• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número3"

Copied!
10
0
0

Texto

(1)

The Vortex Lattie in Conventional and

High-T

Superondutors

Ernst Helmut Brandt

Max-Plank-Institutf urMetallforshung,D-70506 Stuttgart,Germany

Reeivedon28February,2002

Someproperties oftheux-linelattie inonventionalandhigh-T

superondutorsarereviewed,

withpartiularstressonphenomenologialtheories,nonloalelastiity,irreversible magnetization

urves,andinueneofthespeimenshapeontheeletromagnetiresponse.

I. Introdution

Afterthedisoveryofsuperondutivityin1912by

Heike Kamerlingh-Onnesin Leiden,it took almost 50

yearsuntilthisfasinatingphenomenonwasunderstood

mirosopially, when in 1957 Bardeen, Cooper and

ShrieerestablishedtheBCStheory. Butlongbefore

this, there were powerful phenomenologial theories,

whih were able to explain most eletromagneti and

thermodynami observations on superondutors,and

whihareveryusefulalsotoday[1,2,3℄. TheLondon

theoryof1935ispartiularlyusefulforthedesription

of thehigh-T

superondutors,whih were disovered

in1987byBednorzandMuller. TheGinzburg-Landau

(GL) theoryof 1951 isquite universal; it ontainsthe

Londontheoryaspartiularlimitandpreditsthat

su-perondutorsanbeoftype-I(withpositiveenergyof

thewallbetweennormalondutingand

superondut-ing domains) orof type-II (with negativewall energy,

pointingto aninstability).

The penetration of vorties into type-II

superon-dutors was predited rst by A. A. Abrikosov when

he disovered a two-dimensional periodi solution of

the Ginzburg-Landau (GL)equations. Abrikosov

or-retly interpreted this solution as a periodi

arrange-ment of ux lines, the ux-line lattie (FLL). Eah

ux line (or uxon, vortex line) arries onequantum

of magnetiux

0

=h=2e=2:0710 15

Tm 2

, whih

is aused by the superurrentsirulating in this

vor-tex. Themagneti eld peaks at thevortexpositions.

The vortex ore is a tube in whih the

superondu-tivity is weakened; the position of the vortex is

de-ned by the line at whih the superonduting order

parametervanishes. Forwellseparatedorisolated

vor-ties, the radius of the tube of magneti ux equals

diusis somewhat largerthan the superonduting

o-herenelength [1, 2, 3℄, see Fig. 1. With inreasing

applied magneti eld, the spaing a

0

of the vorties

dereasesandtheaverageuxdensity

B inreases,one

has

B=2

0 =(

p

3a 2

0

)forthetriangularFLL,seeFig.2.

Theux tubesthen overlapsuh thatthe periodi

in-dution B(x;y) is nearly onstant, with only a small

relativevariationaboutitsaverage

B. Withfurther

in-reaseof

B alsothevortexoresbegintooverlapsuh

that the amplitude of the order parameter dereases

untilitvanisheswhen

B reahestheupperritialeld

B

2 =

0 H

2 =

0 =(2

2

), where the

superondutiv-itydisappears. Fig. 3showsprolesoftheindution

B(x;y) and of the order parameter j (x;y)j 2

for two

valuesof

B orrespondingtoux-linespaingsa

0 =4

anda

0 =2.

−4

0

−3

−2

−1

0

1

2

3

4

1

2

r /

λ

|

Ψ

(r)|

2

, B(r) / B

c1

B(r)/B

c1

|

Ψ

(r)|

2

κ

= 2, 5, 20

Figure1. Magneti eldB(r)andorderparameterj (r)j 2

(2)

unit cell area =

Φ

0

/B

flux−line spacing

Figure2. Thetriangularux-linelattie.

−2

−1

0

1

2

3

4

5

6

0

1

2

x /

λ

B(x,0)/B

c1

|

Ψ

(x,0)|

2

κ

= 5

Figure3. TwoprolesofthemagnetieldB(x;y)and

or-derparameterj (x;y)j 2

alongthexaxis(anearestneighbor

diretion)for ux-linelattieswithlattie spaingsa=4

(solidlines)anda=2(thinlines). Thedashedlineshows

themagnetieldofanisolateduxlinefromFig.1.

Cal-ulationsfromGinzburg-Landautheoryfor=5.

Theperiodi solutionwhih desribestheFLL

ex-ists when the GL parameter = = exeeds the

value1= p

2(thisonditiondenestype-II

superondu-tors)and whenthe appliedmagneti eld B

a =

0 H

a

rangesbetweenthe lowerritialeld B

1 =

0 H

1

0 ln(

p

2)=(4 2

) (where

B = 0) and B

2

(where

B = B

a = B

2

). For jB

a j < B

1

the

superondu-tor isin theMeissner state,whihexpelsallmagneti

ux, foring B 0 inside the superondutor. More

preisely, for B

a < B

1

[and in type-I

superondu-tors with<1= p

2forB

a <B

=

0 =(

p

8)℄,the

applied magneti eld penetrates into a surfae layer

of thikness . For a superonduting half spae at

x > 0 one has B(x) = B

a

exp( x=). For a long

strip with retangular ross setion (jxj a = 40,

jyjb=0:4a)andwithB

a

alongy,Fig.4showsthat

inthissurfaelayerbothB(x;y)andthesreening

ur-rentdensity J(x;y) = 1

0

rB(x;y) (owing along

z)are sharply peaked in theorners, favoringthe

nu-leationandpenetrationofvortiesinform ofquarter

loopsatthefourornersof thestrip[4,5℄.

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0

50

100

150

200

y / a

j(x,y) a / H

a

x / a

y

b

0

0

x

a

Figure4. Astripwithaspetratiob=a=0:4 inthe

Meiss-nerstate withLondonpenetrationdepth=0:025a0 ina

perpendiularmagnetieldHa.Shownistheurrent

den-sityinaquarteroftherosssetionandthemagnetield

lines(inset).

