• Nenhum resultado encontrado

Effect of orientations on the hydrogeninduced cracking resistance improvement of API 5L X70 pipeline steel under various processing art hfgabreu effect

N/A
N/A
Protected

Academic year: 2018

Share "Effect of orientations on the hydrogeninduced cracking resistance improvement of API 5L X70 pipeline steel under various processing art hfgabreu effect"

Copied!
11
0
0

Texto

(1)

various

thermomechanical

processing

Mohammad

Masoumi

,

Cleiton

Carvalho

Silva,

Hamilton

Ferreira

Gomes

de

Abreu

FederalUniversityofCeará,DepartmentofMetallurgicalandMaterialsEngineering,CampusdoPici,Bloco729CEP60.440-554,Fortaleza,Ceará,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29January2016

Receivedinrevisedform3May2016 Accepted4May2016

Availableonline4May2016

Keywords: API5LX70steel Crystallographictexture Thermomechanicalprocessing Hydrogen-inducedcracking

a

b

s

t

r

a

c

t

Inthisstudyathermomechanicalprocessingwassuggestedtoimprovethehydrogen-inducedcracking (HIC)resistanceinX70pipelinesteel.Proposedthermomechanicaltreatmentproducedfavorable crys-tallographictexturesandsignificantlyincreasedHICresistancewhichisofgreatinteresttopetroleum industry.TheresultsshowedthatthehighanglegrainboundariesandKernelparametervaluesactedas hydrogen-trappingsites,leadingtoincreasedHICsusceptibility.HighestHICresistancewasobtainedin samplerolledisothermallyat850◦C,duetothehighproportionofgrainsorientedwith{110}planes

par-alleltothenormaldirectionand{111}//NDfibersaccompaniedbynegligiblefractionofgrainsoriented in{001}//ND.

©2016ElsevierLtd.Allrightsreserved.

1. Introduction

The continuously increasing demand for crude oil and gas requiresthesteelmakingindustrytoimprovethecorrosion resis-tanceinharshandaggressiveenvironments.Lowcarbonsteelsfor sourservicepipingarewidelyusedfortransportationofnatural gasandcrudeoilacrosslongdistancesbecauseofthelowalloying elementscontent,economicmanufacturingandeasyinstallation

[1–3].Stresscorrosioncracking(SCC)andhydrogen-induced crack-ing (HIC), are considered as the main damage modes in the sourenvironment[4–6]andcauseaconsiderableamountof eco-nomiclosstothepetroleumindustry.Therefore,manystrategies havebeenproposedtoreduceHICsusceptibilityincludingadding micro-alloying elements such as titanium, niobium and vana-dium,decreasingsulphurandphosphoruscontents,controllingthe morphologyofmanganesesulphides,removingprecipitationand segregationzonesduring solutionheat treatmentand reducing thenumberof hydrogentrapping [7–9].However,these strate-gieshavenoteffectivelysucceededtocontrolHICsusceptibility. Therefore,crystallographictextureandgrainboundary distribu-tionsengineeringseemstobealogicalstepforenhancementof HICresistance.

∗Correspondingauthor.

E-mailaddress:mohammad@alu.ufc.br(M.Masoumi).

Grainsorientedin preferredcrystallographicorientationthat develop during manufacturing process can influence both the mechanical properties and theHIC resistance. The textureof a rolledsheetisrepresentedbyacombinationofcrystallographic planeanddirection{hkl}<uvw>,whichmeansthat{hkl}arethe planesparalleltotherollingplaneandthe<uvw>arethe direc-tionsparalleltotherollingdirectionwhichisshowninFig.1[10]. Venegaset al. [11,12]studied influence of textureonHIC sus-ceptibilityinAPIX46steel.Theyshowedthatthepreferredgrain orientedwithplane{111}paralleltonormaldirection({111}//ND) produced viawarmrollingbellowrecrystallisationtemperature increasedtheHICresistance.Ghosh etal.[13]reportedthatthe cleavage{001}//NDgrainsgeneratedduringrollingathigh tem-peraturebyrescrystallisationofaustenitegrainsfollowedbyferrite transformation,provideaneasycrackpathandreducesignificantly boththemechanicalpropertiesandtheHICresistance.Verdejaetal.

[14]documentedthatthecrystallographictexturesassociatedwith {110}//NDand{332}//NDreducethesensitivitytoHICin ferritic-pearliticsteels,while{001}//NDand{112}//NDtextureshavethe oppositeeffect.Recently,Mohtadi-Bonabetal.[15–17]reported that there is no preferred directionfor hydrogencrack propa-gation,andthat crackcanpropagatealongvariousorientations. However,differentfactorssuchasgrainorientation,grain bound-arydistributions,specialcoincidencesitelattice(CSL)boundaries, and distributionofrecrystallisedgrainsplay significantrolesin HICresistancebyprovidinggoodlatticefitwithlowstoredenergy ahead of thecrack tip [18,19]. It is worth mentioningthat the

(2)

Fig.1.Schematicrepresentationofcrystalorientationwithrespecttosampleaxes [10].

crystallographictextureinterpretationisnotstraightforwardand afundamentalunderstandingofcorrosionisrequired.

