• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número3"

Copied!
4
0
0

Texto

(1)

Vortex Lattie of a Long Superonduting

Wire with a Columnar Defet

Edson Sardellaand Rodrigo de AlvarengaFreire

Departamentode Fsia,FauldadedeCi^enias

UniversidadeEstadual Paulista

CaixaPostal473,17033-360, Bauru-SP,Brazil

Reeivedon28February,2002

Inthepresentworkwe studyalongsuperondutingwirewithaolumnardefetinthepresene

ofanappliedmagnetield. Therosssetion oftheylinderisassumedtobeirular. Theeld

is taken uniformand parallel to theylinder axis. We use theLondon theoryto investigate the

vortexlattieinsidethewire. Althoughthistheoryisvalidinthelimitoflowvortexdensity,that

is, when the nearest neighbor vortex distane is muh larger than the oherene length, we an

obtainareasonablequalitativedesriptionoflattieproperties. Wealulate: (1)thevortexlattie

strutureusingthesimulatedannealingtehnique;(2)themagnetizationurveasafuntionofthe

appliedeld.

I Introdution

Reentprogressesin nanotehnologyhavemade

possi-ble thefabriationof mesosopisuperonduting

ma-terialswiththesizeomparabletotheoherenelength

() and London penetration depth (). This has

mo-tivatedbothexperimentalandtheoretialphysiiststo

investigate the magneti properties of these small

su-perondutors. The properties of the vortex lattie,

forinstane,insuperondutorsofonnedgeometries

hange radially with respet to the behavior in the

bulk.

Previousworkshavebeendediated tothe

investi-gationofasuperondutingwire[1,2,3℄. Inthispaper

weextendthesestudiestotheaseofasuperonduting

wirewithaolumnardefet.

II The loal magneti eld

The geometry of the problem we will onsider in this

workisillustratedinFig.1. Theappliedmagnetield

H isparallelto theylinderaxisandisdenotedbyH.

The internal and externalradius of theylinder are a

andb respetively.

&% '$ q q q q q q q

q q q q q q q q

q

q

q

q

q

q

q

q

q

q q

q q

q q

q q b

a H

Figure 1. Cross setion of a long superonduting

ylin-derwithaolumnardefet. Thedotsrepresenttheapplied

magnetieldwhihisdiretedalongtheylinderaxis.

ThestartingpointofourstudyistheLondon

equa-tionfortheloalmagnetieldofaverystrongtype-II

superondutorforwhihtheGinzburg-Landau

param-eter =

1. For our purposes, this equation an

bemoreonvenientlywritteninylindrialoordinates

as

2

2

h

2

+ 1

h

+

1

2

2

h

' 2

+h=

0 N

X

i=1

Æ(

i );

(1)

where

i

istheposition ofthei-vortexline.

This isa Dirihlet problem in whih theboundary

onditionsaregivenby

h(a;')=h(b;')=H : (2)

The solution of the London equation under these

boundary onditions may be found by means of the

(2)

h(;')=

0 N

X

i=1

G(;';

i ;'

i )+h

1

(): (3)

Thesolutionontainstwodistintparts[4℄. Therst

termisapartiularsolutionoftheLondonequationas

ifnoappliedeldwerepresent. Theseondtermisthe

solution of the homogeneous London equation in the

abseneofanyvortexline(Meissnerstate).

TheGreen'sfuntion G((;'; 0

;' 0

)hastheform

G(;';0;'0)= 1

2 1

X

m= 1 e

im(' ' 0

)

g

m (;

0

); (4)

wheretheFourieroeÆientsaregivenby

g

m (;

0

)= (

m (

0

;b)

m (a;)

2

m(a;b)

; a

0

m( 0

;a)m(b;)

2

m (a;b)

;

0

b; (5)

where

m

(x;y)=K

m (x=)I

m

(y=) K

m (y=)I

m (x=):

(6)

Here K

m

(x) and I

m

(x) are theBessel funtions of

seondkind.