In long slabs or ylinders, with inreasing

paral-lel eld H

a > H

1

, vorties penetrate and the inner

indution

B inreases monotonially. The

magnetiza-tion in this longitudinal geometry is dened as M =

B=

0 H

a

, Fig.5. The negativemagnetization M

initially inreases linearly, M = H

a (H

a = B

a =

0 )

for H

a H

1

(Meissnerstate);at H

a =H

1

, M

de-reases sharplysineux lines start topenetrate; and

when H

a

is inreased further, M dereases

approxi-matelylinearlyuntilitvanishesatH

2

. Theareaunder

themagnetizationurve M(H

a )is

0 H

2

,whereB

=

0 H

=

0 =(

p

8) = B

2 =(

p

2) is the

thermody-namiritialeld. Insuperondutorswith=1= p

2

(this ase is almost exatlyrealized in pure Niobium)

thethreeritialeldsoinide,H

1 =H

=H

2 .

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

H / H

c2

− M / H

c2

2

1.5

1.2

1

0.85

κ

= 3

Ginzburg−Landau magnetization

of type−II superconductors

κ

= 0.75

Figure 5. Magnetization urvesM(H) oflong type-II

su-perondutorsinparallelmagnetieldH(demagnetization

fatorN=0)alulatedfromGinzburg-Landautheoryfor

various Ginzburg-Landau parameters = 0.75 ::: 3. For

=1= p

2, M jumpsvertiallyfrom M =Hto M =0

(3)

The GL theory originally was derived for

temper-atures T lose to the superonduting transition

tem-perature T

, where / / (1 T=T

)

1=2

diverges.

But pratially the GL piture is a good

approxima-tion at all temperatures 0 < T < T

, in partiular

in impure superondutors with short eletron mean

free path. One usually assumes the temperature

de-pendenes (T) (0)(1 t 4

) 1=2

(with t = T=T

)

and H

(T)H

(0)(1 t 2

),yielding (T)(0)[(1+

t 2

)=(1 t 2

)℄ 1=2

.

At low indutions

B B

2

and large 1, the

propertiesofthevortexlattiemaybealulatedfrom

London theory, to whih theGL theoryredues when

themagnitude j j oftheGL funtion isnearly

on-stant. IntheLondonlimit,B(x;y)isthelinear

super-position of the elds of isolated vorties; the London

expressions for B(x;y) and for the energy apply thus

alsotononperiodiarrangementsofvorties. The

Lon-dontheorywasfurtherextendedtourvedvortiesand

to anisotropisuperondutors. Atlarger

B>0:25B

2

or smaller< 2,the GL theory hasto be used.

An-alyti GL solutions are available only forthe periodi

FLL nearB

2

,butnotforadistortedFLL orat lower

B.

Expanding the energy of the superondutor with

respettosmalldisplaementsofthevortiesfromtheir

ideallattiepositions,oneobtainstheelastimoduliof

the vortex lattie. As opposed to the loal elastiity

of atomilatties,theelastiityofthevortexlattieis

nonloal [3℄, i.e., the energy of ompressional and tilt

deformationsisstronglyreduedwhenthewavevetor

k ofthestraineldislarge,k> 1

,seeSt.4.

II. Results fromLondon Theory

TheLondontheorymaybeformulatedby

minimiz-ing thesumF of thepotentialenergyof themagneti

eld B(r) and the kineti energy of the superurrent

densityJ(r)= 1

0

rB(r) ,

F = 1

2

0 Z

V [B

2

+ 2

(rB) 2

℄d 3

r; (1)

with respet to B=rA. This yields the

homo-geneous London equation B 2

r 2

B = 0 or J =

1

0

2

A where the Maxwell equations rB = 0

and rB =

0

Jwereused and the vetorpotential

Awashoseninthe\Londongauge"rA=0.

A. Parallel vorties

Inthepreseneofvortiesonehastoadd

singulari-tieswhihdesribethevortexore. Forstraightparallel

vortexlinesalong^zonethusgetsthemodiedLondon

equation

B(r) 2

r 2

B(r)=^z

0 X

Æ

2 (r r

): (2)

Here r

=(x

;y

) are the two-dimensional (2D)

vor-tex positions and Æ

2

(r) = Æ(x)Æ(y) is the 2D delta

funtion. This linear equation may be solved by

Fouriertransformusing R

exp(ikr )d 2

k=4 2

Æ

2 (r)and

R

exp(ikr )(k 2

+ 2

) 1

d 2

k=2K

0

(jrj=). HereK

0 (x)

is amodied Bessel funtion with thelimits K

0 (x)

ln(x) forx 1and K

0

(x)(=2x) 1=2

exp( x) for

x 1. The resulting magneti eld of any

arrange-mentofparallelvortiesisthesumofindividualvortex

eldsenteredatthepositionsr

,

B(r)=^z

0

2 2

X

K

0

jr r

j

; (3)

see Fig. 1. The energy F

2D

of this 2D arrangement

of vortex lines with length L is obtainedby inserting

Eq. (2) into (1). Integrating over the delta funtion

onendsthattheLondon energyisdeterminedbythe

magnetield valuesat thevortexpositions,

F

2D

= L

0

2

0 X

B(r

)

= L

2

0

4

0

2 X

X

K

0

jr

r

j

: (4)

Thisexpression showsthat the energyis omposed of

the self-energy of the vorties (terms = ) and a

pairwise interation energy (terms 6= ). To avoid

thedivergene oftheself-energyonehasto utothe

logarithmi innity of B at the vortex enters r

by

introduing anite radius of the vortex oreof order

, the oherene lengthof the GL theory. This uto

may be ahieved by replaing in Eq. (4) the distane

r

=jr

r

jbyr~

=(r

2

+2

2

) 1=2

and

multiply-ingbyanormalizationfator 1to onservetheux

0

of thevortex. Thisanalytialexpressionsuggested

byClem[6℄forasinglevortexandlatergeneralizedto

thevortexlattie[7℄,isanexellentapproximation,as

wasshownnumerially[8℄by solvingtheGL equation

fortheperiodiFLLintheentirerangeof

Band,for

0

BB

2

and1= p

2.