Inthepresentwork,firstlymicrostructureandmicrotexturein thevicinityofhydrogeninducedcracks,inaplatetakenfroman in-servicesourgaspipelinewereexaminedtofindacorrelation betweencrackpropagationandcrystallographictextures.Then,a similarmaterialwithcomparablechemicalcompositionwascut andsubjectedtothermomechanicalprocessingwithvarious fin-ishrollingtemperaturestoproduceasimilarmicrostructurewith differentcrystallographictextures. Then, tostudytheeffects of differentthermomechanicalprocessingonmicrostructure, macro-textureandmicrotexturewereinvestigatedbyscanningelectron microscopy (SEM), X-rayenergy dispersive spectroscopy (EDS), electronbackscatterdiffraction(EBSD),andX-raydiffraction(XRD). Finally,electrochemicalhydrogenchargingtestswerecarriedout toshowtheHICresistanceimprovementviaappropriate thermo-mechanicalprocessing.

2. Experimentalprocedure

AnAPI5LX70platewastakenfromanin-servicepipelinewhich wasusedforabout20yearsforsourgastransportationand con-tainedseveralhydrogeninducedcracks.Thechemicalcomposition ofthissamplewas0.105C,1.664Mn,0.018P,0.006Sand0.204Si (wt.%).Inaddition,anothersimilarplatewithcomparablechemical composition(0.099C,1.604Mn,0.014P,0.011Sand0.180Si(wt.%)) wascutfroma9mmplateandthensubjectedtofourdifferent thermomechanicalprocessingroutes,asshowninFig.2.

Inordertodissolve inclusionsand eliminateprobable segre-gationzones,thesamplesweresolutionannealedat1200◦Cfor

onehour.Then, thesampleswererolledina Stanatmodel TA-315rollingmachinewith273rpmrotationalspeed,inthreepasses toreachthe3mmthickness(9mm→7mm→5mm→3mm), fol-lowedbyaircoolingtoroomtemperature.Temperaturetracking during the rolling operation was carried out by Minolta/Land Cyclops152InfraredThermometer.Itisworthmentioningthatthe mainideaforthedifferentstartandfinishrollingtemperatures, lowerthantherecrystallisationtemperature(inbothausteniteand austenite-ferriteregions),wastoobtainasimilarmicrostructure withdifferentcrystallographictextures.

Microstructuralstudieswerecarriedoutalongthecrosssection (RD-ND)onallsamples.Therolledsampleswerepreparedfor met-allographicanalysisbygrindingwithSiCpapersupto1200gritand thenpolishingwith6,3and1␮mdiamondpaste.Finally,the spec-imenswereetchedwith2%nitalsolutionforapproximately40s andexaminedusingSEM.Also,themicro-hardnesstestwas per-formedbasedontheASTME-384standardalongthemid-thickness ofspecimenswith4.903Nindentationloadfor15s(HV0.5).

Macrotexturesweremeasuredinmid-thicknessalongthe RD-TDsections(rollingplane).Thesestudieswereperformedusing PanalyticalX’PertProdiffractometerequippedwithCuradiation

sourceandtexturegoniometer.Threeincompletepolefigures,i.e. {110},{200}and{211}wereobtainedinthereflectionmodeona 5◦gridupto85sampletilt.Theorientationdistributionfunction

(ODF)ofsampleswascalculatedfromthemeasuredpolefigures usingMTEX-freeandopensourcesoftwaretoolbox.The␾2=45◦

sectionofEulerspacewasusedtodisplay thecomputed ODFs. Moreover,electronbackscattereddiffraction(EBSD)analysiswas conductedintheRD-NDplaneofinvestigatedsamplesusingFEI Quanta FEG 450 scanning electron microscope operating at an accelerationvoltageof20kV,sampletiltangleof70◦,working

dis-tanceof12mmand0.5␮mstepsize.TheChannel5softwareand MTEXwereusedtoanalyseanddisplaythedata.

InordertoestimatetheHICresistance,twospecimensofeach sheetwerepreparedfromthemid-thicknessregion,consideredas themostsusceptibleareatoHIC,andweresubjectedtothe elec-trochemicalhydrogenchargingtest.Thesamplesweregroundup to1200grit paper,and then polishedwith 6,3 and 1␮m dia-mondpastetoeliminate flux-limitingsurface impedances[20]. 0.2Msulphuricacidsolutionwasusedforhydrogencharging,in theelectrochemicalhydrogen-chargingtest.Moreover,toprevent theformationofhydrogenbubblesonthesurfaceofthespecimen andtoincreasetheamountofhydrogenenteringthesteel,3g/l arsenictrioxide(As2O3)wasaddedtothesolution.Eachsample

wasthenelectrochemicallychargedfor6hwithaconstantcurrent of20mA/cm2.