The homogeneoussolution an be easily found by

usingstandardmethodsofsolutionofdierential

equa-tions. Onehas

h

1

()=H

0

(a;)

0 (b;)

0 (a;b)

: (7)

III The free energy

Wewillmoveforwardonthedeterminationofthe

Lon-donfreeenergy(theHelmholtzfreeenergyinthe

ther-modynami ontext). In the London approximation

thisenergy(perunit volume)isgivenby

F= 1

8A Z

2

0 Z

b

a "

2

2

h

'

2

+ 2

h

2

+h 2

#

dd'; (8)

d

whereA=(b 2

a 2

)istheareaoftherosssetionof

theylindrialshell.

TheLondonfreeenergyFisathermodynami

fun-tionofthemagnetiindutionB,whihisinonvenient

foralulationsinvolvingaxedappliedmagnetield.

Therefore,itisneessarytouseaLegendre

transforma-tionfortheGibbs freeenergy

G=F BH

4

; (9)

where B isthe magnetiindution whih isdened as

aspatialaverageof theloal magnetield

B = 1

A Z

hd 2

: (10)

Bymeans of these denitions of F and B, after a

tediousbutstraightforwardalulation,wendforthe

Gibbs freeenergy

G =

2

0

8A N

X

i;j=1 G(

i ;'

i ;

j ;'

j )+

0 H

4A N

X

i=1

0 (a;

i

)

0 (b;

i )

0 (a;b)

N

0 H

4A

2

H 2

4A (a;b)

b

Æ

0 (a;b)+

a

Æ

0

(b;a) 2

(3)

where weusedthfollowingdenition

Æ

m

(x;y)=K

m (x)I

m+1

(y)+K

m+1 (y)I

m

(x): (12)

IV The limit of a thin wire

We will now take the limit of a very thin

superon-duting wire with a olumnar deet. We take both

aand b. Thefollowingresultsarealso valid

for both a small dis (if a = 0) and a small ring (if

a 6= 0)[3℄. Within this limit the loal magneti eld

and the Gibbs free energy are enormously simplied.

Fortheloalmagnetield weobtain

h(;')=h(;') H=

=

0

2 2

N

X

j=1 2

4

ln

j1 ZZ

j jj1

a 2

b 2

ZjZ j

jZ Z

j jj1

a 2

Zj

b 2

Z jj1

a 2

Z

b 2

Z

j j

ln(jZj)ln(jZ

j j)

ln(b=a) 3

5

+ Hb

2

4 2

jZj 2

1

lnjZj

ln(b=a)

1

a

b

2

; (13)

where wehaveusedtheomplexnotationZ =

b e

i'

.

FortheGibbs freeenergywend

G

N G

0 =

2

0

16 2

A 2

N

X

i;j=1 2

4

ln

j1 Z

i Z

j jj1

a 2

b 2

ZjZi j

jZ

i Z

j jj1

a 2

Z

j

b 2

Zi jj1

a 2

Zi

b 2

Z

j j

ln(jZ

i j)ln(jZ

j j)

ln(b=a) 3

5

+

0 Hb

2

16A 2

N

X

i=1

jZ

i j

2

1

lnjZ

i j

ln(b=a)

1

a

b

2

; (14)

d

whereG

0

istheGibbsfreeenergyintheMeissnerstate.

These resultsarein agreementwiththose of[3℄in the

partiularasea=0.

V Results and Disussion

Inthemixed statethemagnetization showsaseriesof

piksasafuntionof theappliedmagnetield. Eah

pikisgenerallyinterpretedasanindiationofthe

en-traneofanindividualvortexinthesample. Soonafter

the entraneof avortex, theyrearrangethemselvesin

ordertolowertheGibbsfreeenergy. Thisonguration

orrespondsto theglobal optimum. Eah entraneof

avortexisassoiatedwitharitialeld,thesoalled

mathing eld. These eldswere foundas follows. As

wehavestatedpreviously,thevortiespenetrateoneat

thetime. AtthetransitionfromNtoN+1vorties,we

assume that theGibbs free energy isontinuous, that

is, G

N

(H)= G

N+1

(H). The solutionof this equation

providesthevalueofthemathingeld. Fulldetailsof

howtodeterminethesemathingeldsanbefoundin

Ref. [2℄.

