• Nenhum resultado encontrado

Induction of cancer cell death by apoptosis and slow release of 5fluoracil from metalorganic frameworks CuBTC

N/A
N/A
Protected

Academic year: 2018

Share "Induction of cancer cell death by apoptosis and slow release of 5fluoracil from metalorganic frameworks CuBTC"

Copied!
7
0
0

Texto

(1)

Original

article

Induction

of

cancer

cell

death

by

apoptosis

and

slow

release

of

5-fluoracil

from

metal-organic

frameworks

Cu-BTC

Fla´via

Raquel

Santos

Lucena

a,

*

,

Larissa

C.C.

de

Arau´jo

a

,

Maria

do

D.

Rodrigues

a

,

Teresinha

G.

da

Silva

a

,

Vale´ria

R.A.

Pereira

b

,

Gardeˆnia

C.G.

Milita˜o

c

,

Danilo

A.F.

Fontes

d

,

Pedro

J.

Rolim-Neto

d

,

Fausthon

F.

da

Silva

e

,

Silene

C.

Nascimento

a

aAntibioticsDepartment,PernambucoFederalUniversity,50670-901Recife-PE,Brazil bImmunologyDepartment,PernambucoFederalUniversity,50670-901Recife-PE,Brazil

cPhysiologyandPharmacologyDepartment,PernambucoFederalUniversity,50670-901Recife-PE,Brazil dPharmaceuticalSciencesDepartment,PernambucoFederalUniversity,50590-470Recife-PE,Brazil eFundamentalChemistryDepartment,PernambucoFederalUniversity,50590-470Recife-PE,Brazil

1. Introduction

5-fluorouracil(5-FU),apyrimidineanalog,isoneofthebroad spectrum anticancer drugs [1–3] used in the treatment of malignancies like glioblastoma[4] and breast cancer [5]. Since 5-FU interferes with DNA synthesis, it principally acts as a thymidylatesynthaseinhibitor[6,7].However,shorthalf-life,wide distribution,andvarioussideeffectslimititsmedicalapplicability [8–10].Toovercometheabove-mentionedlimitations,anample numberofstudieshasbeencarriedoutonsustaineddrugdelivery systemsfor5-fluorouracil.

Rahmanetal.preparedandevaluatethecolon-specific micro-spheresof 5-fluorouracilforthetreatment ofcoloncancer. The authorsobservedthattheresultsclearlyindicatethatthereisgreat potentialindeliveryof5-FUtothecolonicregionasanalternative totheconventionaldosageform[11].

Lekha-Nair et al. studied the biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependenceonthePLGAcarrier(nanoparticleswithdependence on the lactide/glycolide combination of PLGA). 5-FU-entrapped PLGAnanoparticlesshowedsmallersizewithahighencapsulation efficiency[12].Horcajada etal. reported theefficiencyofsome MOFsascarriersofdrugswastestedusingantiviralandantitumor drugs:bulsufan,azidothymidine-trisfofato,cidovirand doxorubi-cin. According totheauthors,incorporation of someantitumor drugs usedforcancerssuchasleukemiaand myelomaintothe MIL-100MOFwasconsideredextremelyhigh.[13].

ARTICLE INFO

Articlehistory:

Received14May2013

Accepted17June2013

Keywords:

