtheanti-cancer effectsofanethanolextractofMoutanCortexRadicis(MCR)inAGS humangastriccancercellsandinvestigatedtheunderlying mech-anism.WefoundthatMCRtriggeredcaspase-dependentapoptosis throughtheactivationofboththeintrinsicandextrinsicpathways, indicatingthatAMPKisacriticalregulatorofMCR-induced apo-ptosis.Toourknowledge,thisisthefirstpublicationtosuggestthe involvementofAMPKintheanti-canceractivityofMCR.

Materialsandmethods

Reagentsandantibodies

RPMI-1640andfetalbovineserum(FBS)wereobtainedfrom WelGENEInc.(Daegu,RepublicofKorea). 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), 4,6-diamidino-2-phenylindole (DAPI), ethidium bromide (EtBr), 5,5′, 6,6

-tetrachloro-1,1′,3,3-tetraethyl-imidacarbocyanine iodide (JC-1),

and compound C, an inhibitor of AMPK, were purchased from Sigma–Aldrich Chemical Co. (St. Louis, MO, USA). An Annexin V-fluoresceinisothiocyanate(FITC)ApoptosisDetection Kit and a mitochondrial fractionation kit were purchased from Bec-ton Dickinson (San Jose, CA, USA) and Active Motif (Carlsbad, CA, USA), respectively. N -benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (z-DEVD-fmk), a caspase-3 inhibitor, and caspasescolorimetricassaykitswereobtainedfromCalBiochem (San Diego, CA, USA) and R&D Systems (Minneapolis, MN,

USA),respectively.Theprimaryantibodieswerepurchasedfrom Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA) and Cell SignalingTechnology,Inc.(Beverly,MA,USA).Peroxidase-labeled donkey anti-rabbit and sheepanti-mouse immunoglobulin and an enhanced chemiluminescence (ECL) detection system were obtained from Amersham Co. (Arlington Heights, IL, USA). All otherchemicalsnotspecificallycitedherewerepurchasedfrom Sigma–AldrichChemicalCo.

PreparationofMCR

ToprepareMCR,thedried rootbarkofPaeonia×suffruticosa

Andrews,Paeoniaceae(100g),wasprovidedfromDongeuiKorean MedicalCenter(Busan,RepublicofKorea)andpulverizedintoa finepowder.Thepowderwasthenextractedin1lof70%ethanol bysonicationfor3h.Afterfilteringandconcentratingtheextracts, theremainedpowderwasdissolvedindimethylsulfoxide(DMSO) asa stock solutionat a100mg/mlconcentration andstored at 4◦C.Thestocksolutionwasdilutedwithmediumtothedesired

concentrationpriortouse.

Cellculture

AGS human gastric cancer and WI-38 human normal lung fibroblastcells wereobtainedfrom theAmerican Type Culture Collection (Manassas, MD, USA) and cultured in a RPMI-1640 mediumcontaining10% heat-inactivatedFBS and1% penicillin-streptomycinat37◦Cinahumidifiedatmospherecontaining5%

CO2.

(3)

Cellviabilityassay

Toinvestigatethecellviability,AGSandWI-38cellswereseeded ina96-wellplate(2×103cells/well)andstabilizedfor24h.The cells weretreated withvarious concentrationsof MCRfor 24h withorwithout1hofpre-treatmentofz-DEVD-fmkorcompound

C. AnMTT workingsolution(0.5mg/ml) wasthen addedtothe mediaandincubatedforfurther3hat37◦C.Afterincubation,the

culturesupernatantwasaspirated,and100␮lofDMSOwasadded

to completely dissolve the formazan crystals. The absorbance ofeachwellwasmeasuredatawavelengthof540nmusingan enzyme-linked immunosorbent assay(ELISA) reader(Molecular

(4)

Fig.3.TheeffectsofMoutanCortexRadicisontheexpressionlevelsofapoptosisregulatorsandMMPvaluesinAGScells.(AandB)AftertreatmentwithMCR,thecell lysateswereseparatedonSDS-polyacrylamidegelsandtransferredtoPVDFmembranes.Themembraneswereprobedwiththeindicatedantibodies,andtheproteinswere visualizedusinganECLdetectionsystem.Actinwasusedasaninternalcontrol.(C)ToevaluatethechangesinMMP,thecellswerestainedwithJC-1dyeandwerethen analyzedonaDNAflowcytometer.Thedataareexpressedasthemean±SDofthreeindependentexperiments(*p<0.05vs.untreatedcontrol).(D)Themitochondrial factions(M.F.)andcytosolicfactions(C.F.)wereseparatedbySDS-polyacrylamidegelelectrophoresis,followedbyWesternblotanalysisusinganti-cytochromecantibody. Cytochromecoxidasesubunit4(COXIV)andactinwereusedasinternalcontrolsforthemitochondrialandcytosolicfractions,respectively.