3. Resultsanddiscussion

3.1. MicrostructureofHICsample

The in-servicesour material with severalhydrogen-induced crackspresentedapearlite/ferritebandedmicrostructure.The typ-icalstepwisehydrogencrackpropagationisshowninFig.3aandb andisorientedparalleltotherollingdirection,besidessome deflec-tiontowardsthenormaldirection.Therewasnosegregationzone foundin thesample bySEMandEDS analysis.However, differ-enttypesof inclusionswerefoundinthevicinityofthecracks. Somecomplexcarbonitrideprecipitatessuchas(Ti,Nb,V)(C,N) wereidentified byEDS. As shown in Fig. 3,the ferrite/pearlite phaseboundariesalsoenhancedthecrackspread.Micro-hardness measurementsintwodifferentregions(withandwithoutcracks), demonstratedthesignificanthardnessvariation.Thehardnesswas measuredasabout200±5HVin thenon-crackedregion,while 235±7HVwasmeasuredaroundthecrackedarea,whichindicated acorrelationbetweenhardnessandHICsusceptibility.

3.2. MicrotextureanalysisofHICsample

Fig.4showsthenormaldirectioninversepolefigure(IPF)maps oftheHICcracked sample.Themediumanglegrainboundaries (MAGBs)withamisorientationbetween5and15◦andhighangle

grainboundaries(HAGBs)withmisorientationgreaterthan15◦are

markedasthinandthickblacklines,respectively.Asshowninthe IPFmaps,theHICcrackpropagatedalongtheboundariesrelated tothegrainsorientedwith{001}//NDand{111}//NDfibers,which areindicatedwithredandbluecolours,respectively.Sincethehigh anglegrainboundarieshavehigherinternalenergyincomparison tobothlowandmediumanglegrainboundaries,theywere consid-eredasthemainhydrogentrappingsites,providingeasierpathsfor crackpropagation.

(3)

Fig.2.SchematicrepresentationofthermomechanicalprocessingofsamplesA–D.

Fig.3. (a)SEMmicrograph,(b)EDSresultoftheparticleinhydrogencrackpath.

(4)

hydrogenatomsrecombinetoformhydrogenmolecules,leadingto greaterinternalpressureinmaterial,thuspromotingcrack nucle-ationandpropagation[21].Inaddition,hardnessplaysasignificant rolein HICsusceptibility.Ontheone hand,accordingthe Hall-Petchrelation[22,23],theyield strengthand hardnessincrease withdecreasinggrainsize,leadingtoincreasedHIC susceptibil-ity.On theotherhand, it isbelieved that thegrainboundaries actas obstaclesto crack propagation.In the samesample also fewverycoarsegrains(around18␮mindiameter)wereobserved inthevicinityof thecracks(Fig.4aandb).Thesecoarsegrains withlow fractionof grainboundaries canfacilitatecrack prop-agation and increase HIC susceptibility. Therefore, there is an optimum grain size at which maximum HIC resistancecan be achieved.

AlthoughtheIPF orientationmap is anexcellent methodto presentgrainorientation,ithasanunavoidablelimitationinthe Eulerscheme[24].Tocorrectthislimitationandfindacorrelation betweencrackpropagationandgrainorientations,orientation dis-tributionfunctionwascalculatedandshowninFig.5.Thecube texturecomponentwith(001)[0 ¯10] crystallographicorientation wasthedominanttextureintheHICcrackedsample(regionsAand B).Thecubecomponentthatdevelopedundersheardeformation duringthermomechanicalprocessinghasalowabilitytorelease thestressorstrainconcentration.InFig.5aandb,thelow resis-tancecleavagepathwithorientationwithin15◦oftheidealcube

componentisconsideredasthemaincrackpropagationpath.In addition,highdislocationdensitywasgeneratedduring thermo-mechanicalprocessingdistributedalongdifferentslipsystemsand providedmaximumshearstressaheadofcracktip[25,26].Thus, thezigzag-likecrackpropagationobservedinthissampleisrelated totheabovementionedphenomenon.Also,the(112)[3 ¯1 ¯1] compo-nentisobservedinregionCinthevicinityofthecrack.The(112) planeisconsideredasoneofthemainslipplanesintheBCC lat-tice[27].Asmentionedearlier,dislocationisarrangedalongthis slipplaneandprovidessufficientdrivingforceforcrack propaga-tion.

Another parameter to be evaluated is the Kernel average misorientation(KAM)whichrepresentstherelativeaverage mis-orientationbetweenanypointsthatbelongtothesamegrain[28]. KAMdistributionmapsfortheHICcrackedsampleareshownin

Fig.6. AccordingtoRef. [29], hydrogensegregationis localised nearthegrainboundaries,consideredasdislocationaccumulation sites.Ahighaccumulationofgrainswithrelativemisorientation between0.5–2.5◦ is observed. This accumulation suggests that

strain induced during both manufacturing process and service developseasiersitesandpathstocrackformation.Also,theregions nearthehydrogeninducedcracksshowedlowerKernelparameter valuesduetoreleaseofenergyneartothecracktipwhichprovides sufficientdrivingforceforcrackgrowth.Theresultsrevealedthat thecracktendedtopropagatealonggrainswithhighKernel param-etervalues.The highdislocation densityaroundthecrack path permitstheaccumulationofmisorientationsinsidethegrainsand distortionbetweenneighbouringlattices,leadingtoanincreasein HICsusceptibility.

