• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número3"

Copied!
5
0
0

Texto

(1)

Bent Strips in External Magneti Fields

and With Applied Currents

Leonardo R.E. Cabral and J.Albino Aguiar

Departamento deFsia,Universidade FederaldePernambuo,

50670-901Reife,Brasil

Reeivedon28February,2002

Current and magneti eld proles of bent strips in external magneti elds and with applied

urrentsarenumeriallyalulated. Theatstripisorretlyobtainedasthelimitingaseofbent

stripswhenthebendangleiszero. TheMeissnerresponseandtheuxpenetrationarestudied,the

latterundertheonsiderationofhighritial urrentsandsmallbends. Thedependeneofthese

prolesonthereepexponent(byamaterialrelationE/(j=j) n

)isalsostudied. Inthepresene

ofanexternalmagnetieldtheuxpenetrationisdelayedinbentstripsomparedwithatstrips.

Intheaseofanappliedurrenttheuxpenetrationfromthestripedgeisalsodelayed,butaux

frontstartingfromtheornerisalsoobserved.

I Introdution

Theeletromagnetiresponseofsuperondutorsin

ex-ternal elds has been extensively studied, and speial

attention has been given to the role of the speimen

shape. The Meissner statean bestudied byLondon

theoryandiseasilyobtainedinspeimenswith

negligi-ble demagnetization fator(longbarsand ylindersin

parallel elds). However, itturns out tobe adiÆult

taskwhenspeimenswithlargeand/ornon-uniform

de-magnetization fatorsareonsideredin the

perpendi-ulareldgeometry(inthisase,theeldisapplied

per-pendiular tothe speimen largerdimensions). Inthe

limitwhere ismuhsmallerthan thesample

dimen-sions, analytial solutions are known for a few ases,

e.g.,theMeissnerresponseinperpendiulareldinat

thin strips[1, 2℄and disks [3,4℄, longbarswith

ellip-ti[5℄andretangularross-setion[6℄.

Theunderstandingofvortexpenetrationand

evolu-tioninsideatype-IIsuperondutorinthemixedstate,

anbeomeaverydiÆultproblem,duetothe

vortex-vortex and vortex-defets interations, besidesthe

in-uene of thermal utuations [7, 8℄. At nite

tem-perature vorties an be depinned from their

prefer-ential positions by thermal utuations. This

gener-ated motion of vorties, known as ux reep, indues

aneletrield,E,relatedtotheurrentdensity, j,by

E(j)=E

exp( U(j)=k

B

T),whereU(j)isthepinning

potential[10,11℄.

Theritialstateapproahanbeusedtostudythe

wayhowmagnetiuxevolvesintothesuperondutor

withoutarryingoutthemorefundamentalLondonand

duting bars and ylinders in parallel eld geometry,

theritialstateiswellunderstood. However,few

ana-lytialresultsareknownforspeimensintheso-alled

perpendiulargeometry [1,2,9℄.

Although analytial results are important,

numer-ial methods an be employed in order to obtain the

Meissner response and the ux penetration into

su-perondutors of several shapes[12, 13℄. In this way

Brandt formulated a numerial method whih

alu-lates the urrent density, j, inside ylinders and long

bars(withniteaspetratio)inexternalmagnetield

orwith applied urrents [12, 14℄. The magneti eld

andthe magnetizationare alsoobtainedfrom the

al-ulatedj. AmaterialrelationE=E(j)alsoallowsthe

investigation of ux reep eets, whih areabsentin

theoriginalritialstateapproahandareanalytially

alulatedonlyinparallel eldgeometry.

Inthisworkwepresenttheeletromagnetiresponse

of superonduting bent strips in external magneti

elds and with applied urrents. The Meissner state

andtheuxpenetrationareobtainedapplyingBrandt's

method[12,14℄withtheappropriatehangeof

oordi-nates for bent strips. As a result points on the bent

striparedesribedbyauniqueoordinate,. The

nu-merial alulated urrent and magneti eld proles

are also dependent. The dependene of these

pro-lesandofthemagnetimomentonthebend angleis

studied. Theux frontomingfrom thestripedges is

delayed for bent strips ompared with at ones,both

inexternalmagneti elds orwith anapplied urrent.