B.Curved vorties

Arbitrary3Darrangementsofurvedvortiesat

po-sitionsr

(z) =[x

(z);y

(z);z℄ satisfy the 3D London

equation[3℄

B(r) 2

r 2

B(r)=

0 X

Z

dr

Æ

3 (r r

): (5)

Heretheintegralis alongthevortexlines andÆ

3 (r)=

Æ(x)Æ(y)Æ(z). Theresulting magnetield and energy

are,with~r

=[jr

(z) r

(z)j

2

+2 2

℄ 1=2

,

B(r) =

0

4 2

X Z

dr

exp[ ~r

(r

=r)=℄

~ r

(r

=r)

(4)

F

3D =

0

2

0 X

Z

dr

B(r

)

=

2

0

8

0

2 X

X

Z

dr

Z

dr

exp( r~

=)

~ r

:

This meansallthevortexsegmentsinteratwith eah

othersimilarasmagnetidipolesortinyurrentloops,

but the magneti long-range interation / 1=r is

sreenedbyafatorexp( r~

=). The3Dinteration

betweenurvedvortiesisvisualizedin Fig.6.

Interaction between curved flux lines

Figure6. Visualization ofthepairwiseinterationbetween

alllineelements(arrows)ofurveduxlineswithinLondon

theory,Eqs.(6)and(7).

C. Vorties neara surfae

The solutions (6) apply to vorties in the bulk.

Near the surfae of the superondutor these

expres-sions have to be modied. In simple geometries, e.g.

for superondutors with one or two planar surfaes

surrounded byvauum, themagneti eld andenergy

of a given vortex arrangement is obtained by adding

theeld ofappropriate images(in order tosatisfythe

boundaryonditionthatnourrentrossesthesurfae)

andamagnetistrayeldwhihisausedbyatitious

surfaelayerofmagneti monopoles and whih makes

the total magneti eld ontinuous aross the surfae

[9℄. Themagnetieldandinteration ofstraight

vor-ties orientedperpendiularto asuperondutinglm

ofarbitrarythiknessisalulatedin Ref.[10,11℄.

D. ThinFilms and Layered Superondutors

Near the surfae of a superondutor the self and

interation energies are modied. In lms of

thik-ness d the short 2D vorties interat mainly

viatheirmagnetistrayeld outsidethe

superondu-tor over an eetive penetration depth = 2 2

=d.

At short distanes r this interation is

loga-rithmi as in the bulk ase, and at large r it

dereases as exp( r=). With dereasing thikness

V(r)= R

(d 2

k=4 2

) ~

V(k)exp(ikr)hangesfrom ~

V(k)=

E

0 (k

2

+ 2

) 1

(d ) to ~

V(k)=E

0 (k

2

+k 1

) 1

(d ) whereE

0 =d

2

0 =(

0

2

). A similar (but 3D)

magneti interation exists between the 2D panake

vorties[12℄inthesuperondutingCuOlayersof

high-T

superondutors, ~

V(k)=E

0 dk

2

3 k

2

2 (

2

+k 2

3 )

1

,

where nowd is the distane between the layers, k 2

2 =

k 2

x +k

2

y , k

2

3 =k

2

2 +k

2

z

, and =

ab

is thepenetration

depthforurrentsowingin theselayers[12,3℄.

E. Anisotropi Superondutors

Formanypurposeshigh-T

superondutorsmaybe

onsidered as uniaxially anisotropi materials, whih

within London theory are haraterized by two

pen-etration depths

a

b

ab

(for urrents in the

ab plane)and

(forurrentsalong the axis). The

anisotropy ratio =

=

ab =

ab =

1 desribes

also the anisotropy of the GL oherene lengths,

ab

and

,whihareneededasinner utolengthsin the

anisotropiLondontheory. Thegeneralsolutionfor

ar-bitrarilyarrangedstraightorurvedvortexlinesis[3℄

B

(r) =

0 X

Z

dr

f

(r r

) (7)

F

3D =

2

0

2

0 X

X

Z

dr

Z

dr

f

(r

r

)

withthetensorialinteration(;=x;y;z)

f

(r) =

Z

d 3

k

8 3

exp(ikr)f

(k) (8)

f

(k) =

exp[ 2g(k;q)℄

1+

1 k

2

Æ

q

q

2

1+

1 k

2

+

2 q

2

:

Hereg(k;q)= 2

ab q

2

+ 2

(k

2

q 2

)=(

1 k

2

+

2 q

2

) 2

=

2

ab

enters the uto fator exp( 2g); q=k^ , ^ is the

unitvetoralongthe-axis,

1 =

2

ab ,

2 =

2

2

ab

0,andthesumsandintegralsareoverthethandth

vortexline. Duetothetensorialharateroff

(r)the

ontributionofthesegmentdr

toB(r)nowingeneral

isnotparalleltodr

.

III. Ginzburg-Landau, Pippard, and BCS

The-ories

The London theory was extended in two ways,

whihbothintrodueaseondlength: The

Ginzburg-Landau(GL)theoryisnonlinearin andthePippard

theory is nonloal in A. All three theories later were

shown to follow from the mirosopi BCS theory in

limitingases.