Devices,Sunnyvale,CA,USA)(Youetal.,2016).ToassessMCR’s effectoncellularmorphology,theAGScellswerephotographed underaninvertedmicroscope(CarlZeiss,Oberkochen,Germany).

NuclearstainingwithDAPI

AGS cells were treated with various concentrations of MCR for24hwithorwithout1hofpre-treatmentofz-DEVD-fmkor compoundC.Then,cellswereharvested,washedwith phosphate-bufferedsaline(PBS),and fixedwith3.7%paraformaldehydefor 30minatroomtemperature.Aftertheywerewashedtwicewith PBS,cellswereattachedonglassslidesusingcytospin(Shandon, Pittsburgh,PA,USA)andstainedwith2.5␮g/mlofDAPIsolutionfor

10minatroomtemperature.Thestainedcellswerewashedthree timeswithPBSandanalyzedusingafluorescencemicroscope(Carl Zeiss).

DNAfragmentationassay

FollowingMCRtreatment for 24hat various concentrations with or without 1h of pre-treatment of z-DEVD-fmk or com-pound C, the cells were lysed in a buffer [10mM of Tris–HCl (pHof7.4),150mMofNaCl,5mMofethylendiaminetetraacetic acid(EDTA), and 0.5% Triton X-100] for 1hat room tempera-ture.Aftercentrifugationat18,300×gfor30min,thesupernatant wascollectedandincubated withproteinaseK for3hat50◦C.

ThefragmentedDNAinsupernatantwaspurifiedusingthesame amountofneutralphenol:chloroform:isoamylalcoholsolutionby rotation for 30min at room temperature. After centrifugation, thesupernatantwasaddedwith0.5MofNaCl(final concentra-tion)and1volumeofisopropanoltoprecipitatethefragmented DNA and incubatedovernightat 4◦C. TheDNA pelletobtained

(5)

by centrifugation was then dissolved in TE buffer (10mM of Tris–HCl containing 1mM of EDTA) containing RNase A and separatedthrough 1%agarose gel.TheDNA fragmentation pat-ternwasvisualizedbyanultravioletlightsourcefollowingEtBr staining.

Flowcytometryanalysis

ChangesintheMMPweremeasuredbyflowcytometry (Bec-tonDickinson,SanJose,CA,USA) usingJC-1,thedual-emission potential-sensitiveprobe.Thecellstreatedwithvarious concen-trationsofMCRfor24hwerecollected,washedwithPBStwice, andincubatedwith10␮MofJC-1for20minat37◦C.inthedark.

Aftercentrifugation,thestainedcellswerewashedoncewithPBS toremoveunbounddyeandresuspendedwithPBS.Thereafter,the amountofJC-1retainedby10,000cellspersamplewasmeasured usingaflowcytometer.ForAnnexinV-propidiumiodide(PI)double staining,cellswerechallengedwithMCRfor24hwithorwithout 1hofpretreatmentofz-DEVD-fmkofcompoundC.Apoptoticcells werequantitativelyidentifiedwiththeAnnexinV-FITCApoptosis DetectionKitcontainingFITC-conjugatedAnnexinVandPI follow-ingtheprotocolsprovidedbythemanufacturer(Eometal.,2015). ThedatawereconvertedtodensityplotsusingCellQuestsoftware forpresentation.

Determinationofcaspaseactivity

Theactivitiesofcaspasesweredeterminedusingcolorimetric assay kits containing the synthetic tetrapeptides [Asp-Glu-Val-Asp(DEAD) forcaspase-3, Ile-Glu-Thr-Asp(IETD)for caspase-8,

and Leu-Glu- His-Asp (LEHD) for caspase-9] labeled with p -nitroaniline (pNA)accordingtothemanufacturer’sinstructions. Briefly, MCR-treated cells were harvested and lysed in the suppliedlysisbuffer.Supernatantswerethencollectedand incu-bated at 37◦C withthe supplied reaction buffer, dithiothreitol

(DTT), and respective substrates. Reactionactivities were eval-uated by measuring the absorbance at 405nm using an ELISA reader.

Westernblottinganalysis

To preparewhole celllysate, cells were lysed withice-cold lysisbuffer[25mMofTris–Cl(pHof7.5),250mMofNaCl,5mM ofEDTA,1%NonidetP-40,1mMofphenymethylsulfonylfluoride (PMSF),5mMofDTT]includingacompleteproteaseinhibitor cock-tailtabletandphosphataseinhibitors(1mMofNa3VO4,100mM ofNaF,10mMofNaPP).Inaparallelexperiment,the mitochon-drialandcytosolicfractionswereisolatedusingamitochondrial fractionation kit according to the manufacturer’s instructions. Aftercentrifugation at 15,800×g at 4◦C for 30min,the

super-natantswerecollected,andproteinconcentrationwasdetermined using a Bio-Rad protein assay (Bio-Rad Laboratories, Hercules, CA,USA),accordingtothemanufacturer’sinstructions.Equivalent amountsofproteinwereresolvedbysodiumdodecylsulfate (SDS)-polyacrylamide gels and transferred to polyvinylidene fluoride (PVDF)membranes(Millipore,Bedford,MA,USA).Themembranes wereprobedwiththespecificprimaryantibodiesand correspond-ingsecondaryantibodies.Theprotein-antibodycomplexes were detectedbyanECLdetectionsystemaccordingtothe manufac-turer’sprotocol.