(2)

II Numerial method

Thenumerialmethod startsfrom theintegral

formu-lation of Ampere's law, Faraday's law and a relation

E = E(j) borrowed from mirosopi theories about

ux reep and ux ow. The external magneti eld

is applied along they-axis. The transport urrent

re-sults from an uniform external eletrield alongthe

z-axis. Theurrentdensity,j, theeletrield, E,and

the vetor potential, A, are also assumed to be

par-allelto z-axis. This assumption isreasonablefor long

ilinderswithsymmetryaxisalongz-axisandarbitrary

(uniform)ross-setioninthex yplane. Thisleadsto

thefollowingequationofmotionfortheurrentdensity,

0 t j(r)= Z d 2 r 0 Q 1 (r;r 0 ) E(j)+ t A a ; (1)

where j = jz,^ r = (x;y), A

a

is the vetor potential

of the applied eld. For applied magneti or eletri

elds, A

a

= xB

a or A a = R dtE a

(t), respetively.

The inverse kernel, Q 1

(r;r 0

) an be obtained bythe

followingidentity, Z d 2 r 00 Q 1 (r 0 ;r 00 )Q(r 00

;r)=Æ(r r 0

); (2)

whereQ(r;r 0

)isthekernelrelatingthevetorpotential

atapointrwiththeurrentdensityatallpointsinside

thesuperondutor,

A(r)=A

a + 0 Z d 2 r 0 Q(r;r 0 )j(r 0 ): (3)

For long bars (long ylinders with retangular

ross-setion)this kernelisobtainedfrom theintegrationof

the3Dkernel1=(4jr r 0

j)alongthesymmetryaxis

z,furnishing Q bar (r;r 0 ) = 1 4 ln (x x 0 ) 2

+(y y 0 ) 2 + + 1 2

lnL; (4)

where L is the bar length along z. The Meissner

re-sponse may be found by formula 1 taking E = 0 (no

vortiespresent)andintegratingintime. Thisyields

0 j M (r)= Z d 2 r 0 Q 1 (r;r 0 )A a : (5)

We onsider a thin bent strip, shown in Fig. 1, a

thin strip sharply bent in the middle by an angle ,

with thiknessd and at a a. Thus the strip

ross-setion is \V" shapep. The following hange of

oordinates,

x = os sign()sen

y = jjsen + os; (6)

maybeusedintoequation4inordertoobtainthe

ker-nel forthin bent strips. Hene, Ampere's lawan be

written as

A()=A

a + 0 Z a a d 0 Q(; 0 )J s ( 0 ); (7) whereJ s ()= R d=2 d=2

dj(;)dj()isthesheet

ur-rent(theurrentdensityintegratedoverthethikness)

andthekernelQ(; 0

)is givenby

Q(; 0 ) = 1 4 ln ( 0 ) 2 os 2

+(jj j 0 j) 2 sen 2 + + 1 2

lnL: (8)

The vetor potential of the external elds is A

a =

osB

a

,foranexternalmagnetieldB

a ,orA

a =

R

dtE

a

foranapplied eletrield. Notiethat the

dependeneontheoordinate{alongthethikness{

isdroppedout,sineweonsiderthinbentstrips. This

leadstoanequationofmotionforthesheeturrent

0 t J s ()= Z a a d 0 Q 1 (; 0 ) h E J s D + t A a i ; (9)

andtothesheet urrentfortheMeissnerstate

0 J M s () = Z d 0 Q 1 (; 0 )A a (10)

where theinversekernelis foundsimilarly to eq.4for

thebar,butintegratingover,i.e.,

Z d 00 Q 1 ( 0 ; 00 )Q( 00

;)=Æ( 0

): (11)

Bydisretizing theoordinatealong thebent strip, ,

one an numerially solve the above equation for the

Meissnerresponseandintegratetheequationofmotion

forJ

s .

Figure1. Shematipitureofabentstrip. Thethikness

ismagniedinordertobettervisualization. Theoordinate

alongthe stripis andthe diretionperpendiular to is

denotedby.