Cu-BTCMOF

5-fluorouracil Apoptosis

Anti-inflammatoryandcytotoxicactivities

Slowrelease

ABSTRACT

Thisstudyaimedtoevaluatethemechanismassociatedwithcytotoxicactivitydisplayedbythedrug 5-fluorouracil incorporated in Cu-BTC MOF and itsslow deliveryfrom the Cu-BTCMOF. Structural characterization encompasses elementalanalysis (CHNS), differential scanning calorimetry (DSC), thermogravimetricanalysis(TG/DTG),Fourniertransforminfrared(FIT-IR)andX-raydiffraction(XRD) wasperformedtoverifytheprocessofassociationbetweenthedrug5-FUandCu-BTCMOF.Flow cytometrywasdonetoindicatethatapoptosisisthemechanismresponsibleforthecelldeath.The releaseprofileofthedrug5-FUfromCu-BTCMOFfor48hourswasobeisant.Also,theanti-inflammatory activitywasevaluatedbytheperitonitistestingandtheproductionofnitricoxideandpro-inflammatory cytokinesweremeasured.Thechemicalcharacterizationofthematerialindicatedthepresenceofdrug associatedwiththecoordinationnetworkinaproportionof0.82g5-FUper1.0gofCu-BTCMOF.The cytotoxictestswerecarriedoutagainstfourcelllines:NCI-H292,MCF-7,HT29andHL60.TheCu-BTC MOFassociateddrugwasextremelycytotoxicagainstthehumanbreastcanceradenocarcinoma (MCF-7)celllineandagainsthumanacutepromyelocyticleukemiacells(HL60),cancercellswerekilledby apoptosismechanisms.Thedrugdemonstratedaslowreleaseprofilewhere82%ofthedrugwasreleased in48hours.TheresultsindicatedthatthedrugincorporatedinCu-BTCMOFdecreasedsignificantlythe numberofleukocytesintheperitonealcavityofrodentsaswellasreducedlevelsofcytokinesandnitric oxideproduction.

ß2013ElsevierMassonSAS.Allrightsreserved.

* Correspondingauthor.AntibioticsDepartment,PernambucoFederalUniversity,

50670-901Recife-PE,Brazil.

E-mailaddress:flavia_19lucena@yahoo.com.br(F.R.S.Lucena).

Available

online

at

www.sciencedirect.com

0753-3322/$–seefrontmatterß2013ElsevierMassonSAS.Allrightsreserved.

(2)

Extensive researchwithin thelast two decadeshasrevealed that most chronic illnesses, including cancer, diabetes, and cardiovascular and pulmonary diseases, are mediated through chronicinflammation.Thus,suppressingchronicinflammationhas thepotential todelay, prevent, and even treat variouschronic diseases,includingcancer, several drugs including: dexametha-soneand doxorubicinhave beenpackagedasnanoparticlesand proven to be useful in ‘‘nano-chemoprevention’’ and ‘‘nano-chemotherapy’’[13,14].

Thusinthisperspective,thisstudyaimedtoevaluatetheaction mechanism associated with the antitumor activity of the 5-fluorouracil incorporated into Cu-BTC and a possible anti-inflammatoryactivity,sincestudiesintheliteratureshowaclose relationshipbetween inflammationand the appearanceof new cancers.

2. Materialsandmethods

2.1. Systemdrug-MOFused

Theassociationwasperformedusing5-FU99%(SigmaAldrich) andtheCu-BTCMOF– BasoliteTMC300(688814)producedby BASF.Firstthedrug(300mg)wasdissolvedin150mLofMilli-Q ultrapurewaterand100mgofCu-BTCwereadded,inaproportion of3:1(w/w–drug/MOF).Theresultingsuspensionwaskeptunder stirring at room temperature for seven days. Aliquots were removed after seven days, then centrifuged (4500rpm) for 20minutesandthesupernatantwasanalysedbyUV-Vis spectro-scopy to determine the amount of drug present in the metal organicframework.Theanalysiswasperformedintriplicate.

2.2. Chemicalcharacterization

Elementalanalysis(CHNS)measurementswereperformedina CEInstrumentselementalanalyser,modelEA1110.FIT-IRspectra were collected from KBr discs utilizing a Bruker spectrophot-ometer(IFS-66) withFouriertransform (spectralrange4000 to 400cm–1). The resultswere analyzed using the OPUS Spectro-scopicSoftwarefromBruker.TG/DTGcurveswereobtainedinthe temperaturerangebetween20–9008CusingaShimadzuTGA50 thermobalanceunderadynamicnitrogenatmosphere(50mLmin– 1) at a heating rate of 10

8C min–1 and an alumina crucible containing approximately 3mg of the sample. The instrument calibrationwasperformedbeforethetestsusingacalciumoxalate monohydrate standard, according to the American Society for TestingandMaterials.TheDSCdatawererecordedinaDSC50cell (Shimadzu)inthe25–6008Ctemperaturerangeunderadynamic nitrogen atmosphere (100mL min–1) in an alumina crucible containing2.0mgofthesample;aheatingrateof108Cmin–1was used. The powder patter XDR were obtained in a Bruker D8 AdvanceX-Raydiffractmeter(K

a

(Cu)1,54A˚),intherange58to 508,step0.028andacquisitiontime1second.