(6)

Statisticalanalysis

Eachresultisexpressedasthemean±standarddeviation(SD) ofdataobtainedfromindependenttriplicateexperiments.The sta-tisticalanalysiswasperformedusingapairedStudent’st-test.A

p-value<0.05wasconsideredstatisticallysignificant.

Results

MCRsuppressedcellproliferationbyinducingapoptosisinAGS cells

To investigate the effects of MCR on thecell viability,AGS cellsweretreated withvariousconcentrationsof MCRfor24h. AsshowninFig.1A,MCRtreatmentreducedthecellviabilityina concentration-dependentmanner.Morphologicalchanges, includ-ingmembraneblebbing,diminishedcelldensity,andanincreased numberof floatingcells,werealsoobserved(Fig.2A).We then determinedwhetherthisMCR-mediatedinhibitionofcellviability wasassociatedwiththeinductionofapoptosis.TheresultsofDAPI stainingshowedthat MCRtreatmentsignificantlyincreasedthe numberofcondensedorblebbingnuclei,whichgenerallyappearin apoptosisbeforenuclearfragmentation(Fig.2B).Consistently,DNA fragmentationwasobservedbyMCRtreatmentat100␮g/mland

graduallyincreasedinaconcentration-dependentmanner(Fig.2C). MCRalsoenhancedthepopulationofannexinV+/PIcells,which representsearlyapoptoticcells(Fig.2D).Inaddition,weexamined thequestionofwhetherornotMCRdisplayedtheantiproliferative effectsinhumannormallungfibroblastWI-38cells.Comparedwith untreatedcells,decreasedcellproliferationwasnotobservedin normallungWI-38cellstreatedwithMCR(Fig.1B).Thesedata col-lectivelysuggestthatMCRsuppressedcellproliferationbyinducing apoptosisinAGScells.

Bothextrinsicandintrinsicapoptosispathwayswereactivatedby MCTinAGScells

Giventhattherearetwoclassicalpathwaysinapoptosis,the extrinsicand intrinsic pathways, we examined which pathway isinvolved in MCR-inducedapoptosis. Our resultsshowedthat theexpressionsofTNF-relatedapoptosis-inducingligand(TRAIL), DR4,DR5,andFasligand(FasL)wereconcentration-dependently increasedby MCRtreatmenteven thoughtheexpressionof Fas wasnotchanged,suggestingthatMCRmightregulatetheextrinsic pathway(Fig.3A).Additionalimmunoblottingdataindicatedthat anti-apoptoticBcl-2expressionwasmoderatelydownregulatedby MCRtreatment,butMCRmarkedlyincreasedtheexpressionof pro-apoptoticBax(Fig.3B).Accordingly,MCRtreatmentreducedthe MMPinaconcentration-dependentmanner(Fig.3C),whichwas consistentwiththereleaseofcytochromecfromthemitochondria intothecytosol(Fig.3D), indicatingthatmitochondrial damage mayalsocontributetoMCR-inducedAGScellapoptosis.

MCRinducedapoptosisbyactivatingcaspasesinAGScells

Theextrinsicandintrinsicsignalingpathwaysactivatecaspase cascades,whichisakeyhallmarkofapoptosis.Toexaminewhether MCRactivatescaspases,weinvestigatedtheexpressionand activ-ityoftwoinitiatorcaspasesoftheextrinsicandintrinsicapoptosis pathways,caspase-8and-9,respectively,andcaspase-3,atypical effectorcaspase.AsshowninFig.4A,MCRtreatmentapparently suppressedtheexpressionofpro-caspase-9,-8,and-3.The sub-sequentincreaseofcleavedpoly(ADP-ribose)polymerase(PARP) wasalsoobserved(Fig.4A).Consistently,theinvitroactivityofthe caspaseswassignificantlyenhancedbyMCRtreatment(Fig.4B). AlthoughwedidnotobservethetruncatedBid(tBid),whichmight

Fig.6.AMPKactivationbyMoutanCortexRadicistreatmentinAGScells.Thecells weretreatedwithMCRfor24h(A)orpre-treatedwithcompoundC(ComC)for1h andthentreatedwithMCRfor24h(B).Equalamountsofcelllysatewereresolved bySDS-polyacrylamidegels,transferredtoPVDFmembranes,andprobedwiththe indicatedantibodies.

beinvolvedintheregulationoftheextrinsicapoptosispathway (Lovell et al., 2008; Shamas-Din et al., 2011), MCR caused the progressivedownregulationofthetotalBidprotein(Fig.3B), pre-sumablyresultingfromtruncationbyactivatedcaspase-8.These resultsindicatethatthecytotoxiceffectsinducedbyMCRcould bemediatedthroughDR-mediatedapoptosis,therebyaccentuating crosstalkbetweentheintrinsicandextrinsicapoptosispathways. TheseresultsareinaccordancewiththosefromFig.3,suggesting thatMCRregulatedboththeextrinsicandintrinsicpathways.