A. Ginzburg-Landau Theory

(5)

or-B(r) = rA(r). The GL funtion (r) is

propor-tional to the BCS energy-gap funtion (r), and its

square j (r)j 2

to thedensityofCooperpairs. The

su-peronduting oherene length gives the sale over

whih (r)an vary, while governsthe variationof

the magnetield as in London theory. Both and

divergeat thesuperondutingtransitiontemperature

T

aording to / / (T

T)

1=2

, but their

ra-tio, theGL parameter==,is nearlyindependent

of the temperatureT. The GL theory redues to the

London theory (whih is valid down to T =0) in the

limit,whihmeansonstantmagnitudej (r)j=

onst,exeptinthevortexores,where vanishes. The

GLequationsareobtainedbyminimizingafreeenergy

funtional Ff ;Ag with respet to the GL funtion

(r) and the vetorpotential A(r) . With the length

unit andmagnetieldunit p

2B

theGLfuntional

reads

Ff ;Ag= B

2

0 Z

h

j j 2

+ 1

2 j j

4

+j( ir

A) j 2

+(rA) 2

i

d 3

r: (9)

This funtional and the resulting GL equations may

beexpressed in terms ofthe real funtion j j and the

gauge-invariantsuperveloityr'= Awhere'(r)is

thephaseof =j jexp(i'). Thesuperurrentdensity

is J= 1

0

2

(r'= A)j j 2

. Inanexternaleld H

a

onehastominimizenotthefreeenergyFbuttheGibbs

freeenergyG=F

BH

a

. TheonditionG=

Byields

the equilibrium eld H

a

= F=

B. The reversible

magnetization urves

B(H

a

) of pin-free

superondu-tors, Fig.5,werealulatedinthiswayfromGLtheory

[8℄,togetherwiththeprolesof Fig.3.

TheGLtheorymodiestheLondoninteration

be-tweenvortiesin twoways: (a)Therangeofthe

mag-neti repulsion at large indutions

B beomes larger,

0

==(1

B=B

2 )

1=2

. (b)Aweakattrationofrange

0

= =(2 2

B=B

2 )

1=2

is added, aused by the

on-densation energy that is gained by the overlap of the

vortexores. Parallel vortexlines theninteratby an

eetive potential V(r) / K

0 (r=

0

) K

0 (r=

0

) whih

nolongerdivergesatzerodistane r[13℄.

B. Pippard Theory

Inspired by Chamber's nonloal generalization of

Ohm's law,Pippard1953introduedasuperondutor

oherenelengthbygeneralizingtheLondonequation

0

J= 2

L

Ato anonloalrelationship[2℄

0

J(r)= 2

P 3

4 2

Z

r 0

(r 0

A(r r 0

))

r 03

e r

0

=

d 3

r 0

:(10)

In the presene of eletron sattering with mean

free path l, the Pippard penetration depth

P =

( 2

L

0 =)

1=2

exeedstheLondon penetrationdepth

L

of a pure material with oherene length , sine

the eetive oherene length is redued by

sat-tering, 1

1

0 +l

1

[2℄. In the limit of small

P

,Eq.(10)reduestotheloalrelation

0 J(r)=

2

P

A(r) . In Fourierspae Pippard'sEq. (10) reads

0

J(k)= Q

P

(k)A(k) with

Q

P

(k)= 2

P h(k);

h(x)= 3

2x 3

h

(1+x 2

)atanx x i

; h(0)=1: (11)

ThisPippardtheoryis usefulmainlyfor

superondu-torswithsmallGLparameter.

BCSTheory

The mirosopi BCS theory (in the Green

fun-tion formulationof Gor'kov)for weak magneti elds

yieldsasimilarnonloalrelation

0

J(k)= Q(k)A(k)

assuggestedbyPippard,replaing thePippardkernel

Q

P

(k)bytheBCSkernel[14,3℄

Q

BCS (k)=

2

(T) 1

X

n=1 h[k

K

=(2n+1)℄

1:0518(2n+1) 3

: (12)

Hereh(x)isdenedinEq.(11),(T)=Q

BCS (0)

1=2

(0)(1 T 4

=T 4

)

1=2

isthetemperaturedependent

mag-neti penetration depth, and

K = ~v

F =(2k

B T)

0:844(T)T

=(T)(v

F

= Fermi veloity, = GL

pa-rameter). The range of the BCS Gorkov kernel is of

theorderoftheBCSoherenelength

0 =~v

F =(

0 )

where

0

istheBCSenergygapat T =0.

With the nonloal relation

0

J(k) = Q(k)A(k)

the Eq. (2) for a vortex line at r

= 0 now beomes

[1 +Q(k) 1

k 2

℄ ~

B(k)=

0

withthesolution

~

B(k)=

0 Q(k)

Q(k)+k 2

;

B(r)=

0

2 Z

1

0

Q(k)

Q(k)+k 2

J

0

(kr)kdk; (13)

where J

0

(x) is a Bessel funtion. The Pippard or

BCS eld B(r) (13) of an isolated vortex line is no

longermonotoni asompared with the London eld,

f. Eq. (3), but it exhibitsaeld reversal witha

neg-ative minimum at large distanes r

P

from the

vortexore. Thiseet should beobservableif ,

i.e., forlean superondutorswithsmall GL

parame-teratlowtemperatures. Seealsoreentworkonthis

nonloaleletrodynamis[15℄.

Theeldreversalofthevortexeldispartly

respon-siblefortheattrativeinterationbetweenuxlinesat

largedistanes, whih wasobserved in lean Niobium

attemperaturesnottooloseto T

andwhih follows

from BCStheory at T <T

for pure superondutors

with GL parameter lose to 1= p

2. This attration

leadstoabrupt jumps in themagnetizationurveand

toan agglomerationofux lines that anbeobserved

(6)

asFLLislandssurroundedbyMeissnerstate,or

Meiss-nerislandssurrounded byFLL[16℄. For thedenition

ofN seeSe.5.

Another BCS eet whih diers from the GL

re-sult is that in lean superondutors at low

tempera-tures the periodi magneti eld B(x;y) of the FLL

nearB

2

isnotasmoothspatialfuntionasinGL

the-ory, but has sharp onial maxima and minima suh

that the prole B(x;0) along a nearest neighbor

di-retion has zig-zag shape [3℄. The reason for this is

that theeletronmeanfreepathin pure

superondu-tors at T ! 0 beomes larger than the vortex

spa-ing a

0

. This leads to a slow derease of the Fourier

oeÆients B

K

/ ( 1)

m+mn+n

K 3

mn

of B(x;y), while

at T T

the GL theory near B

2

yields arapid

de-rease,B

K

/ ( 1)

m+mn+n

exp( K 2

mn x

1 y

2

=8). Here

K = K

mn

= (2=x

1 y

2 )(my

2 ; mx

2 +nx

1

) (m;n =

1;2;3;:::)arethereiproallattievetorsoftheideal

vortexlattiewithpositionsR

mn =(mx

1 +nx

2 ;ny

2 ),

andx

1 y

2 =

0 =

Bistheareaoftheunitell,see Fig.2.