2.3. Deliverystudy(invitro)

For in vitrorelease studywasusedtransparenthard gelatin capsules containing 110.97mg of incorporation, which was equivalent to 50mg of 5-FU. Dissolution (dissolutor, Varian, model VK-7000/7010/750D) was performed in PBS (pH: 6.8), volumeof 500mLat3780.5andscrewspeedof100RPM.The collectionswereperformedondays0.5,1.5,5.5,15,20,24,39,44and 48hours.Ateverygiventime,asamplewascollectedfrom2.5mLto beanalyzed onHPLC,followed byreplacementofthedissolution medium. The samples were filtered on Millipore1 membrane 0.22mminporesize,13mm(Millex).Allanalyzeswereperformed intriplicate.

Thesamplesobtainedfromdissolutionstudieswereindividually subjectedtoanalysisbyHPLC–DADusingisocraticmobilephase 85%ofacetonitrile:15%ofwater(v/v)witha2mL/minflow,the oventemperaturewas258C,withastationaryphaseC18column (2504.6mm/5

m

m),and20

m

Linjectionvolumeofthesamples. TheLCsystemusedwasahighperformanceliquidchromatograph (HPLC)Shimadzu1equippedwithaquaternarypumpmodelLC 20ADVP, powered by helium degasser model DGU – 20A, PDA detector model SPD – 20AVP, oven model CTO-20A SVP, auto samplermodelSIL–20ADVPandcontrollermodelSCL–20AVP.The datawereprocessedbysoftwareShimadzu1LCsolution2.0.

2.4. Cytotoxicactivityandapoptosistestsverification

Thecytotoxictestswerecarriedoutagainstfourcelllines: NCI-H292cells(lungmucoepidermoidcarcinoma),MCF-7cells(breast adenocarcinoma),HT29cells (colon adenocarcinoma)and HL60 cells (promyelocytic leukemia). The cells were maintained in DMEM – Dulbecco’s Modified Eagle Medium. Samples were considered cytotoxic when the rates of cell growth inhibition exceeded40%,accordingtotheprotocolestablishedbyGeran[15]. Theapoptosistestwasdoneused5

m

g/mLand10

m

g/mL.HL60 (3105cells/mL)wereplatedonto24-welltissuecultureplates and treated with (Cu-BTC MOF; 5-fluorouracil (5-FU) and 5-FU+Cu-BTC).Afterthe72hincubationperiod,cellswerepelleted andresuspendedin1BindingBuffer.Thepelletwasincubatedfor 10minuteswith5

m

Loftheannexin-Vand10

m

Lofthepropidium iodide(AnnexinV-FITCApoptosisDetectionKit-SIGMA).

CellfluorescencewasdeterminedbyflowcytometryinaFACS Caliburcytometer(Becton,DickinsonandCompany,NewJersey, USA) usingthe Cell Quest software.Ten thousandevents were evaluatedperexperimentandcellulardebriswasomittedfromthe analysis.

2.5. Animalsusedinthepharmacologicaltests

Forthetests,Swissalbinofemalemice(Musmusculus)were used, weighing between 30–35g, withan average age of two months.Theanimalsweremonitoredaccordingtothenormsof the National Institute of Health Guide for Care and Use of LaboratoryAnimals.Theexperimentswereconductedaccordingto theNationalCancerInstituteprotocol[16]andapprovedbythe UFPE-Animal ExperimentationEthic Committee:23076.024149/ 2012-48.