To verify whether MCR-induced apoptosis is caspase-dependent, we next inhibited the activity of caspase-3 using z-DEVD-fmk.OurresultsclearlyshowedthatMCR-induced apop-totic body formation and DNA fragmentation were absolutely abrogated by z-DEVD-fmk pre-treatment (Fig. 5A and B). The increasedpopulationofannexinV+/PIcellsandthereducedcell viabilitywerealsoquitereversedbytheinhibitionofcaspase-3 activity(Fig.5CandD).Takentogether,ourresultsdemonstrate thattheactivationofcaspasecascadesisessentialforMCR-induced apoptosisinAGScells.

MCRinducedapoptosisbyactivatingAMPKinAGScells

(7)

Fig.7.ThesuppressionofMoutanCortexRadicis-inducedapoptosisbytheinhibitionofAMPKinAGScells.Cellswerepre-treatedwithcompoundCfor1hbeforetreatment withMCRfor24h.(A)ThenucleiwerestainedwithDAPIsolutionandwerephotographed.(B)ThefragmentedDNAwasvisualizedunderUVlightafterstainingwithEtBr.(C) Thepercentagesofapoptoticcells(annexinV+/PIcells)weremeasuredusingDNAflowcytometricanalysis.Dataarepresentedthemeanofthetwodifferentexperiments. (D)ThecellviabilitywasmeasuredbyanMTTassay.Thedataareexpressedasthemean±SDofthreeindependentexperiments(*p<0.05vs.untreatedcontrol;#p<0.05

vs.MCR-treatedcells).

thecleavageofcaspase-3anddegradationofPARPinMCR-treated cells,implyingalinkagebetweencaspaseandAMPKactivation.In linewiththeseobservations,themarkersofapoptosisincreasedby MCRtreatment,includingthecondensedandfragmentednuclei, DNAladder,andtheincreasedpopulationofannexinV+/PIcells,

were significantly reversed by pretreatmentwith compound C (Fig.7A–C).Accordingly,theMCR-inducedreductionincell viabil-itywasrecoveredbytheadditionofcompoundC(Fig.7D).These observationscollectivelysuggest thatAMPKactivationplayed a crucialroleinMCR-inducedapoptosisinAGScellsandthatAMPK wasprobablyupstreamofcaspaseactivationinthesignaling path-wayinvolvedinthisprocess.

Discussion

Inthecurrent study,weinvestigatedtheanti-canceractivity ofMCRandexploredtheunderlyingmechanisminAGS human gastriccancercells.Althoughavarietyofresearchershavealready reportedontheanti-proliferativeeffectsofEvodiarutaecarpaand itscomponentsin variouscancercells,this isthefirststudy,to ourknowledge,toproposeAMPKasacriticalmoleculemediating MCR-inducedapoptosis.

Our resultsclearly showed that MCRinduced apoptotic cell deathinAGScells.MCRtreatmentmarkedlyincreasedtheratio of Bax/Bcl-2expression, a critical component of the mitochon-drialpathway,andsubsequentlytriggeredthelossofMMP,which wasassociatedwiththeincreasedexpressionofseveralDR-related

proteins.Themediatorsofmitochondria-mediatedapoptosishave been determinedby variouspreceding reports. The first candi-date released fromthe mitochondriaupon apoptotic stimuli is cytochrome c,an essential component of the respiratory chain (MacKenzieandClark,2008;Hensleyetal.,2013).Itforms apop-tosomewithapoptoticpeptidaseactivatingfactor-1(Apaf-1)and pro-caspase-9toactivatecaspase-9andtheclassicalcaspase cas-cade(CoryandAdams,2002;Brökeretal.,2005).Consistently,our resultsshowedthatMCRactivatedcaspase-9aswellas caspase-3 andenhanced thecytosolicrelease of cytochromec, together withthepronouncedactivationofcaspase-8andreductioninBid, suggesting that MCR-induced apoptosis occurredby accentuat-ing the crosstalk betweenthe intrinsic and extrinsic apoptosis pathways.Astheothercandidatesreleasedfromthe mitochon-dria to elicit apoptosis are apoptosis-inducing factor (AIF) and endonuclease G(endoG), which areparticularlyinvolvedin the caspase-independentpathway(Lietal.,2001;Creganetal.,2004). However,basedonourpresentdataindicatingthatz-DEVD-fmk completelyblockedtheapoptoticcelldeathinducedbyMCR,we suggestthatAIFandendoGmightonlyplayasmallrolein MCR-inducedapoptosis.