In the alulations the following symmetry

(3)

y) or eletri (along z) elds, J

s

( ) = J

s () or

J

s

( )=J

s

(), respetively. Thus theaboveintegral

rangesfrom0toaallowingforgreaterauray. Hene,

thekernel(eq. 8)beomes,

Q B

(; 0

)= 1

4 ln

h

2

2

+ os

2

+ 2

sin 2

i

; (12)

foranappliedB

a =B

a ^ y and

Q I

(; 0

)= 1

4 ln

n

2

[ 2

+ os

2

+ 2

sin 2

L 4

o

: (13)

forE

a =E

a ^

z(equivalenttoapplyatransporturrent),

where

=

0

. When an external and a

trans-porturrentarepresent,thekernelgivenbyequation8

should beused.

Themagneti eld is obtainedfrom theurl ofA,

whihreads

B=B^

=rA=^B

a

os ^ A

J

; (14)

where^isaunitvetorparalleltotheoordinate. For

the aseofanexternalmagnetield (noapplied

ur-rent)themagnetimomentisfoundfromthefollowing

formula

m= 1

2 Z

d 3

rrj= y^2Ldos Z

a

0 d J

s ():

(15)

In this equation it is onsidered the ontribution to

themagnetizationfromtheU-turningurrentsnearthe

strip ends, at jzj L=2[2℄. When anapplied eletri

eld ispresent,

I =2 Z

a

0 d J

s

(): (16)

givesthetotalurrentowingthroughthebentstrip.

We hose a grid of N = 100 points to represent

half of the bent strip (i.e., 0 a). It was also

adopted d = 2:510 4

a. In this way , J

s () and

B

() beome onedimensional arrays,and thekernel

Q(; 0

)beomesasquare matrix. Hene theintegrals

shownaboveareonvertedintosumsovertheindexof

these arrays and the inverse kernel Q 1

(; 0

) an be

omputedbymatrixinversion.

III Results

ThealulatedmagnetieldlinesfortheMeissner

re-sponsearedepitedin Figs.2and 3,theformerforan

externalmagnetieldB

a

k^yandthelatterfora

trans-porturrent(whihisthesameasapplyinganeletri

eld parallel to z).^ Bend angles =0 o

;30 o

;60 o

and

90 o

are shown. The magneti eld lines are obtained

fromtheequipoteniallinesofthevetorpotenial,A.

linestendtobeuniformasthedistanefrom thestrip

inrease. Forthetransport urrent,themagnetield

linesirulatearoundthestrips,beomingmorespaed

farther from the strip. In both ases it is observed

thatthemagnetieldlinesbendsharplyattheedges.

These lines are alsonot allowed to enter the stripsas

expetedin theMeissnerstate. Thease=90 o

or-retlyresultsinatwithwidtha[halfofthewidth(2a)

foraatstrip,when=0 o

℄. Interestingly,intheases

0 o

<<90 o

themagnetiuxisshielded intheinner

wedgeofthebentstrip.

Figure2. Magnetieldlinesforbentthinstripsinan

ex-ternal eld B

a

k^y. Four bend angles are shown: = 0 o

,

orrespondingtoaatstrip,(topleft);=30 o

(topright);

=60 o

(bottomleft)and=90 o

(bottomright).

Figure3. Thesame as Fig. 2,butfor atransporturrent

owingalongz.^

TheuxpenetrationispresentedintheFigs4and5

foranexternalmagnetield andfor atransport

(4)

de-ofthegures. Beauseof thesymmetryof theproles

(the magneti omponent, B

, and the sheet urrent,

J

s

,are,respetively,evenandoddfuntionsof foran

external magneti eld,while B

and J

s

are oddand

evenfuntionsof forthetransporturrentase),the

guresshow the >0branh only. TheBeanritial

state assumption (j

= onstant) [15℄ was onsidered

in allasestreatedin thisartile. Intheexternaleld

asetheinreasinganddereasingbranhesareshown

intheleftandrightoftheFig.4forn=101. The

on-tinuous (dashed) line presentsthe proles taken from

the=0 0

(=30 0

)ase.