ItisdeducedthattherearethreepossibilitiesforHICcrack prop-agation.Thefirstisthatthecracktendstopropagatethroughthe deformedgrainswithhighstoredenergywheredynamic recrys-tallisationorrecoverydidnotoccur.Thesecondisthatthecrack propagatedalonggrainorientedwith{001}//ND,wherethelack ofsufficientslip systemshasaharmfuleffectonHICresistance. Besides,deformedgrainsorientedwith{111}//NDand{112}//ND withhighdislocationcanalsoprovideeasierpathstocrack prop-agation. Finally, very fine grains can trap more hydrogen and generatemoreinternalenergytofacilitatecracknucleationand propagation.

3.3. Thermomechanicalprocessing

3.3.1. Microstructuralanalysis

Duringthermomechanicalprocessing,thesampleswerefirstly solutiontreatedinafurnaceat1200◦Cforonehour,thenrolled

aboveand below the recrystallisationtemperature (Fig.2), fol-lowed by air cooling. The microstructure of specimens after different thermomechanical processing is shown in Fig. 7. The ferritemicrostructure withpearlite, martensite-austenite (M/A) constituentsandasmallfractionofbainiteisobserved. Further-more,rollingatalowertemperatureinamixtureofausteniteand ferriteregion(sampleA)ledtotheformationoffinergrainsize. Theferriteisresponsibleforincreasedhardeningandthe austen-itetendingtoundergoadditionalhardeningbyrisingnumberof availablesitesforferritenucleation.Rollingbelowthe recrystallisa-tiontemperaturedevelopedthepancake-shapedaustenitegrains, leadingtoanincrease inthenumber ofnucleationsitesforthe austenite-to-ferritetransitiontoformpolygonalferrite.

Hardnessmeasurementswerecarriedoutatthemid-thickness ofspecimens.Thehardnessincreasedwithdecreasingfinishrolling temperature.ThemeasuredhardnessvaluesinsamplesA,B,Cand Dwere224,211,234and220±5HV0.5,respectively.Accordingto theAPI5LrequirementsforequipmentinseverewetH2Sservice [30],hardnessshallbelowerthan248±6HV(22HRC).Therefore,all specimensmetthehardnessrequirementsoftheAPI5L specifica-tion.Overall,asimilarmicrostructurewasobtainedinallsamples. Thisisessentialhere,becausethedifferentbehaviourofHIC resis-tancecouldbeonlyattributedtothedifferencesincrystallographic texturesproducedviadifferentthermomechanicalprocessing.

3.3.2. Macrotexture

Thecrystallographictextureandgrainboundarydistributionsin fourdifferentthermomechanicalprocessingwerestudiedtofindan appropriatetexturetoattainahigherHICresistance.Fig.8shows theorientationdistributionfunctionat␾2=45◦intheRD-TDplane

inthesespecimens.(001)<1 ¯20>texturecomponentswithlowHIC resistanceweredevelopedinsampleAduringrecrystallisationin austeniticregionfollowedbyferritetransformation.Also, defor-mationatalowertemperatureinamixtureofausteniteandferrite phasescausedthestrongformationof{111}//NDfiber.However, theshearstraingeneratedbyfrictionbetweentherollsandsurface sheetduringrolling,developedgrainsorientedin{110}//ND direc-tions,whichisshowninFig.8a.Itisworthmentioningthatthe (11)<1 ¯21>texturecomponentsareaconsequenceofthe recrys-tallisationof ferritegrains[31].In addition,thehighesttexture intensityof theODFsbelongs tosampleA, which rolledinthe ferrite-austeniteregion.Raabeetal.[32]showedthatdislocation slidingduringrollingatelevatedtemperature(aboveTm/4)

exten-sivelytookplaceintheBCCstructureonthe{110}and{112}planes, leadingtodecreasingtheintensityofcrystallographictexture.

The cleavage {001}//ND texture components including (001)[0 ¯10],(001)<1 ¯30>,(001)<1 ¯20>and(001)<1 ¯10>were devel-oped in sample B, which was rolled at a higher finish rolling temperature(833◦C),couldbe attributedtorecrystallisation of

austenitefollowedbyferritetransformation.Thepresenceofthese texturesincreasesthenumberofpossiblecrackpropagationsand HICsusceptibility[8].Also, theformationof{112}//ND compo-nents,thatdominatethe(112)[0 ¯21]and(112)[ ¯1 ¯11]orientations, wasobservedinthiscondition.Singhetal.[33]reportedthatthe shearstrainduringplasticdeformationintheaustenitephasecan developthe(112)[1 ¯10]componentdue toitslowstacking fault energy. Then, dynamic recrystallisation and austenite toferrite phase transformation led to the formation of grains with the (112)[0 ¯21]orientation.It isnotablethattheplasticdeformation oftheFCCaustenitephaseoccursbysliportwinningsystem.Hu

(5)

Fig.5.Calculatedtexturecomponentsatconstant␾2=45◦orientationdistributionfunctionsectionfromthreedifferentregionsshowninFig.4.

orientationismostlyrelatedtothetwinningsystem,becauseof lowcrystalsymmetry.Furthermore,thecrystallographictexture in sample C was similar tosample B, but theintensity of the {112}//ND fiber decreased at low finish rolling temperature (737◦C).Interestingly,theisothermalrollingat850C(sampleD)

couldhinderthedevelopmentofundesirable{001}//ND compo-nents.The(110)[1 ¯13]texturecomponentwithaspreadtowards theGosscomponentwith(110)[001]orientationwasdominantin sampleD.