(8)

whichresultsinAMPKactivation(Panetal.,2004;Fiarolaetal., 2015).Inthecurrentstudy,MCRtreatmentofAGScellspromoted the concentration-dependent phosphorylation of AMPK and of ACC,itsdownstreamtarget.However,theMCR-induced phospho-rylationofbothAMPKandACCwasdiminishedmarkedlybyan inhibitorofAMPK,compoundC,suggestingthatMCRcouldbean AMPKactivator. Furthermore,the blockageof AMPK activation prevented the MCR-mediated induction of apoptosis and the reductionofcellviability,stronglysuggestingthatMCRactivated AMPK,whichledtocaspase-dependentcellapoptosisinAGScells. AlthoughAMPKmightgivecancercellsa survivaladvantage byconservingenergyinATP-depletedconditions(Laderouteetal., 2006;Rubinszteinetal.,2007),ithasbeengenerallyconsidered a tumorsuppressorbased onthe following points: first,AMPK deactivatesmTOR,whichiscommonlyactivatedinmanycancers; second,mostofthetumorsuppressorgeneshavebeenidentified asupstreamactivatorsofAMPK(Hardie,2004;Fengetal.,2007); third,AMPKactivatorshavebeenreportedtoinhibit tumorigene-sisaswellastumorgrowth(Buzzaietal.,2007;Saueretal.,2012; Suietal.,2014).Notably,metforminandantroquinonolhavebeen reportedtoactivateAMPKtoinduceapoptosisbyinducing mito-chondrialstress(Zakikhanietal.,2006;Chiangetal.,2010).AvicinD alsodisruptsmitochondrialmetabolism,leadingtodecreasedATP levelsandAMPKactivation,whichisfollowedbyautophagiccell death(Xuetal.,2007).Theseresultsareinaccordancewithour presentdataproposingAMPKasakeymoleculetoinduce apopto-sisinAGScellsandsupportthepossibilitythattheMCR-induced lossofMMPleadstoATPdepletionandthesubsequentactivation ofAMPK.However,furtherstudiesarewarrantedtodeterminethe preciseupstreamactivatorofAMPK.

Inconclusion,ourpresentresultsverifiedtheanti-cancereffects ofMCRinAGShumangastriccancercells.Wedemonstratedthat MCRinduces apoptosisin AGS cells via thecaspase-dependent extrinsicandintrinsicpathwaysbyincreasingDR-related regula-tors,MMPloss,andthereleaseofcytochromec,combinedwith anincrease in theBax/Bcl-2 ratio.We also suggest that AMPK alsoplayedapivotalroleinmitochondria-mediatedapoptosisin responsetoMCRtreatment.AlthoughtheactivecompoundofMCR andtheexactmechanismthroughwhichAMPKisactivatedshould befurtherelucidated,ourresultsproposeMCRasaprospective clinicaloptiontotreatothercancers.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thatnoexperimentswereperformedonhumansoranimalsfor thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata

appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat

nopatientdataappearinthisarticle.

Authors’contributions

CP, MHH, SHP and SHH contributed in running the labora-torywork,analysisof thedata anddraftedthepaper.GYK and SKMcontributedtocriticalreading ofthemanuscript. WJKand YHCdesignedthestudy,supervisedthelaboratoryworkand con-tributedtocriticalreadingofthemanuscript.Alltheauthorshave readthefinalmanuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

ThisresearchwassupportedbyBasicScienceResearchProgram throughtheNationalResearch FoundationofKorea(NRF) grant funded by the Korea government(2015R1A2A2A01004633 and 2014R1A1A1008460)andtheFunctionalDistrictsoftheScience Beltsupportprogram,MinistryofScience,ICTandFuturePlanning,

RepublicofKorea.

References

Bröker,L.E.,Kruyt,F.A.,Giaccone,G.,2005.Celldeathindependentofcaspases:a review.Clin.CancerRes.11,3155–3162.

Buzzai,M.,Jones,R.G.,Amaravadi,R.K.,Lum,J.J.,DeBerardinis,R.J.,Zhao,F., Vio-llet,B.,Thompson,C.B.,2007.Systemictreatmentwiththeantidiabeticdrug metforminselectivelyimpairsp53-deficienttumorcellgrowth.CancerRes.67, 6745–6752.

Cai,J.,Chen,S.,Zhang,W.,Hu,S.,Lu,J.,Xing,J.,Dong,Y.,2014.Paeonolreverses paclitaxelresistanceinhumanbreastcancercellsbyregulatingtheexpression oftransgelin2.Phytomedicine21,984–991.