2.6. Peritonitisinducedbycarrageenan

Inthisassay,wereusedsixgroupsofsixanimals,treatedgroups receivedorally25,50and75mg/kgof(5-FU+Cu-BTCMOF).The othersgroupreceivedorallysalinevehicle(0.1mL/10g)usedas negative control and dexamethasone (0.5mg/kg) as positive control. One hour after the treatment, the inflammation was induced by intraperitoneal (i.p) application of 0.1mL/10g of carrageenan(1%insalinesolution).

After4hourstheanimalswereeuthanizedinachamberofCO2 so was injected into the peritoneal cavity 3mL of phosphate bufferedsalinePBScontainingEDTAtocollecttheperitonealfluids. The total leukocyte number was determined in hematology analyzer Micros 601. The exudates were centrifuged and the supernatant stored at –208C for analysis of nitric oxide and citokineslevels[17].

2.7. Analysisofnitricoxideproduction

(3)

samplesweremixedwithanequalvolumeofGriessreagentina 96-wellmicrotiterplateandincubatedatroomtemperaturefor 10minutes.Theabsorbancewasreadat540nmusinganELISA reader and the nitrite concentrations were determined by comparisonwithastandardcurveofsodiumnitrite[17].

2.8. Measurementofcytokines

TheconcentrationsofTNF-

a

andIL-1

b

weremeasuredusing sandwichELISA kits, specificfor mice, accordingto the manu-facturer’sinstructions (eBioscience,San Diego,California, USA). Thedetectionlimitusedwas8-1000pg/mL.Theexperimentswere doneintriplicate[18].

2.9. Statisticalanalysis

Theresultsare presentedas meanstandarddeviation(SD). Datawereanalyzedusingthesoftwaregraphpadprismv5.0 One-way ANOVA followed by the Newman-Keuls test were used to evaluatethedifferencesamongthetreatments.Pvalues<0.05were

consideredstatisticallysignificant.

3. Resultsanddiscussion

Drugloading,expresseding5-FUpergramCu-BTC,afterseven daysofstirringwas0.8221.TheCu-BTCMOFcontainsC,OandH atomsbutlacksNatoms,therefore,thepresenceofthedrugonthis structure was indicated by the appearance of N atoms in the elementalanalysis.Thetheoreticalandexperimentalresultsare representedin Table1and conformtotheproportions demon-stratedintheTGAanalysis.

Fig.1showstheFTIRspectraoftheprecursorsandtheproduct obtained.IntheinfraredspectrumofCu-BTC,thereisaverystrong bandcenteredat3450cm 1assignedtotheOHstretchingfrom watermolecules. Thebroadnessof thisbandis consistentwith extensive hydrogen bonding from both coordinated and non-coordinatedwatermolecules.Bandsat1644cm 1and1373cm 1 areassignedtoasymmetricandsymmetric(OCO-)stretchingfrom carboxylategroups.Additionalbandsat1587and1450cm 1are duetoC=Cstretchingfromthearomaticrings.TheFTIRspectrum for5-FUischaracterizedbyabroadbandat3133cm 1,assignedto NHstretching,inadditiontobandsat1724cm 1and1660cm 1 arisingfromthetwodistinctcarbonylgroupsin5-FUstructure. ThespectrumforCu-BTC/5-FUsampleshowsbandsfrombothhost andguestspecies,someofthemshiftedduetotheoccurrenceof intermolecular interactions. The spectrum exhibits the NH stretching band centered at 3150cm 1 and at higher wave numbersanenvelopeofOHstretchingbands(centeredat3550, 3498,3460and3388cm 1).Thosebandsareprobablyduetothe coordinatedwatermolecules,whichwerepartiallyresolvedafter removal of the non-coordinated ones during the association process,asshallbediscussedonthebasisofthermalanalysis.At lowerwavenumbers,wecanobservethecarbonylbandsfrom 5-FUat1708and1660cm 1inadditiontothecarboxylatebands

from Cu-BTC at 1631, 1617 and 1382cm 1. Bands from both speciesinthisregionareslightlyshiftedasmentioned[19].