Itwasdemonstratedthatthecrystallographicorientationcan improve theHIC resistanceby well-development of {111}//ND and {110}//ND textures, and reducing the number of cleavage {001}//NDcomponents[8].Fig.9presentstheorientationvolume fraction(f(g))offibercomponentssuchas{001},{112},{111},and {110}//NDcalculatedbyMTEXsoftwarewitha2.5◦deflection.For

thepurposeoftexturaldesign,thebestresistanceagainstcrack propagationresultsinminimisingthe{001}cleavageplanesthat areorientedparalleltothenormal direction,andincreasingthe desirable{110},{111}and{112}//NDfibercomponentsthatare closetothecompactplanes.Theformationofstrongcovalentbonds betweentwolatticeslinkedtogetherbyclose-packedplaneleads toobstaclestocrackpropagation,andincreasesHICresistance.As showninFig.9thefirstthreesampleswerenotsuitableforsour

environment,duetothehighvolumefractionofundesired{001} orientedgrains.Incontrast,sampleDpresentedsharp{110}//ND and{111}//NDtexturecomponents,accompaniedbyanegligible volumefractionof{001}//NDorientedgrains,andconsideredtobe suitableforuseinsourenvironment.

3.3.3. Microtexture

AllspecimenswereexaminedbytheEBSDtechniqueinorder to analysecrystallographic orientations, average misorientation angles,grainboundarytypesandTaylorfactor.Theinversepole figure(IPF)mapsofsamplesareshowninFig.10.Itisworth not-ingthatequiaxed,strain-freerecrystallisedgrainssurroundedby highanglegrainboundariesasa resultofhot-rollinghavehigh resistancetocracknucleationandpropagation[35].Conversely, elongatedgrainswithstoredenergyarepronetoHIC.Moreover, thisinhomogeneousmicrostructurecanboosttheHIC susceptibil-ityinthefinalstructure.Thegrainsizeisanotherefficientfactorto controlHICresistance[36].

Thevariousthermomechanicaltreatmentsresultedinawide distributionrangeofgrainorientationsinthespecimens.Rolling atarelativelylowtemperature(i.e.belowAr3)generatedahigher

(6)

Fig.6.KernelaveragemisorientationmapinthreedifferentregionsshowninFig.4fromHICsample.

Fig.7.SEMmicrographsshowingmicrostructureofspecimensafterdifferentthermomechanicalprocessing(a)sampleA,(b)sampleB,(c)sampleCand(d)sampleD.

energy which facilitates HICcracking. Furthermore,for sample Bthatwasrolledata relativelyhightemperature(aboveTm/2),

thedegreeof deformationdecreased by recrystallisation inthe austenitephase.Dynamicrecrystallisationtookplaceinthis sam-plegeneratedtheundesirable(001)[0 ¯10]cubetexturecomponent,

(7)

Fig.8.Texturecomponentsatconstant␾2=45◦orientationdistributionfunctionsectionin(a)sampleA,(b)sampleB,(c)sampleCand(d)sampleD.

(112)[2 ¯41]and(110)[1 ¯11]texturecomponentsweredevelopedby isothermallyhotrollingat850◦C(sampleD).

TheanalysisofEBSDmapsledtootherinteresting microstruc-turalinterpretationsregardingthedifferencesofgrain-boundary angles between adjacent grains. The volume fraction of low, mediumandhighanglegrainboundariesforbothHICcrackedand thermomechanically processed specimens was calculated using MTEXsoftwareandisshowninFig.11.Itisclearlyobservedthatthe highstoredenergyasconsequenceofalargefractionofhighangle grainboundariesinHICcrackedsampleledtoincreasingtheHIC susceptibility.Inotherwords,HICresistancedependsonthe abil-ityofmicrostructureandprecipitatestotraphydrogen.Thehigh anglegrainboundarieswithhighdisorderbetweenneighbouring grainsandhighdensityofdislocationsandvacanciesare consid-eredaseffectivehydrogentrappingsites.Itisalsobelievedthat highangleboundarieswithhighlatticedistortionandhighstored energyprovideaneasierpathtocrack nucleationand propaga-tion.Therefore,anincreasednumberoflowangleandcoincidence sitelattice(CSL)boundariesarefavorableforimprovementofHIC

resistance.Althoughthermomechanicalprocessingreduced signif-icantlyproportionofhighanglegrainboundaries,therewasno significantchangeobservedinCSLboundaries.Therefore,itwas confirmedthattheHICsusceptibilityincreaseswithincreased pro-portionofhighanglegrainboundaries,anditsfractionwasfound higherinallregionsofHICsample.