IV. Elastiity of the Vortex Lattie

Theux-linedisplaementsausedbypinningfores

and by thermal utuations may be alulated

us-ing the elastiity theory of the FLL. Fig. 7

visual-izes the three basi distortions of the triangular FLL:

shear,uniaxial ompression,and tilt. The linear

elas-ti energyF

elast

of the FLL is obtained byexpanding

its free energy F with respet to small displaements

u

(z)=r

(z) R

=(u

x ;u

y

)of theux linesfrom

theiridealparallellattiepositionsR

andkeepingonly

thequadratiterms. Thisyields[3℄

F

elast =

1

2 Z

BZ d

3

k

8 3

u

(k)

(k)u

(k) (14)

whereu(k)istheFouriertransformofthedisplaement

eld u

(z), now (;) = (x;y), and k = (k

x ;k

y ;k

z ).

Thek-integralinEq.(14)isovertherstBrillouinzone

(BZ) of the FLL sine the \elasti matrix"

(k) is

periodiinthek

x ;k

y

plane;thenitevortexoreradius

restritsthek

z

integration to jk

z j

1

. Foran

elas-timedium withuniaxialsymmetrytheelasti matrix

reads

(k)=(

11

66 )k

k

[(k

2

x +k

2

y )

66 +k

2

z

44

℄: (15)

The oeÆients

11 ,

66 , and

44

are the elasti

mod-uliofuniaxialompression,shear,andtilt,respetively.

FortheFLL,

(k)wasalulatedfromGLand

Lon-don theories [3℄. The result, a sum over reiproal

lattievetors,should oinidewith expression(15)in

the ontinuum limit, i.e., for small jkj k

BZ , where

k

BZ = (4

B=

0 )

1=2

is the radius of the irularized

FLLwithareak 2

BZ

. IntheLondonlimitonendsfor

isotropisuperondutorstheelastimoduli

11 (k)

B 2

=

0

1+k 2

2

;

66

B

0 =

0

16 2

;

44 (k)

11

(k)+2

66 ln

2

1+k 2

z

2

: (16)

TheGLtheoryyieldsanadditionalfator(1

B=B

2 )

2

in

66

, i.e.,

66 /

B(

B B

2 )

2

, and replaes in

11

(k) by 0

[17, 8℄. The k dependene (dispersion)

of the ompression and tilt moduli

11

(k) and

44 (k)

means that the elastiity of the vortex lattieis

non-loal, i.e., strainswithshort wavelengths2=k 2

haveamuh lowerelastienergy thanahomogeneous

ompression or tilt (orresponding to k ! 0). This

elasti nonloality omes from the fat that the

mag-neti interation between the ux lines typially has

a range muh longer than the ux-line spaing a

0 ,

therefore,eahuxlineinteratswithmanyotherux

lines. Note that large ausesa small shear stiness

sine

66 /

2

,Eq. (16),andasmaller

11 (k>

1

),

but theuniformompressibility

11

(k=0) is

indepen-dentof.

γ

= shear angle

α

= tilt angle

ε

= compression

1

1−

ε

x

x

x

Figure 7. Thethreebasi homogeneouselasti distortions

of the triangular ux-line lattie. Thefull dots and solid

linesmarktheideallattieandthehollowdotsanddashed

linesthedistortedlattie.

The ompressional modulus

11

and the typially

muhsmallershear modulus

66

11

44

originate

from theux-lineinteration, but thelast termin the

tiltmodulus

44

(16)originatesfromthelinetensionof

isolated ux lines, dened by P =lim

B!0 (

44

0 =

B).

In isotropi (or ubi) superondutors like Nb and

its alloys, the line tension P oinides with the self

energy F

s

of a ux line, P = F

s , F

s

=

0 H

1

( 2

0 =4

0

2

)(ln+0:5) for 1. In anisotropi

materials theline tensionand line energyof ux lines

(7)

P()=F

s ()+

2

F

s =

2

. UsingF

s ()=F

s (0)(os

2

+

2

sin 2

) 1=2

with =

=

ab

1,oneobtainsP(0)=

F

s (0)=

2

and P(=2)=F

s (=2)

2

=P(0)= 3

(fortilt

out of the ab-plane) [3℄. In isotropisuperondutors

the uniaxial symmetryof the idealvortexlattie, i.e.,

the appearane of a preferred axis, is indued by the

applied magnetield. This indued anisotropyleads

toasmalldierenebetweentheompressionalandtilt

moduli

11 and

44

,butnottoadierenebetweenline

energyandline tension.

As a onsequene of nonloal elastiity, the

ux-linedisplaementsu

(z)ausedbyloalpinningfores,

and also the spae and time averagedthermal

utu-ations hu

(z)

2

i, are muh larger than they would be

if

44

(k) had no dispersion, i.e., if it were replaed

by

44 (0) =

BH

a

B 2

=

0

. The maximum vortex

displaement u(0) / f aused at r = 0 by a point

fore of density fÆ

3

(r), and the thermal utuations

hu 2

i/k

B

T,aregivenbysimilarexpressions[3℄,

2u(0)

f

hu 2

i

k

B T

Z

BZ d

3

k

8 3

1

(k 2

x +k

2

y )

66 +k

2

z

44 (k)

k

2

BZ

8[

66

44 (0)℄

1=2 : (17)

In this result a large fator [

44 (0)=

44 (k

BZ )℄

1=2

k

BZ

=a 1 originates from the elasti

non-loality. InanisotropisuperondutorswithBk, the

thermalutuations(17)areenhanedbyanadditional

fator =

=

ab

[3℄. Foranexatanalytievaluation

oftheintegral(17)forhu 2

isee[18℄.