Thermalanalysisdatacomplementedcharacterizationallowing ustomakeapictureofthesampleCu-BTC/5-FU.Fig.2showsDSC curvesforthedrug5-fluorouracil,showingthatthefreedrugstarts todecomposeatnearly2608CwithapeakinDTGat3038C.DSCfor 5-FU shows that actually the solid drug melts at 2798C and decomposessubsequentlyaftermelting.

AnalyzingthethermalanalysiscurvesTG/DTG(Fig.3)andDSC (Fig.2)forCu-BTC,weseethatthesamplestartstoloseadsorbed andnon-coordinatedwatermoleculesbelow1008C.Afterlosing nearly30%ofthewholemass,theTGcurveshowsaplateaufrom 1508Cwhichisdisturbedbyverydiscretemasslossesat1608C

Table1

CNHSelementalanalysis.

Sample %N %C %H %S

Theoretical

Cu-BTC 0.0 25.8 4.3 0.0

Cu-BTC/5-FU 2.4 30.2 3.0 0.0

Experimental

Cu-BTC.12H2O 0.0 26.3 3.7 0.0

Cu-BTC.6H2O+0.825-FU 2.5 30.7 2.8 0.0

CU-BTC:C18H6Cu3O12/5-FU-C9H3FN2O2.

Fig.1.FTIRspectraofCu-BTCMOF.

(4)

and2258C, followedbya majormasslossstarting from3208C (peaked at 3528C and 3818C in the DTG curve), assigned to decomposition of the framework structure. This event can be assignedtobothdecompositionoftheorganicligandsandrelease/ decompositionofthecoordinatedwatermolecules.IntheCu-BTC DSCcurvetheseeventsareobservedasabroadendothermicevent centeredat 778Calong withtwo exothermic onesat 344 and 3548C.FinallyfortheCu-BTC/5-FUsample,thethermalanalysis curvesshowinterestingfeatures.

TGcurveshowsthattheinitialthermaleventobservedforthe originalMOFisabsentwhichsuggeststhatthenon-coordinated water molecules originally present in the pores are probably replacedfor5-FUmoleculesduringtheassociationprocess[20]. ThisisalsoconsistentwithobservationsmadefromFTIRanalysis. Averysmallmasslossisobservedat1638C,whichcanberelated totraceresidualnon-coordinatedwatermolecules,followedbya significantlossat286and2948C.Thelasteventisprobablyrelated todecompositionof5-FUandconsideringthatthepeakisbroad and shows two unresolved minima, it suggests two structural situationsfor thismolecule (seeDSCdiscussion). Anothermass lossisobservedat3708CduetothedecompositionoftheMOF. Boththedecompositionofthehostandoftheguestareshiftedin comparisonwiththefreesamples.

FromDSCcurveforCu-BTC/5-FU(Fig.2),wecanobservethe presenceofseveral endothermic events (108, 177,233,2798C) alongwithanexothermiceventat3528C.Thesharpendothermic

event at 2798C (drug melting) suggests that despite a careful isolationprocedure,some5-FUcrystalsmayhaveremainedsome free molecules (possibly physical adsorbed) in Cu-BTC/5-FU sample.AlthoughpreviousworkswithotherMOFshavinglarger poressuggestedthatseveralmoleculescouldoccupytheporesand thesurfacearea.Thusweproposeherethatoursamplecontainsa slight fraction of 5-FU crystals, probably as a result of the equilibriumbetweenthefreeandassociatedspecieswhichmakes difficultacompletepurification.Despitethis,itisclearthatdrug associationwiththemetalorganicframework(Cu-BTC)occurstoa greatextentascanbeinferredfromsignificantchangesintheDSC curve, in special in the interval of water release and MOF decomposition.

Theadsorptionprocessresultsfromtheinteractionbetween theguestmoleculeandtheadsorbentmaterial,inourcase,the Cu-BTC and 5-FU. Those interactions, in general, are very week (physisorption), but, in some cases, the host-gest interactions affinityisstrongandduethechemisorptionandstructuralchanges may occur. In this perspective, the X-ray powder diffraction becomesapowerfultooltoinvestigatethosecrystalline transfor-mations.

