• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número3"

Copied!
5
0
0

Texto

(1)

Vortex Congurations on Mesosopi Cylinders

with Square Cross Setion

Mauro M. Doria

InstitutodeFsia,UniversidadeFederaldoRiode Janeiro,

C.P.68528, 21945-970,RiodeJaneiroRJ,Brazil

and GilneyFigueiraZebende

Departamento deFsia,UniversidadeEstadual deFeiradeSantana,

Feirade Santana,BA,Brazil

Reeivedon28February,2002

Verylongandthinsuperondutingylinderswithsquarerosssetionarestudiedusingamodied

GinzburgLandautheorythatinorporatestheboundaryonditionsintothefreeenergyexpression.

Reent developments in the nanofabriation

teh-nologies brought new interestinto thestudy of

meso-sopi superondutors [1, 2℄. Consequently theorists

went bak to disuss many problems that ould have

beensolvedlong agoif the motivation existed before.

Theonnementofvortiesinsampleswithsizesofthe

orderoftheoherenelengthprodueinterestingeets

suh asthe onset of giant vorties and meta-stability,

properties notfoundin puresystemsonthebulk. For

this reason suh smallsale superondutorshave

be-omeofgeneralinterest [3,4,5℄.

We study here a type II superondutor with the

shapeofaverythinandlongylinderwithsquareross

setion. The applied eld is parallel to the ylinder

and the side of the square is just a few times larger

than theoherene length

0

. Beause theylinder is

verylongtheproblembeomestwo-dimensionalandit

isenoughto study aplaneperpendiularto the

ylin-der. WeassumethattheLondonpenetrationlengthis

muh larger than the side of the square, L, and

on-sequently, than

0

too. There is no shielding of the

applied eld and the magneti eld is onstant

every-where, being equal to the applied eld. To desribe

the equilibrium ongurations of this system we use

a modied Ginzburg-Landau theory whih

automati-allyinorporatestheappropriateboundaryonditions

intothetheoryandpresentsauniedviewofboth

nor-malandsuperondutingregionsindependentlyoftheir

shape [6℄. The presenttreatment of thesquare shape

rosssetionshowsthatthistheoryisalsoabletotreat

method treatssuperondutingandnormalregions on

equal footing through a step-like funtion (~x), zero

in thenormalandoneinthesuperondutingregions,

respetively, aording to the free energy density

ex-pansionbelow,

F = (1=V) Z

dvf(~x )j ~

D j 2

=2m

+ (~x)

0 [T T

℄j j

2

+j j 4

=2g; (1)

where ~

D(~=i) ~

r q

~

A =,and ~ r ~ A= ~ H.

Thewell-knownSaint-James{deGennes[7℄

bound-aryondition,

^ n

~

D =0: (2)

is automatially satised at the

normal-superondutinginterfaesbythistheory. Thesolution

in the normalregion is trivial sineEq.(1) redues to

F = (1=V) R

dvf j j 4

=2g, with the trivial solution

=0.

The solutions of the above modied

Ginzburg-Landautheoryinthesquaregeometryarefound

numer-iallyusingadisretizedversionofthetheory. Anarray

of N 2

points is introdued and onsequently the eld

(x;y) is replaed by (n

x ;n

y ),n

x

= 1;:::;N, and

n

y

=1;:::;N. Thedisretizedversiontheoryisgauge

invariant. The numerial method used to searh for

solutions is the Simulated Annealing method[8℄. The

Simulated Annealing method is a Monte Carlo

ther-malization proedure that ontainsa temperature

(2)

(0),largerthana. Wehoosetodooursimulationsfor

T = 0and this is equivalent to xing the parameters

R = 0 and 0 =a i

to onstantvalues.

Thestep-likefuntion(~x )thatdesribesthesquare

is,

(~x)=

2

1+exp[(2jxj=L) K

2

1+exp[(2jyj=L) K

℄ (3)

where wetakeK=8.

Althoughthepresenttheoryhasnoparameterit

is possibleto simulate the limit! 1using the

fol-lowing trik. The magnetization is obtained through

theexpression,

~

M =(1=V) Z

dvf~x ~

J=2g; (4)

where ~

J = (q=2m)[ ~

D +:℄ is the

eletromag-netiurrent. Theaboveexpressiongivesthe

magneti-zation just from the spatial distribution of the order

parameter. However Ampere's law is not being

im-posed here and the Meissner regime does not exist in

thepresentstudy. It happensthat theabove

magneti-zationisonlyproportionaltothetruemagnetizationof

the limit!1. Theproportionality onstant, C,is

determined imposing thatB =H + C4M =0for

verysmallH values.

Let us disuss the results of our numerial

mini-mizationofthefreeenergy,desribedbyEq.(1),whose

resultsareshownin thegures.