V. High-T

Superondutors

The nonloal elasti response of the vortex lattie

is partiularly important for understanding the

ther-modynamiandeletrodynamipropertiesofthe

high-T

superondutors,whihweredisoveredin1987and

the following years. These oxideswith high

superon-dutingtransitiontemperatureT

(e.g. YBa

2 Cu

3 O

7 Æ

with T

=92:5K, Bi

2 Sr

2 Ca

2 Cu

3 O

10+Æ

withT

=120

K, and some Hg and Tl ompounds with even higher

T

) arelayeredstrutures withmoreorlessdeoupled

superonduting Cu-O layers. Theythus exhibit high

anisotropyoftheirsuperondutingproperties. For

ex-ample, YBCO has an anisotropy = 5 and BSCCO

has 100. This means in BSCCO the layers are

almostdeoupledandthepenetrationdepth

for

ur-rentsowingalong the axisis marosopiallylarge,

=

a with

ab

140nmatT =0. Therefore,the

magneti eld omponent parallel to the layers

pene-trateseasily.

This large

also auses very pronouned elasti

nonloality,whihmeansaverysoftvortexlattie. The

vortiesare thusstronglypinnedolletively,sinethe

vortexlattieadjuststothepins,butathigher

temper-sinetheelementarypinningenergyofveryexible

vor-tiesissmall. Bythesametoken,thermalutuations

ofthevortiesarelargeandmayevenausemeltingof

thevortexlattieintoavortexliquid.

Theeetsoftheelastinonloalityandanisotropy

on the thermal utuation, melting, and pinning of

the FLL are treated in detail in the review [19℄,

wherealso phasediagramsin theH

a

-T plane are

pre-sentedfor3Dandlayeredsuperondutors. Phase

dia-grams obtained by applying simple Lindemann

rite-ria (hu 2

i = 2

L a

2

0 ,

L

0:25) to both thermal and

pinning-aused utuations in 3D superondutors at

not too low elds (

B > B

1

) are alulated in [20℄,

namely, thelineH

m

(T)where theFLLmelts, theline

H

sv

(T) whih separates the regimes of

single-vortex-pinning and of vortex-bundle-pinning, and the order{

disorderlineH

dis

(T)abovewhihpinningauses

plas-ti deformation of the FLL, see Fig. 8. In this ase

(B =

0

H, no deoupling of layers) the phase

dia-gram in redued units H

a =H

2

(0) and t = T=T

,

de-pendsonlyontheGinzburgnumberGiandonthe

pin-ningstrengthD=[J

(0)=J

0 (0)℄

1=2

(ritialurrentfor

B!0overthedepairingurrent,bothatT =0), see

[20℄.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

g

0

=(1−t

2

)

−1/6

c

L

= 0.25

D/c

L

= 1.3, 1.1, 0.9

Gi = 0.01

H

c2

1.3

t = T/T

c

H / H

c2

(0)

H

m

1.3

1.1

1.1

0.9

0.9

H

sv

H

dis

Figure8. Theorder{disorderlinesH

dis

(t)(solidlines) and

single-vortex pinning boundaries Hsv(t)(dashed lines) for

threepinningstrengths D=

L

=1:3, 1.1,0.9andGinzburg

numberGi =0:01. Assumedwas ÆT

pinning. The

dash-dotted line is the melting line Hm(t) and the dotted line

showsH

2 (t)=H

2

(0)(1 t 2

).

VI. ContinuumDesription ofthe Vortex State

Ifoneisinterestedonlyin lengthsaleslargerthan

thevortexspainga

0

,onemayuseaontinuum

desrip-tionofthevortexstatetoalulatethedistributionsof

(8)

arbi-[21, 22℄ whih in priniple allow to ompute the

ele-tromagneti behavior of superondutors of arbitrary

shapewithandwithoutvortexpinning. Theextension

tonite Londondepthisgivenin[5℄.

ApartfromtheMaxwellequations,aontinuum

de-sriptionrequirestheonstitutivelawsofthe

superon-dutor. These maybeobtained,e.g.,fromtheLondon

theory,St.II,bytakingthelimitsa

0

!0and !0

(or keeping nite [5℄), and from appropriate

mod-els of vortex dynamis. One onstitutive law is the

reversible magnetization urve of a pin-free

superon-dutor, M(H) or

B(H) =

0 H+

0

M(H), where H

is aneetive applied eld whih wouldbe in

equilib-riumwith the loal indution

B. Inthe simplestase

this lawmayread M =0or

B =

0

H, validif

every-where

B islargerthan several timesthe lowerritial

eld B

1

. But in general the reversible M(H)

om-puted from London or GLtheories should be used, as

disussedin[21,22,23,24℄.

WhenthenitelowerritialeldH

1

isaounted

for, themagnetizationurveM(H

a

)in generalis

irre-versible(i.e. a loop) even in omplete absene of

vor-texpinning. This pin-freeirreversibilityisausedbya

geometribarrier forthepenetrationofmagneti ux,

whihisabsentonlyifthesuperondutorhastheshape

ofanellipsoidorifithasasharpedgeorusp,atwhih

theappliedeldH

a

isstronglyenhanedsuhthatux

lines anpenetrate easily. For example, in

superon-duting ylinders orstrips with retangular ross

se-tion 2a2b (2a = diameter or width, 2b = height)

ininreasingH

a

,themagnetiux penetrates rst

re-versiblyat the four orners in form of nearly straight

uxlines,seeFigs.4,9. Whentheeldofrstux

en-tryB

en

isreahed, theseuxlines joinat theequator,

ontrat,andjumptothespeimenenter,fromwhere

theygraduallylltheentiresuperondutor. WhenH

a

isdereased again,someux exits rstreversibly, but

below areversibility eld H

rev > H

en

the

magnetiza-tion loopopens, see Fig.10, sinethe barrier for ux

exitisabsentorweakerthanthebarrierforuxentry.