0

0.5

1

1.2

−1

0

1

ζ

/ a

J

s

−2

0

2

B

η

0

0.5

1

1.2

0

1

ζ

/ a

0

1

2

Figure4. Sheeturrent,J

s

,(bottom)andtheperpendiular

omponent ofthe indution,B

,(top) dependeneonthe

oordinateparalleltothebentstrip,,forbentstripsin

ex-ternalmagnetields.Left: inreasingbranh.Right:

de-reasingbranh.Thethinanddashedorrespondto=0 o

and30 o

,respetively. Eahgroupoftwoproles,indiated

by thearrows,are obtained atthe sameexternaleld. Js

andB=0areinunitsofjD,andweusedd=2;510 4

a.

NotiethatJsandBare,respetively,oddandeven

fun-tionson.

Theprolesfor thesetwobendangles were alulated

for the same external elds, where the arrows

indi-atethediretion inwhihtheexternaleld inreases.

The divergene of themagneti eld at the stripedge

=a,whihhadalreadybeenobtainedforaatstrip

(=0 o

)[1,2,9℄,isalsoobservedwhen>0 o

. Asthe

externaleldinreases,magnetiuxpenetratesdeeper

into the strip, and the shielded region beomes

nar-rower. Thedierenebetweenthe=0 o

and=30 o

asesappearasadelayedpenetrationinthelaterase.

Infat,thepenetrationismoredelayedasthebend

an-gleinreases[16℄. Intheregiontheuxhaspenetrated,

the sheet urrent is almost onstant, as expeted for

the Bean ritial state (the small deviation from the

onstantvalueoursduetothenitereepexponent,

n=101). J

s

dereasestowardszero,intheshielded

re-gion,asonewalkstothemiddleof thestrip, although

the deays for = 0 o

and = 30 o

present dierent

behaviors. Foreah externaleld,there isarossover

separatingaregionwhereJ

s (0

o

)>J

s (30

o

)fromthe

re-gionwhereJ

s (0

o

)<J

s (30

o

). Inthedereasingbranh

thesamefeaturesobservedininreasingbranhare

ob-startstoleavethestripthroughtheedges =aand

aregionwheremagnetiuxistrappedappears.

Inthe transport urrentase the proleswere

ob-tained at inreasing time, keeping an uniform eletri

eld in the z^ onstant (Fig. 5). This makes the

to-tal urrent (whih is the applied urrent) owing in

the strip inrease with time. The thin dashed,

dash-dotted and thik lines represent the bend angles =

0 o

;15 o

;30 o

and 45 o

, respetively. Eah groupof four

proles, indiated by the arrows, are obtained at the

sametime(or, forthesametransport urrent). Inthe

left(right),n=101(n=11)wasadopted,

orrespond-ingto weak(strong)ux reep. Theinueneofreep

isevideniatedbythesmootherprolesandthelarger

ux diusion into the stripfor n=11 omparedwith

n = 101. For both ases the ux penetration from

the strip edges = a is more delayed as the bend

angle inreases. However, a new feature is observed:

ux penetrates from the middle of the bent strip, at

= 0, where the strip bends. This does not happen

foraatstripandoursin bentstripsbeauseofthe

nonzeroperpendiularmagnetieldomponentatthe

bend(seeFig.3). Thispenetrationismorepronouned

forlargervalues. Aftertheritialurrentisattained

thesheeturrentbeomesuniformthroughthestrip[2℄,

whihorrespondsto thefullux penetration. Thisis

depited in the last prole in the right of Fig. 5

(al-though it is not shown in the left of this gure, this

stageisalsopresentforn=101).

0

0.5

1

1.2

0

1

ζ

/ a

0

1

0

0.5

1

1.2

0

1

ζ

/ a

J

s

0

1

B

η

Figure5.Sheeturrent,J

s

,(bottom)andtheperpendiular

omponent of theindution, B

, (top)dependeneonthe

oordinateparalleltothebentstrip,,forbentstripswith

anuniform eletrield. Left: n=101. Right: n =11.

The thin, dashed, dash-dottedand thik lines orrespond

to = 0 o

;15 o

;30 o

and 45 o

, respetively. Eah groupof

four proles, indiated by the arrows, are obtained at the

sametime. J

s andB

=

0

areinunitsofj

D,andweused

d=2;510 4

a. Notiethat Js and B are, respetively,

evenandoddfuntionson.