ThemathingeldsweredetermineduptoN =24

zation4M=B H. Theresultisdepitedin Fig.2.

0.0

0.2

0.4

0.6

0.8

-1.4x10

-4

-1.2x10

-4

-1.0x10

-4

-8.0x10

-5

-6.0x10

-5

-4.0x10

-5

-2.0x10

-5

0.0

4

π

M/H

c2

H/H

c2

Figure2.Magnetizationversustheappliedeldfor=100,

a=,andb=10.Theeldsareinunitsoftheupper

rit-ialeldH2.

As an be seen in this gure, the magnetization

(4)

pene-remainsnegativeforallvaluesof H until N =24.

Re-ently, someauthors[3, 5℄ suggestedthat foronned

geometriesofdimensionsomparabletothe

fundamen-tallengths(;),themagnetizationpresentsapositive

sign. This indiatesthat thevortexsystemmaybe in

a paramagneti Meissner state. This has been

inter-pretedasamanifestationofeitherametastability[3,5℄

ofthevortexsystemortheformationofagiantvortex

state[6℄. Withinourapproah,wewillneverbeableto

detettheformationthesevortexstates. First,we

an-notndgiantvortexstatesduetoalimitationof

Lon-don theory whih supposes that the nearest neighbor

distanesbetweenthevortiesis muh largerthanthe

oherenelength. Seond,weannotnd

metastabil-itysineweusethesimulatedannealingmethodwhih

rarelystopsat aloalminimumofthevortexstate.

-1.00

-0.75

-0.50

-0.250.00 0.25 0.50 0.75 1.00

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Figure3. Distributionoftheloalmagnetieldh (;')for

N =10vorties. Thelengthsare inunitsofb. Thedarker

regionsindiatewheretheeldismoreintense.

We also determined the distribution of the loal

magneti eld for twovalues of N. As we ansee in

Fig.3,thevortiesaredistributedinaringaroundthe

olumnardeet. However,forN =11this singlering

regime of asingle-to amulti-ring vortex stateanbe

learlyseenin Fig.2informof apikat H=0:45H

2

.

-1.00

-0.75

-0.50

-0.250.00 0.25 0.50 0.75 1.00

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Figure4. ThesameasFig.3,exeptthatnowN=11.

Anowledgement

WethanktheS~aoPauloAgenyFAPESPfor

nan-ialsupport.

Referenes

[1℄ G.Bobel,NuovoCimento38,6320(1965).

[2℄ P.A.VenegaseEdsonSardella,Phys.Rev.B58,5789

(1998).

[3℄ E.Akkermans,D.M.Gangart,eK.Mallik,Phy.Rev.

B63,4523(2001).

[4℄ Detailed solution of the London equation for the

presentgeometrywillbegivenelsewhere.

[5℄ A. K.Geim, S.V. Dubonos,J.G.S.Lok,M. Henini,

eJ.C.Maan,Nature,396,144(1998).

Imagem

Figure 2. Magnetization versus the applied eld for  = 100,
Figure 4. The same as Fig. 3, exept that now N = 11.

Referências

Documentos relacionados

then ompute the quantum skyrmion eetive interation potential as a funtion of doping and.. temperature in order to study

sample lets magneti ux to enter the sample, following. a

formation of single phase Pr123 with larger lattie pa-. rameter

provided lear evidene of a pair-breaking eld at the Ni site for non-superonduting ompounds.. This eld is not present in the superonduting ollinear AF DyNi2B2 C, however it

powder diratometry, sanning eletron mirosopy and d-magnetization.. Samples

most of the reported results have been obtained using aligned rystallites, -axis oriented thin lms.. and

Room temperature and 4.2 K M ossbauer spetra of the samples MgC(Ni1 xFex)3 with x = 0:01 and x = 0:5. Band struture alulations

YBCO blok in 1-D and mapping the trapped magneti eld in those bloks in 2-DC. I In