Chen,H.,Wang,J.P.,Santen,R.J.,Yue,W.,2015.Adenosinemonophosphateactivated proteinkinase(AMPK),amediatorofestradiol-inducedapoptosisinlong-term estrogendeprivedbreastcancercells.Apoptosis20,821–830.

Chiang,P.C.,Lin,S.C.,Pan,S.L.,Kuo,C.H.,Tsai,I.L.,Kuo,M.T.,Wen,W.C.,Chen,P.,Guh, J.H.,2010.Antroquinonoldisplaysanticancerpotentialagainsthuman hepato-cellularcarcinomacells:acrucialroleofAMPKandmTORpathways.Biochem. Pharmacol.79,162–171.

Choi,H.S.,Seo,H.S.,Kim,J.H.,Um,J.Y.,Shin,Y.C.,Ko,S.G.,2012.Ethanolextract ofPaeoniasuffruticosaAndrews(PSE)inducedAGShumangastriccancercell apoptosisviafas-dependentapoptosisandMDM2-p53pathways.J.Biomed.Sci. 19,82.

Cory,S.,Adams,J.M.,2002.TheBcl2family:regulatorsofthecellularlife-of-death switch.Nat.Rev.Cancer2,647–656.

Cregan,S.P.,Dawson,V.L.,Slack,R.S.,2004.RoleofAIFincaspase-dependentand caspase-independentcelldeath.Oncogene23,2785–2796.

Eom,D.W.,Lee,J.H.,Kim,Y.J.,Hwang,G.S.,Kim,S.N.,Kwak,J.H.,Cheon,G.J.,Kim,K.H., Jang,H.J.,Ham,J.,Kang,K.S.,Yamabe,N.,2015.Synergisticeffectofcurcuminon epigallocatechingallate-inducedanticanceractioninPC3prostatecancercells. BMBRep.48,461–466.

Fan,L.,Song,B.,Sun,G.,Ma,T.,Zhong,F.,Wei,W.,2013.Endoplasmicreticulum stress-inducedresistancetodoxorubicinisreversedbypaeonoltreatmentin humanhepatocellularcarcinomacells.PLoSONE8,e62627.

Feng,Z.,Hu,W.,deStanchina,E.,Teresky,A.K.,Jin,S.,Lowe,S.,Levine,A.J.,2007. TheregulationofAMPKbeta1,TSC2,andPTENexpressionbyp53:stress,cell andtissuespecificity,andtheroleofthesegeneproductsinmodulatingthe IGF-1-AKT-mTORpathways.CancerRes.67,3043–3053.

Figarola,J.L.,Singhal,J.,Tompkins,J.D.,Rogers,G.W.,Warden,C.,Horne,D.,Riggs, A.D.,Awasthi,S.,Singhal,S.S.,2015.SR4uncouplesmitochondrialoxidative phosphorylation,modulatesAMP-dependentkinase(AMPK)-mammaliantarget ofrapamycin(mTOR)signaling,andinhibitsproliferationofHepG2 hepatocar-cinomaCells.J.Biol.Chem.290,30321–30341.

Fu,P.K.,Wu,C.L.,Tsai,T.H.,Hsieh,C.L.,2012.Anti-inflammatoryand anticoagula-tiveeffectsofpaeonolonLPS-inducedacutelunginjuryinrats.Evid.Based Complement.Alternat.Med.2012,837513.

Fulda,S.,Debatin,K.M.,2006.Extrinsicversusintrinsicapoptosispathwaysin anti-cancerchemotherapy.Oncogene25,4798–4811.

Gao,Y.,He,C.,Ran,R.,Zhang,D.,Li,D.,Xiao,P.G.,Altman,E.,2015.Theresveratrol oligomers,cis-andtrans-gnetinH,fromPaeoniasuffruticosaseedsinhibitthe growthofseveralhumancancercelllines.J.Ethnopharmacol.169,24–33. Gwinn,D.M., Shackelford,D.B.,Egan,D.F.,Mihaylova,M.M.,Mery,A.,Vasquez,

D.S.,Turk,B.E.,Shaw,R.J.,2008.AMPKphosphorylationofraptormediatesa metaboliccheckpoint.Mol.Cell30,214–226.

Hardie, D.G., 2004. The AMP-activated protein kinase pathway-new players upstreamanddownstream.J.CellSci.117,5479–5487.

Hensley,P.,Mishra,M.,Kyprianou,N.,2013.Targetingcaspasesincancer therapeu-tics.Biol.Chem.394,831–843.

Hirai,A.,Terano,T.,Hamazaki,T.,Sajiki,J.,Saito,H.,Tahara,K.,Tamura,Y.,Kumagai, A.,1983.StudiesonthemechanismofantiaggregatoryeffectofMoutanCortex. Thromb.Res.31,29–40.