Figure1showstwourvesonasingleplot,namely

thefreeenergyversustheappliedeldandthe

magne-tization versusthe applied eld forasquare withside

L =2

0

. Inthesmall applied eldregime the

magne-tization is approximatelylinear and this is assoiated

to theMeissnerphase. For inreasingeldthe

magne-tization reahes amaximumafter the Meissner region

tionsareobservedinthisase,eahouringatspeial

valuesoftheappliedeld. FromzeroeldtoH

A there

are no vortiesinside the system. H

B

marks the

en-traneoftherstvortex,H

C

oftheseond,H

D ofthe

third,andH

E

ofthefourth. ForeldslargerthanH

E

morevortiesenter thesquare, although amore

au-rateurvethanthepresentoneisneessaryto

hara-terizethesetransitions. Wehaveobservedthat

individ-ualvortiestendto ollapse into asinglegiant vortex

asthe eld inreases, until anew vortex enters when

theyagainareindividuallyseen. Forinstane,theeld

valueimediately before H

E

orresponds to just a

sin-glegiantvortexwithvortiitythree. Nextweshowthe

normalizedorderparameterforeahpointofourmesh,

taken with N = 60 and lattie parameter a =

0 =5.

Figs.4,5,6,7,8orrespondtotheappliedeldvalues

H A ,H B ,H C ,andH

D

,respetively. Eahdepressionof

theorder parameterorrespondto avortexinside the

system.

In onlusion we have studied here a long

super-onduitngylinderwithasquarerosssetionusinga

modiedGinzburg-Landautheorythatnaturally

inor-poratestheappropriateboundaryonditionsof

normal-superondutinginterfaes. Wenumeriallysolvea

dis-reteversionofthistheoryusingtheSimulated

Anneal-ingmethod. Weshowedthatthismethod givesagood

desription of the present square geometry. The

en-traneofvortiesprodue jumps inthe magnetization

showingthat theyindue rst ordertransitions in the

system, as shown for the ases of squares with sides

L=2

0

,L=3

0

,and L=8

0

studied here.

Aknowledgments

This work was supported in part by CNPq and

(3)

Figure1. Thefreeenergyandthemagnetizationversusthe appliedeld areshownherefor theaseof asquarewithside

L=20. Themagnetizationhasnodisontinuitiesindiatingthatnovortiespenetrateinthesystem.

Figure2. Thefreeenergyandthemagnetizationversusthe appliedeld areshownherefor theaseof asquarewithside

(4)

Figure 3. Thefreeenergyandthemagnetization versustheappliedeldare shownherefor thease ofasquarewithside

L=80. Thejumpsinthemagnetizationharaterizeentraneeldsforvorties. FromnoelduntilHA thereisnovortex

insidethesystemandatHB avortexentersthesystem. Theothereldsareassoiatedwithnewnumberofvortiesinside

thesystem,namelyHC twovorties,HD three,andHEfour.

Figure 4. The normalized orderparameterj(nx;nyj 2

is

shownhereforL=80 andeldvalueHA.

Figure 5. Thenormalized orderparameter j(nx;nyj 2

is

(5)

Figure 6. The normalized order parameterj(nx;nyj 2

is

shownhereforL=80 andeldvalueHC.

Figure 7. The normalized order parameterj(nx;nyj 2

is

shownhereforL=80 andeldvalueHD.

Figure 8. The normalized order parameterj(nx;nyj 2

is

shownhereforL=80 andeldvalueHE.

Referenes

[1℄ O.Buisson,P.Gandit,R.Rammel,Y.Y.WangandB.

Pannetier,Phys.Lett.A66,15036.

[2℄ A.K.Geim,I.V.Grigorieva,S.V.Dubonos,J.G.S.Lok,

J.C. Maan, A.E. Filippov and F.M. Peeters, Nature

390,259(1997).

[3℄ J.J.Palaios,Phys.Rev.Lett.84,1796(2000).

[4℄ B.J. Baelus,F.M. Peetersand V.A.Shweigert, Phys.

Rev.B63,144517(2001).

[5℄ S.Y. Yampolskii and F.M. Peeters, Phys.Rev. B 62,

9663(2000).

[6℄ Mauro M. Doria and SarahC.B. de Andrade, Phys.

Rev.B60,13164(1999).

[7℄ D.Saint-JamesandP.G.deGennes,Phys.Lett.7,306

(1963).

[8℄ M.M.DoriaandJ.E.GubernatisandD.Rainer,Phys.

Imagem

Figure 1. The free energy and the magnetization versus the applied eld are shown here for the ase of a square with side
Figure 3. The free energy and the magnetization versus the applied eld are shown here for the ase of a square with side
Figure 6. The normalized order parameter j(nx; nyj 2

Referências

Documentos relacionados

sample lets magneti ux to enter the sample, following. a

formation of single phase Pr123 with larger lattie pa-. rameter

provided lear evidene of a pair-breaking eld at the Ni site for non-superonduting ompounds.. This eld is not present in the superonduting ollinear AF DyNi2B2 C, however it

powder diratometry, sanning eletron mirosopy and d-magnetization.. Samples

most of the reported results have been obtained using aligned rystallites, -axis oriented thin lms.. and

Room temperature and 4.2 K M ossbauer spetra of the samples MgC(Ni1 xFex)3 with x = 0:01 and x = 0:5. Band struture alulations

YBCO blok in 1-D and mapping the trapped magneti eld in those bloks in 2-DC. I In

is proportional to the average grain-domain radius, but inverse proportional to the total length of.. grain-boundaries of the sample, a simple physial model has been provided and