Asmentioned earlier,plastic deformationat crystalscalesis consideredbylatticeorientationalongdislocationarrays,canbe observedbyKernelaveragemisorientation.Thefrequencyof Ker-nelparameterdistributionindeferentregionsofHICsampleand TMCP specimens isshown in Fig.12.The highKernel parame-ter valuesbelong toHICsample. It meansthatthehighKernel parametervaluescorrespondtohigherHICsusceptibility. More-over,thepresenceofveryhighKernelparametervaluesexceeding 2.5◦isobservedinHICsample,facilitatehydrogencrack

propaga-tion.SamplesBandDhavemaximumfrequenciesoflowKernel parametervalues(lessthan0.5◦),whichledtohighHICresistance

(8)

sam-Fig.9.VolumefractionsoffibercomponentsinspecimensA–Dafterdifferent ther-momechanicalprocessing.

plesBandD,wherenewrecrystallisedgrainswithlowdislocation densitywerenucleated.Inotherwords,therecoveryanddynamic recrystallisationbyannihilationand dislocationrearrangements cansignificantlyreducetheKernelparametervaluesandHIC sus-ceptibility.Therefore, animprovement of HIC resistancein the mentionedspecimensisexpected.

TheTaylorfactor,whichdemonstrates acorrelationbetween yieldstressandcrystalorientationinmetals,isusedtoanalysethe levelofplasticdeformation,showingthedistributionofgrain ori-entation[37,38].Taylorfactoranalyseswereperformedoncracked andthermomechanicallyprocessedspecimens,showninFig.13.

Fig.11.GrainboundarydistributionsinsamplesA–Dinadditiontosamplewith hydrogeninducedcrackswhereLAGBsmeanslowanglegrainboundaries,MAGBs meansmediumanglegrainboundaries,HAGBsmeanshighanglegrainboundaries andCSLmeanscoincidencesitelattice.

Somegrainsthatarealreadyalignedintheloadingdirectioncan easilyslipanddeform,sincethecriticalresolvedshearstress(␶crss)

isattained.ThesegrainshavealowTaylorfactorvalue.Secondly, thegrains thatare notalready aligned inslip planes regarding stressstate.Thus,thereneedstobesomekindofrotationintoa newpositiontobringoutminimum␶crsstoslip.Thesegrainswith

moderateTaylorfactorvaluearecalledsoftgrains.Finally,there aresomegrainsthatcannotrotatetobringtheappropriateslip systems.Therefore,suchgrainsarecalledhardgrains,withahigh

(9)

Fig.12.FrequencydistributionofKernelaveragemisorientationinsamplesA–Din additiontoHICsample.

resistancetodeformation,andarehighlypronetocrackformation andpropagation,asindicatedbytheredcolourintheTaylor fac-tormaps.Fig.13displaysthedistributionofTaylorfactorinthe TMCPsamples.Thegrainsindicatedinlightyellowpresenta rela-tivelyeasypathandmightresistcrackpropagation;whereasthose indarkyellowandredarepronetocrackformation. Transgranu-larcrackpropagationoccursthroughthegrainswithhighTaylor factor and dislocation accumulation,while intergranular cracks propagateduetotheTaylorfactormismatchinneighbouringgrains becauseofdifferencesinactiveslipsystems.Thegrainhavingahigh Taylorfactortendstoberesistanttoyielding,thustransgranular crackingisexpected[39].Intergranularcracksoccurredalongcrack propagationpathsbetweenadjacentgrainsidentifiedbydifferent Taylorfactormismatches.

Activeslipsystemsdependonthecrystallographicorientation andthedifferencesoflocalstressneargrainboundariesbetween adjacentgrains[40].Thefrequency distributionof Taylorfactor valuesinTMCPsamplesispresentedinFig.14.SamplesAandD

Fig.14.TaylorfactordistributioninsamplesA–D.

hadlowTaylorvalues.Thismeansthattherewaslessresistanceto dislocationmovement.Ontheotherhand,samplesBandC devel-opedhigh-stressconcentrationnearthegrainboundariesdueto thehighresistanceagainstdislocationmovement,leadingtocrack formationandprovidinganeasierpathforcrackpropagation.In otherwords,grainboundaryslidingisrestrictedbytheir neigh-bouringgrainswithhighlocalstressdifferences,collaboratedby crystallographicorientation.

Fromthementionedcrystallographictextureandgrain bound-ary characteristic investigations,it couldbeconcluded that the sampleDhadthebestHICresistance.Thismeansthatthehighest HICresistanceresultsinsampleD,whichwasrolledisothermally at850◦C,duetothesharp{110}and{111}texturecomponents

accompaniedbythenegligiblevolumefractionofgrainsoriented with{001}//ND.Also,alargeamountoflowanglegrain bound-arieswithlittlelatticedistortionandlowstoredenergywiththe leastTaylorfactor andKernel parametervalues providedlower traphydrogensites.Finally,toascertaintheroleofcrystallographic textureandgrainboundarycharacteristics,sampleCandDwere

(10)

Fig.15.SEMmicrographsofelectrochemicallycharged(a)sampleC,(b)sampleD.

selectedtoconductanelectrochemicalhydrogencharging exper-iment.Fig.15ashowstheHICcrackpropagationinthesampleC after6h.ThesampleDshowedhighresistancetocrackformation, andnoHICcrackswerefoundinthecrosssectionofthissample afterhydrogencharging(Fig.15b).Thissupportsthehypothesis ofbeneficialeffectsofcrystallographictextureonHICresistance. Experimentaldataobtainedinthisworkcanbeusedtoenhance accuracyofnumericalmodels[41,42].