Jeon,S.M.,2016.RegulationandfunctionofAMPKinphysiologyanddiseases.Exp. Mol.Med.48,e245.

Kantari,C.,Walczak,H.,2011.Caspase-8andbid:caughtintheactbetweendeath receptorsandmitochondria.Biochim.Biophys.Acta1813,558–563. Kim,H.G.,Park,G.,Piao,Y.,Kang,M.S.,Pak,Y.K.,Hong,S.P.,Oh,M.S.,2014.Effects

(9)

Laderoute,K.R.,Amin,K.,Calaoagan,J.M.,Knapp,M.,Le,T.,Orduna,J.,Foretz,M., Viol-let,B.,2006.5′-AMP-activatedproteinkinase(AMPK)isinducedbylow-oxygen

andglucosedeprivationconditionsfoundinsolid-tumormicroenvironments. Mol.CellBiol.26,5336–5347.

Li,L.Y.,Luo,X.,Wang,X.,2001.EndonucleaseGisanapoptoticDNasewhenreleased frommitochondria.Nature412,95–99.

Li,M.,Tan,S.Y.,Wang,X.F.,2014.Paeonolexertsananticancereffectonhuman colo-rectalcancercellsthroughinhibitionofPGE2synthesisandCOX-2expression.

Oncol.Rep.32,2845–2853.

Lovell,J.F.,Billen,L.P.,Bindner,S.,Shamas-Din,A.,Fradin,C.,Leber,B.,Andrews, D.W.,2008.MembranebindingbytBidinitiatesanorderedseriesofevents culminatinginmembranepermeabilizationbyBax.Cell135,1074–1084. MacKenzie,S.H.,Clark,A.C.,2008.Targetingcelldeathintumorsbyactivating

cas-pases.Curr.CancerDrugTargets8,98–109.

Monteverde,T.,Muthalagu,N.,Port,J.,Murphy,D.J.,2015.Evidenceof cancer-promotingrolesforAMPKandrelatedkinases.FASEBJ.282,4658–4671. Mukudai,Y.,Kondo,S.,Shiogama,S.,Koyama,T.,Li,C.,Yazawa,K.,Shintani,S.,2013.

RootbarkextractsofJuncuseffususandPaeoniasuffruticosaprotectsalivarygland acinarcellsfromapoptoticcelldeathinducedbycis-platinum(II)diammine dichloride.Oncol.Rep.30,2665–2671.

Nieminen,A.I.,Eskelinen,V.M.,Haikala,H.M.,Tervonen,T.A.,Yan,Y.,Partanen, J.I.,Klefström,J.,2013.Myc-inducedAMPK-phosphop53pathwayactivates Baktosensitize mitochondrialapoptosis.Proc. Natl.Acad.Sci.U.S.A. 110, 1839–1848.

Pan, D.,Dong,J.,Zhang, Y.,Gao, X., 2004. Tuberoussclerosis complex:from Drosophilatohumandisease.TrendsCellBiol.14,78–85.

Park,J.,Kim,H.Y.,Lee,S.M.,2011.ProtectiveeffectsofMoutanCortexRadicisagainst acutehepatotoxicity.Afr.J.Tradit.Complement.Altern.Med.8,220–225. Peng,L.H.,Liu,S.,Xu,S.Y.,Chen,L.,Shan,Y.H.,Wei,W.,Liang,W.Q.,Gao,J.Q.,2013.

Inhibitoryeffectsofsalidrosideandpaeonolontyrosinaseactivityandmelanin synthesisinmouseB16F10melanomacellsandultravioletB-induced pigmen-tationinguineapigskin.Phytomedicine20,1082–1087.

Poon,T.Y.,Ong,K.L.,Cheung,B.M.,2011.Reviewoftheeffectsofthetraditional ChinesemedicineRehmanniaSixFormulaondiabetesmellitusandits compli-cations.J.Diabetes3,184–200.

Rho,S.,Chung,H.S.,Kang,M.,Lee,E.,Cho,C.,Kim,H.,Park,S.,Kim,H.Y.,Hong,M., Shin,M.,Bae,H.,2005.Inhibitionofproductionofreactiveoxygenspeciesand geneexpressionprofilebytreatmentofethanolextractofMoutanCortexRadicis inoxidativestressedPC12cells.Biol.Pharm.Bull.28,661–666.

Rubinsztein,D.C.,Gestwicki,J.E.,Murphy,L.O.,Klionsky,D.J.,2007.Potential thera-peuticapplicationsofautophagy.Nat.Rev.DrugDiscov.6,304–312. Sauer,H.,Engel,S.,Milosevic,N.,Sharifpanah,F.,Wartenberg,M.,2012.Activationof

AMP-kinasebyAICARinducesapoptosisofDU-145prostatecancercellsthrough generationofreactiveoxygenspeciesandactivationofc-junN-terminalkinase. Int.J.Oncol.40,501–508.