Forarbitraryaspetratiob=atheentryeldis[22,24℄

H

en H

1 tanh

p

b=a; (18)

where=0:36forstripsand=0:67fordisksor

ylin-ders. This geometri barrier should not be onfused

with the Bean-Livingstonebarrier for the penetration

ofastraightvortexlineintotheplanarsurfaeofa

su-perondutor,whihwould leadto asimilar

asymmet-rimagnetizationloop. Thegeometribarrierisaused

bythelinetensionofthevortiespenetratingatsharp

[21,22,24℄orrounded[25℄orners. ThislinetensionP

(seeSt.IV)isbalanedbytheLorentzforeexertedon

the vortex ends bythe surfaesreening urrentsand

diretedtowardsthespeimenenter. Theirreversible

magneti behaviorof thin strips with an edge barrier

(and without or with bulk pinning) in perpendiular

H wasalulatedanalytiallybyZeldovet al.[26℄.

Pin−free strip at H

a

/H

c1

= 0.38, 0.44, 0.20

Figure 9. The magneti eld lines inand near a pin-free

strip of aspet ratio b=a = 0:5 in an inreasing applied

perpendiular eld H

a

at twoeld values H

a =H

1 = 0:38

(top)and0.44(middle)justbelowandabovetheentryeld

H

en

=0:40H

1

, and indereasing eldat H

a =H

1 =0:20

(bottom).

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

H

a

/ H

c1

M / H

c1

Pin−Free cylinders

0.25

b/a = 0.08

1

5

Figure 10. Irreversible magnetization of pin-freeylinders

withvariousaspetratiosb=a=0.08(thindisk)to1(long

ylinder) in ayled axial magnetield Ha (solid lines).

Thedashedlinesshowthereversiblemagnetization urves

of ellipsoids hosen suh that they have the same initial

slope1=(1 N)astheorrespondingylinder.

The omputed irreversible magnetization loops of

pin-free superondutor ylinders with various aspet

ratiosb=a=0:08(thindisk)tob=a=1(longylinder)

(9)

withtheorrespondingreversiblemagnetizationurves

of ellipsoids whih have thesame initial slope

(Meiss-ner state)astheylinders. Thesemagnetization loops

of ylinders (like those of other non-ellipsoids) havea

maximumatH

a H

en

,andatH

a >H

rev

theyare

re-versibleandoinidewiththemagnetizationofthe

or-responding ellipsoid. All pin-free magnetization loops

are symmetri, M( H

a

) = M(H

a

) with M(0)= 0,

i.e., noremanentux anremainatH

a

=0sinebulk

pinning is absent and there is no barrier for ux exit

when H

a

=0. Fig. 11 showsmagnetization urvesof

ashortylinderwithniteH

1

forvariousstrengthsof

bulkpinning.

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

1.5

H

a

/ H

c1

− M / H

c1

Pinning: J

c

a/H

c1

= 0, 0.25, 0.5, 1, 1.5, 2, 3, 4

Disk with b/a = 0.25

H

c1

= const

Figure 11. Magnetization loops of a thik disk with

as-petratiob=a=0:25andonstantH1butvariouspinning

strengths J

=0.25, 0.5,1,1.5, 2,3,4inunitsH

1 =aand

for varioussweepamplitudesoftheappliedeldHa. Bean

model, i.e., the ritial urrent density J

is independent

of theindutionB. Theinnerloopbelongsto thepin-free

diskandtheouterlooptostrongestpinning(J=4). The

bold dashedlineshowsthe reversible magnetizationofthe

orrespondingellipsoid.

The reversible magnetization urves of pin-free

el-lipsoidsM(H

a

;N)followfromthemagnetizationurve

M(H

a

;N=0)=

B=

0 H

a

oflongylindersin

paral-leleld H

a

bytheoneptofademagnetizationfator

N. Onehas0N 1, N =0for parallelgeometry,

N = 1=2 for innite ylinders in perpendiular eld,

N =1=3for spheres,and N =1forthin lmsin

per-pendiulareld. Forellipsoidswith N 6=0onehasto

solvetheimpliitequationforaneetiveinternaleld

H

i [24℄,

H

i =H

a

NM(H

i

;N =0); (19)

to obtain the reversible magnetization M(H

a ;N) =

M(H

i

;N = 0) (dashed lines in Fig. 10) from the

M(H

a

;N=0) oflongitudinalgeometry. Inpartiular,

intheMeissnerstate(

B0)onehasM(H

a

;0)= H

a

and M(H

a

;N) = H

i

= H

a

=(1 N) for jH

a j

(1 N)H

1 .

As a seond onstitutive law one may use the

lo-al eletri eld E=E (J;B) whih is generated by

moving vortiesand whih in a ompat way an

de-sribe free ux ow and Hall eet, but also vortex

pinning and thermally ativated depinning or reep.

A simple but still quite general isotropi model is

E

v

= (J;B)Jwith = onstB (J=J

)

n 1

, where

J

istheritialurrentdensityandnthereep

expo-nent [5, 27℄. This realistimodelmeans anativation

energyU(J)=U

0 ln(J

=J)fordepinningthatentersin

E=E

exp[ U(J)=kT℄=E

(J=J

)

n

withn=U

0 =kT.

Within this model, ux ow is desribed by n = 1,

ux reep (relaxation with approximately logarithmi

timelaw)byn1,andBean's ritialstatemodelof

vortex pinningby the limitn ! 1. In general,both

J

and n may depend on the loal indution

B and

onthe temperature T. Fig. 12 shows some

magneti-zation loops of a short ylinder alulated in [27℄ for

two dierent J

(B) models and two reep exponents.

Fortheeletrodynamisofthin strips,disks,andrings

in a perpendiular eld see [28, 29, 30℄, and for thin

retanglesandlms ofothershapessee[31, 32℄. Thin

strips in perpendiular d and a magneti elds and

withtransporturrentareonsidered in[33℄. Analyti

andnumerialsolutionswerealsoobtainedforux

ex-pulsion and penetration into thin strips with a bend

alongthemiddle line[34℄and forthin shells (or hats)

ofonialshape[35℄.