4. Conclusions

Inthiswork,severalanalyseswereusedtoidentifytheeffectsof microstructure,precipitations,andcrystallographicorientationon HICsusceptibility.Then,theinfluenceofdifferent thermomechan-icaltreatmentsonmicrostructure,macro-andmicrotexturewere studied.Finally,anelectrochemicalhydrogenchargingexperiment wasperformedtoverifythehypothesisofbeneficialeffectsof crys-tallographictextureonHICresistance.Thefollowingconclusions canbedrawn:

1.HICcracks propagated not only through {001}//NDoriented grains,butalsoalongthegrainsorientedwith{111}//ND. 2.Thehighdislocationdensityaroundthecrackpropagationpath

permitstheaccumulationofmisorientationsinsidethegrains,or distortionbetweenneighbouringlattices,leadingtoan improve-mentinHICsusceptibility.

3.Grainboundary distributionplayed a significantrole in HIC susceptibility. High angle grain boundaries and high Kernel parametervaluesactedashydrogen-trappingsites,leadingto increasingtheHICsusceptibility.

4.ApoorresistancetoHICwasattributedtothepresenceofstrong {001}//NDtexturecomponents.Conversely,areductioninits volumefractionand developmentof desired texture compo-nentsimprovedHICresistance.

5.Therecoveryanddynamicrecrystallisationbyannihilationand dislocationrearrangementscansignificantlyreducetheKernel parametervaluesandHICsusceptibility.

6.ThehighestHICresistanceresultsinsampleD,whichwasrolled isothermallyat850◦C,duetothesharp{110}and{111}

tex-turecomponentsaccompaniedbythenegligibleproportionof {001}//NDorientedgrains.

Acknowledgements

TheauthorsacknowledgetheBrazilianresearchagenciesCNPq andCAPEs,theresearchboardoftheFederalUniversityofCearáfor thefinancialsupportandLaboratóriodeCaracterizac¸ãode Mate-riais(LACAM)andAnalyticalCenter(CT-INFRA/MCTI-SISNAD)for theprovisionofresearchfacilitiesofthiswork.

References

[1]R.A.Carneiro,R.C.Ratnapuli,V.F.C.Lins,Theinfluenceofchemical compositionandmicrostructureofAPIlinepipesteelsonhydrogeninduced crackingandsulfidestresscorrosioncracking,Mater.Sci.Eng.A357(2003) 104–110.

[2]L.W.Tsay,Y.C.Chen,S.L.I.Chan,Sulfidestresscorrosioncrackingandfatigue crackgrowthofweldedTMCPAPI5LX65pipe-linesteel,Int.J.Fatigue23 (2001)103–113.

[3]V.F.C.Lins,M.L.M.Ferreira,P.A.Saliba,CorrosionresistanceofAPIX52carbon steelinsoilenvironment,JMR&T1(2012)161–166.

[4]Y.Sun,H.Fujii,H.Imai,K.Kondoh,Suppressionofhydrogen-induceddamage infrictionstirweldedlowcarbonsteeljoints,Corros.Sci.94(2015)88–98. [5]M.Stipaniˇcev,O.Rosas,R.Basseguy,F.Turcu,Electrochemicaland

fractographicanalysisofMicrobiologicallyAssistedStressCorrosionCracking ofcarbonsteel,Corros.Sci.80(2014)60–70.

[6]Z.Y.Liu,X.G.Li,C.W.Du,L.Lu,Y.R.Zhang,Y.F.Cheng,Effectofinclusionson initiationofstresscorrosioncracksinX70pipelinesteelinanacidicsoil environment,Corros.Sci.51(4)(2009)895–900.

[7]A.Ikeda,T.Kaneko,Y.Ando,Ontheevaluationmethodofsulfidestress crackingsusceptibilityofcarbonandlowalloysteels,Corros.Sci.27(11) (1987)1099–1115.

[8]K.Matsumoto,Y.Kobayashi,K.Ume,K.Murakami,K.Taira,K.Arikata, Hydrogeninducedcrackingsusceptibilityofhigh-strengthlinepipesteels, Corros.Sci.42(1986)337–345.

[9]D.Hejazi,A.J.Haq,N.Yazdipour,D.P.Dunne,A.Calka,F.Barbaro,Effectof manganesecontentandmicrostructureonthesusceptibilityofX70pipeline steeltohydrogencracking,Mater.Sci.Eng.A551(2012)40–49.