IV Conlusions

(5)

superondut-or eletrields (thelaterorrespondingtoanapplied

urrent). A hange of oordinates is used in order to

transformatwodimensionalprobleminanone

dimen-sional problem. The sheet urrent J

s

dependene on

the oordinate along the strip, , wasalulated

em-ployinganumerialproedure[12,14℄. IntheMeissner

state the resulting magneti eld lines orretly show

the magnetishielding bentstrips should present. We

alsoomparedtheuxpenetrationforbentstripswith

thatforaatstrip. Forboththeexternalmagnetield

andtransporturrentasesthepenetrationofmagneti

ux from thestrips edges, =a, is delayedin bent

strips. However,ux penetrationfrom thestrip bend,

=0,isobservedwhenatransporturrentisapplied,

beingmorepronounedasinreases.

Aknowledgments

WewouldliketothankCleioC.deSouzaSilvafor

helpful disussions. Thisworkwaspartiallysupported

byBrazilianSieneAgeniesCNPqandFACEPE.

Referenes

[1℄ W.T.Norris,J.Phys.D3,489(1970).

[2℄ E.H.BrandtandM.Indenbom,Phys.Rev.B48,12893

(1993).

[3℄ P. N. Mikheenkoand Kuzovlev, PhysiaC 204, 229

(1993).

[4℄ J.Zhu,J.Mester,J.Lokhart,andJ.Turneaure,

Phys-iaC212,216(1993).

[5℄ J.R.Clem,R. P.Huebener, andD. E.Gallus,J. Low

Temp.Phys.12,449(1973).

[6℄ E.H. Brandtand G.P. Miktik,Phys.Rev.Lett. 85,

4164(2000).

[7℄ C.C.S.Silva,L.R.E.Cabral,andJ.A.Aguiar,Phys.

Rev.B63,4526 (2001).

[8℄ C.C.S.Silva,L.R.E.Cabral,andJ.A.Aguiar,Phys.

StatusSolidiA187,209(2001).

[9℄ E.Zeldov,J.R.Clem,M. MElfresh,andM. Darwin,

Phys.Rev.B49,9802(1994).

[10℄ G.Blatter,M.V.Feigel'man,V.B.Geshkenbein,A.I.

Larkin,andV.M.Vinokur,Rev.Mod.Phys.66,1125

(1994).

[11℄ E.H.Brandt,Rep.Prog.Phys. 58,1465(1995).

[12℄ E.H.Brandt,Phys.Rev.B54,4246(1996).

[13℄ R. Labush and T. B. Doyle, Physia C 290, 143

(1997).

[14℄ E.H.Brandt,Phys.Rev.B59,3369(1999).

[15℄ C.P.Bean,Phys.Rev.Lett.8,250(1962);idem,Rev.

Mod.Phys.36, 31(1964).

[16℄ L. R. E. Cabral and J. A. Aguiar, Physia C 341

Imagem

Figure 1. Shemati piture of a bent strip. The thikness
Figure 2. Magneti eld lines for bent thin strips in an ex-
Figure 4. Sheet urrent, J

Referências

Documentos relacionados

We onsider that one of the uids is a ferrouid and that an external magneti eld is applied.. The interfaial instabilities whih arise between the uids are studied for various

Ferrouid drops are freely suspended in air by using magneti elds to.. reate an attrative fore

and magneti harges, being dierent from monopoles (magneti or eletri), the topologial ontent.. of monopoles, surfae terms, Dira strings and hiral struture in the inlusion of

We obtain exat solutions for the Shr odinger-Pauli matrix equation for a neutral partile of spin.. 1/2 in a magneti eld with a

The inuene of an external onstant uniform magneti eld on the Casimir energy assoiated with.. a Dira eld under antiperiodi boundary ondition is omputed using

program inluded basi mehanisms of superondutivity, vortex dynamis, materials preparation and harateri-.. zation, and appliations

materials the line tension and line energy of ux lines. in general are dierent and depend on the angle

Very long and thin superonduting ylinders with square ross setion are studied using a modied0. Ginzburg Landau theory that inorporates the boundary onditions into the free