TheFig.4(inblack)showstheexperimentalpowderpatternof theCu-BTCusedinthe5-FUincorporation.Thisdiffractogram,as expected,showsallpeakscorrespondingtothe[Cu2(BTC)3(H2O)3] structure (cubic,space groupFm-3m)synthesized byWilliams etal.[12].Themostintensepeaksarelocatedin11.68,9.58and6.78 relatedtothe[222],[220]and[200]diffractionplans,respectively. After the drug incorporation, the samples was collected the powder pattern, and the result (Fig. 4, in red) shows different diffractionpeaksregardingtotheCu-BTC.Althoughthesample stillhasstrongcrystallinecharacter,thisresultsuggeststhatthere wasastructuralchangeintheCu-BTCduringtheincorporation process,probablyduetothesupramolecularinteractionsbetween thedrugandtheMOF.

The drug incorporation is confirmed by the intense signal locatedin28.88,relatedtothe[220]diffractionplaneofthe5-FU, inagreementwiththeliterature[21,22].Thisobservationisin good agreement with IR-spectroscopy, TGA and elementary analysisresults.After thedissolutiontest,the incorporated 5-FU wasreleasedand,again,wascollected thepowderpattern, shownintheFig.4(inblue).Asexpected,wasnotobservedthe diffractionpeakofthedrug,whichisingoodagreementwiththe dissolutiontestresults,andonceagain,wasdetectedstructural changesintheCu-BTC,experiencingaslightamorphizationinthe structure.

Fig.3.ThermalanalysiscurvesTG(A)andDTG(B)for5-FU;Cu-BTCand

Cu-BTC/5-FU.

Fig.4.PowderpatternXDR(black:C300)–Cu-BTCMOF;(red:incorporated)–

(5)

Thereleaseprofilewasconductedinordertoascertainwhether the drug is output from the system in the physiological environment.Theexperimentdemonstratedduringtheprolonged drugrelease 48hours. Initially,39.4% of thedrug wasreleased fromtheMOFinthefirst30minute;thiscanbeattributedtothe druginitsfreeformasindicatedinDSCcurve.Then,therelease proceededmoreslowlybeingreleasedabout60%in15hoursof study,thedissolutionreached82.0%at48hours.

Thereleaseof5-FU‘‘invitro’’foundinoursystemresemblesthe oneextendedrelease‘‘invivo’’,whichareofferedtwodosesofthe drug (Fig. 5). The first, called immediate-release initial dose, requiredtoproducethedesiredpharmacologicaleffectwithout causingdamagetothebody.Thesecond,calledmaintenancedose, isreleasedgradually,inordertoprolongtheextentof pharma-cologicalresponse[23].

Table2showstheIC50valuesforinhibitionofcellularactivity ofatleast70%.Weobservedthat5-fluorouracilexhibitedcytotoxic activityagainstMCF-7andHL-60cells.TheIC50valueforthe MCF-7cellswasverylow(1.735

m

g/mL)whenthedrugwasassociated withtheMOF,thiscanbeattributedtoprolongeddrugreleaseas indicatedin dissolutionstudy,allowingthemaintenanceof the biological effect, since the active principle of the drug being releasedslowlyandcontinues.

The same was true for the HL-60 cells. The IC50 values decreased significantlywhen thedrug wasassociated withthe network,suggestingthattheassociationbetweenthe 5-fluorour-acilandtheCu-BTCMOFareresponsiblebythemodulationofthe cytotoxicactivityofthedrug(Table2).