Shackelford,D.B.,Shaw, R.J.,2009.TheLKB1-AMPKpathway: metabolismand growthcontrolintumoursuppression.Nat.Rev.Cancer9,563–575. Shamas-Din,A.,Brahmbhatt,H.,Leber,B.,Andrews,D.W.,2011.BH3-onlyproteins:

orchestratorsofapoptosis.Biochim.Biophys.Acta1813,508–520.

Shaw,R.J.,Bardeesy,N.,Manning,B.D.,Lopez,L.,Kosmatka,M.,DePinho,R.A., Cant-ley,L.C.,2004.TheLKB1tumorsuppressornegativelyregulatesmTORsignaling. CancerCell6,91–99.

Sui,X.,Xu,Y.,Yang,J.,Fang,Y.,Lou,H.,Han,W.,Zhang,M.,Chen,W.,Wang,K.,Li, D.,Jin,W.,Lou,F.,Zheng,Y.,Hu,H.,Gong,L.,Zhou,X.,Pan,Q.,Pan,H.,Wang,X., He,C.,2014.Useofmetforminaloneisnotassociatedwithsurvivaloutcomes ofcolorectalcancercellbutAMPKactivatorAICARsensitizesanticancereffect of5-fluorouracilthroughAMPKactivation.PLOSONE9,e97781.

Tran,Q.,Lee,H.,Park,J.,Kim,S.H.,Park,J.,2016.Targetingcancermetabolism– revisitingtheWarburgeffects.Toxicol.Res.32,177–193.

Wang,S.C.,Tang,S.W.,Lam,S.H.,Wang,C.C.,Liu,Y.H.,Lin,H.Y.,Lee,S.S.,Lin,J.Y.,2012. AqueousextractofPaeoniasuffruticosainhibitsmigrationandmetastasisofrenal cellcarcinomacellsviasuppressingVEGFR-3pathway.Evid.BasedComplement. Alternat.Med.2012,409823.

Woods,A.,Johnstone,S.R.,Dickerson,K.,Leiper,F.C.,Fryer,L.G.,Neumann,D., Schlat-tner,U.,Wallimann,T.,Carlson,M.,Carling,D.,2003.LKB1istheupstreamkinase intheAMP-activatedproteinkinasecascade.Curr.Biol.13,2004–2008. Xu,Z.X.,Liang,J.,Haridas,V.,Gaikwad,A.,Connolly,F.P.,Mills,G.B.,Gutterman,

J.U.,2007.Aplanttriterpenoid,avicinD,inducesautophagybyactivationof AMP-activatedproteinkinase.CellDeathDiffer.14,1948–1957.

You,M.K.,Kim,M.S.,Jeong,K.S.,Kim,E.,Kim,Y.J.,Kim,H.A.,2016.Loquat(Eriobotrya japonica)leafextractinhibitsthegrowthofMDA-MB-231tumorsinnudemouse xenograftsandinvasionofMDA-MB-231cells.Nutr.Res.Pract.10,139–147. Yun,C.S.,Choi,Y.G.,Jeong,M.Y.,Lee,J.H.,Lim,S.,2013.MoutanCortexRadicisinhibits

inflammatorychangesofgeneexpressioninlipopolysaccharide-stimulated gin-givalfibroblasts.J.Nat.Med.67,576–589.

Imagem

Fig. 1. Effects of Moutan Cortex Radicis on the cell viability in AGS and WI-38 cells.
Fig. 2. Induction of apoptosis by Moutan Cortex Radicis in AGS cells. The cells were treated with various concentrations of MCR for 24 h
Fig. 4. The activation of caspases by Moutan Cortex Radicis treatment in AGS cells. (A) After treatment with MCR for 24 h, the equal amounts of cell lysates were separated on SDS-polyacrylamide gels and transferred to PVDF membranes
Fig. 5. The suppression of Moutan Cortex Radicis-induced apoptosis by the inhibition of caspase-3 in AGS cells
+3

Referências

Documentos relacionados

The structure of the remelting zone of the steel C90 steel be- fore conventional tempering consitute cells, dendritic cells, sur- rounded with the cementite, inside of

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

The increased levels of caspase-3 activation suggest that silver nanoparticles induced apoptosis in MCF 7 breast cancer cells in a caspase-3-dependent manner..

Expression of the A88V and G11R mutants resulted in elevated levels of the cleaved forms of caspase-3, caspase-8, caspase-9, and PARP, which are all markers of apoptotic

matrix was present. These data support the idea that ions can modulate the rate of Pg activation through a mechanism that may be associated with changes in the molecular conformation

O método oficial da A.O.A.C.(946.01) para análise de fosfatase alcalina residual em leite é um método de Scharer espectrofotométrico adaptado, que utiliza 2,6