[10]V.Randle,O.Engler,IntroductiontoTextureAnalysis:Macrotexture, MicrotextureandOrientation&Mapping,CRCPress,2009(ISBN-10: 9056992244).

[11]V.Venegas,F.Caleyo,T.Baudin,J.H.Espina-Hernández,J.M.Hallen,Onthe roleofcrystallographictextureinmitigatinghydrogen-inducedcrackingin pipelinesteels,Corros.Sci.53(2011)4204–4212.

[12]V.Venegas,F.Caleyo,T.Baudin,J.M.Hallen,R.Penelle,Roleofmicrotexturein theinteractionandcoalescenceofhydrogen-inducedcracks,Corros.Sci.51 (2009)1140–1145.

[13]A.Ghosh,S.Kundu,D.Chakrabarti,Effectofcrystallographictextureonthe cleavagefracturemechanismandeffectivegrainsizeofferriticsteel,Scr. Mater.81(2014)8–11.

[14]J.I.Verdeja,J.Asensio,J.A.Pero-Sanz,Textureformability,lamellartearingand HICsusceptibilityofferriticandlow-carbonHSLAsteels,Mater.Charact.50 (2003)81–86.

[15]M.A.Mohtadi-Bonab,M.Eskandari,J.A.Szpunar,Texturelocalmisorientation, grainboundaryandrecrystallizationfractioninpipelinesteelsrelatedto hydrogeninducedcracking,Mater.Sci.Eng.A620(2015)97–106. [16]M.A.Mohtadi-Bonab,M.Eskandari,K.M.M.Rahman,R.Ouellet,J.A.Szpunar,

Anextensivestudyofhydrogen-inducedcrackingsusceptibilityinanAPIX60 sourservicepipelinesteel,Int.J.Hydrog.Energy41(2016)4185–4197. [17]M.A.Mohtadi-Bonab,J.A.Szpunar,L.Collins,R.Stankievech,Evaluationof

hydrogeninducedcrackingbehaviorofAPIX70pipelinesteelatdifferent heattreatments,Int.J.Hydrog.Energy39(2014)6076–6088.

[18]M.A.Arafin,J.A.Szpunar,Anewunderstandingofintergranularstress corrosioncrackingresistanceofpipelinesteelthroughgrainboundary characterandcrystallographictexturestudies,Corros.Sci.51(2009)119–128. [19]L.P.M.Santos,M.Béreˇs,I.N.Bastos,S.S.M.Tavares,H.F.G.Abreu,M.J.Gomesda

Silva,Hydrogenembrittlementofultra-highstrength300grademaraging steel,Corros.Sci.101(2015)12–18.

[20]M.A.Mohtadi-Bonab,J.A.Szpunar,S.S.Razavi-Tousi,Acomparativestudyof hydrogeninducedcrackingbehaviorinAPI5LX60andX70pipelinesteels, Eng.Fail.Anal.33(2013)163–175.

[21]N.Yazdipour,A.J.Haq,K.Muzaka,E.V.Pereloma,2Dmodellingoftheeffectof grainsizeonhydrogendiffusioninX70steel,Comput.Mater.Sci.56(2012) 49–57.

(11)

ofcoldrolled,ISIJInt.76(8)(1990)1349–1355.

[32]D.Raabe,K.Lucke,G.Gottstein,Textureandmicrostructureofhighpurity tantalum,J.Phys.IVColloque3(1993)523–526.

[33]C.D.Singh,V.Ramaswamy,C.Suryanarayana,Textureevolutioninahot rolledausteniticstainlesssteel,TexturesMicrostruct.13(1991)227–241.

[41]L.Novotn ´y,Simulationofvoidgrowthinductilesteelundermechanical loading,Metalurgija49(2010)416–419(ISSN0543-5846).

Imagem

Fig. 1. Schematic representation of crystal orientation with respect to sample axes [10].
Fig. 3. (a) SEM micrograph, (b) EDS result of the particle in hydrogen crack path.
Fig. 5. Calculated texture components at constant ␾ 2 = 45 ◦ orientation distribution function section from three different regions shown in Fig
Fig. 6. Kernel average misorientation map in three different regions shown in Fig. 4 from HIC sample.
+5

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

pylori infection in CagA-positive and CagA-negative patients, the efficacy of the eradication treatment with triple therapy was found not to be dependent on the presence of the

The transition from the (111)[1 1 0] to (111)[1 1 2] orientation might be introduced by the re- crystallisation process and partially by the increasing deformation. As the

Effect of crystallographic orientations on the hydrogen- induced cracking resistance improvement of API 5L X70 pipeline steel under various thermomechanical

Effect of the austenitizing temperature on the kinetics of ferritic grain growth under continuous cooling of a Nb microalloyed

It was shown through link level simulations that the interference aware IBDFE achieves substantial performance gains over the conventional IBDFE and linear IRC detector in time

Thus, the effect of chitosan on the reduction of black spots in ‘Valencia’ oranges could be due to the germicidal effect on the pathogen and/or resistance induction in the fruit..

Steaming changes the colorimetric parameters of wood, mainly its luminosity, and proved to be able to lessen the difference between heartwood and sapwood color of Eucalyptus