Figure 12. Magnetization loops of ylinders with aspet

ratio b=a = 1, reep exponents n = 51 (bold lines) and

n=5(dashed lines), withB1 =0,insinusoidally yled

appliedeld Ha for two indutiondependent ritial

ur-rent densities J(B)=J0=(1+3)(top,Kim model) and

J

(B) =J

0

(1 3+3 2

) (bottom, a \sh-tail" model),

where =jBj=Bp, Bp =0:880J0a. The magnetization

M is inunits J

0

a=(2) and H

a

inunits J

0

a, where a, b

(10)

In all these alulations the London depth was

assumed to be negligibly small. Finite may be

a-ounted forby modifying theurrent{voltagelaw,

us-ingE=E

v

(J;B)+

0

2

j=t[5℄. Here therstterm

is generated by moving vorties and the seond term

desribestheMeissner surfaeurrents[4,5℄.

Referenes

1. P.G. DeGennes, Superondutivity of Metals

andAlloys,NewYork,Benjamin,1966.

2. M. Tinkham, Introdution to

Superondutiv-ity, NewYork,MGraw-Hill,1975.

3. E.H. Brandt, Rep. Progr. Phys. 58 (1995)

1465-1594.

4. E.H.BrandtandG.P.Mikitik,Phys.Rev.Lett.

85(2000)4164.

5. E.H. Brandt,Phys.Rev. B64 (2001)024505,

1-15.

6. J.R.Clem,J.LowTemp.Phys. 18(1975)427.

7. Z.Hao,J.R.Clem,M.W.MElfresh,L.Civale,

A.P. Malozemov, F. Holtzberg, Phys. Rev. B

43(1991)2844.

8. E.H.Brandt,Phys.Rev.Lett. 78(1997)2208.

9. E.H. Brandt, J. Low Temp. Phys. 42 (1981)

557.

10. Jung-ChunWei,Tzong-YerYang,Jpn.J.Appl.

Phys. 35(1996)5696.

11. G. Carneiro, E.H. Brandt, Phys. Rev. B 61

(2000)6370.

12. J.R.Clem,Phys.Rev.B43 (1991)7837.

13. E.H.Brandt,Phys.Rev.B34(1986)6514.

14. A.A.Abrikosov,L.P.Gorkov,I.E.

Dzyaloshin-ski, Methods of Quantum Field Theory in

Statistial Physis, EnglewoodClis, Prentie

Hall,1963.

15. V.G. Kogan et al., Phys. Rev. B 54 (1996)

12386.

16. E.H. Brandt,U. Essmann, phys. stat. sol.(b)

144(1987)13.

17. E.H.Brandt,Phys.Stat.Sol.b,77(1976)709.

18. I.M. Babih, Yu.V. Sharlai,G.P. Mikitik, Fiz.

Nizk. Temp.20(1994) 227[Low Temp. Phys.

20 (1994)220℄.

19. G. Blatter, M.V. Feigel'man, V.B.

Geshken-bein, A.I. Larkin, V.M. Vinokur, Rev. Mod.

Phys. 66(1994)1125.

20. G.P. Mikitik, E.H. Brandt, Phys. Rev. B 64

184514(2001),1-14.

21. R.Labush,T.B.Doyle,PhysiaC290(1997)

143.

22. E.H.Brandt,Phys.Rev.B59(1999)3369.

23. T. Hoquet, P. Mathieu and Y. Simon,

Phys.Rev.B46 (1992)1061.

24. E.H.Brandt,Phys.Rev.B60(1999)11939.

25. M. Benkraouda, J.R. Clem, Phys. Rev. B 58

(1998)15103.

26. E. Zeldov, A.I. Larkin, V.B. Geshkenbein, M.

Konzykowski,D.Majer,B.Khaykovih,V.M.

Vinokur, H. Strikhman, Phys. Rev. Lett. 73

(1994)1428.

27. E.H.Brandt,Phys.Rev.B58(1998)6506.

28. E.H.Brandt,Phys.Rev.B50(1994)4034.

29. D.V.Shantsev,Y.M.Galperin,T.H. Johansen,

Phys.Rev.B60 (1999)13112.

30. E.H.Brandt,Phys.Rev.B55(1997)14513.

31. L. Prigozhin, J. Comput. Phys. 144 (1998)

180.

32. E.H.Brandt,Phys.Rev.B52(1995)15442.

33. G.M. Mikitik and E.H.Brandt, Phys. Rev. B

64 (2001)092502,1-4.

34. Leonardo R.E. Cabral and J. Albino Aguilar,

PhysiaC341-348,1049(2000).

35. Leonardo R.E. Cabral, Thesis, Universidade

Imagem

Figure 1. Magneti eld B (r) and order parameter j (r)j 2
Figure 5. Magnetization urves M(H) of long type-II su-
Figure 7. The three basi homogeneous elasti distortions
Figure 8. The order{disorder lines H
+3

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Sm: infected cells treated with 500 µg/mL of Spondias mombin ; St: infected cells treated with 500 µg/mL of Spondias tuberosa ; rutin: infected cells treated with 500 µg/mL of

filantrópica e apologética da *mística imperial» como se única ou inedita; enfm, como se um Paiva Couceiro, um Norton de Matos ou um João Belo não tives3em existido: *Agora que

Orthogonal Frequency Division Multiplexing appeared as one of those tech- niques, enabling multiple channel allocation, usage of high order constellations, such as Quadra-

Na Região Autónoma dos Açores, os três arquivos principais — os de Angra do Heroísmo, Horta e Ponta Delgada — têm mantido com a Universidade dos Açores uma excelente

Para tanto, o sistema foi concebido com blocos: de gerenciamento energético, envolvendo colheita de energia através de células fotovoltaicas e armazenamento em

Assim, como a quantidade de dados estruturados para análise continua a crescer, o MapReduce apresenta-se como adequado para o processamento deste tipo de análises, apesar

Nessa perspectiva, uma das formas de abordagem da Acessibilidade informacional é, portanto, o estudo dos fatores e das melhores práticas que a favorecem. Do ponto de vista do núcleo