Theapoptosistestdemonstratedthat 5-fluorouracil incorpo-ratedintoCu-BTCMOFinducedcelldeathbyapoptosismechanism tothedoseof10

m

g/mL(Fig.6).Theseresultsareaccordingwith theperitonitistestthatshowedadecreaseinlevelsofTNF-

a

and NO in the tumor site, which may have contributed to the maintenance of the required levels of these substances in the activationofcaspasethatactivateapoptosis.Experiencesincethen

has indicated that when expressed locally by the cells of the immune system, TNF-

a

has a therapeutic role, however when dysregulatedandsecretedinthecirculation,TNF-

a

canmediatea widevarietyof diseases,includingcancer [24].TNF-

a

hasitself beenshowntobeoneofthemajormediatorsofinflammationis also producedby tumors andcan actas an endogenoustumor promoter.TheroleofTNF-

a

hasbeenlinkedtoallstepsinvolvedin tumorigenesis, including cellular transformation, promotion, survival,proliferation,invasion,angiogenesis,andmetastasis[25]. Consideringthisinformation,theresultsfoundinour experi-mentsdemonstratedthat5-fluorouracilassociatedwithMOF Cu-BTCmayhavefavoredtheprocessofinductionof celldeath by apoptosis.

Currently inflammatory processes are rather taken into consideration when one wants to get success in antitumor therapies,chronicinflammationthatbecauseofsomeorgan,like theliver,increasesthenumberofcelldivisionsandthustheriskof mutations.Tumorcellsproducevariouscytokinesandchemokines thatattractleukocytes[26].Thedirectevidencefortheassociation of chronic inflammation with malignant diseases is in colon carcinogenesisin individualswithinflammatorybowel diseases [27]. The emerging concept in clinical trials reveals that inflammationisapotentialtherapeutictargetincancertreatment and anti-inflammatory drugs are thereby potentially useful as adjuvanttherapy[24].

The peritonitis tests was conducted in order to verify the process of secondary mechanism of action by which the drug embeddedincoordinationnetworkhasitscytotoxicactivitywhich may be enhanced by modulation of immune cells such as polymorphonuclearleukocytes.Throughthistest,wesuggestthat thecytotoxicandantitumoractivityofthedrugisrelatedtothe routeofleukocyteactivationorsuppressionoftheinflammatory process,whichiscloselyrelatedtotheprocessesrelatedtotumor angiogenesis,parallelproductionofinflammatoryinterleukinsand TNF-

a

,IL-6amongothers[25].

Theresultsshowedthatapossiblewayofactionofthedrug incorporatedinthenetworktocoordinatetheperformanceofthis system is as an anti-inflammatory agent, since it caused a reductionofinflammationin43.7,64and66.8%respectivelyfor dosesof25,50and75mg/kgwhencomparedtonegativecontrol groupwithinflammationinducedbycarrageenan1%insaline.The inhibitionofleukocytedataisdescribedinFig.7.

Tumor-associatedmacrophagesareasignificantcomponentof inflammatoryinfiltratesinneoplastictissuesandarederivedfrom monocytes that arerecruited largely by monocyte chemotactic protein (MCP) chemokines. The pro-inflammatory cytokines, includingtumornecrosisfactor-alpha(TNF-

a

)andinterleukin-6 (IL-6), induce direct effects on stromal and neoplastic cells in additiontotheirrolesinregulatingleukocyterecruitment[14].

Fig.5.Dissolutionprofileof5-fluorouracilfromCu-BTCMOF.

Table2

IC50(mg/mL)comparedtothehumantumorlines.

Cellline CU-BTC 5-FU Cu-BTC/5-FU

MCF-7 3.49a 20 1.735b

HT-29 > 25 > 25 > 25

HL-60 > 25 8.601 4.615

NCI-H292 > 25 > 25 > 25

aVerytoxic.

b Toxic.

(6)

Thedirectevidencefortheassociationofchronic inflamma-tion with malignant diseases is in colon carcinogenesis in individualswithinflammatoryboweldiseases [25].The emer-ging concept in clinical trials reveals that inflammation is a potential therapeutic target in cancer treatment and anti-inflammatorydrugsare therebypotentiallyusefulas adjuvant therapy[28].

The exudates removed from the abdominal cavity of the animalssubjectedtothetestofcarrageenaninducedperitonitis wereanalyzed and levelsof nitricoxide and pro-inflammatory cytokineshavebeenshowninTables3and4.Itwasobservedthat therewasastatisticallysignificantdecreaseinNOproductionand cytokine treated groups when considered in doses of 25 and 75mg/kgofbodyweight.

These results being in agreement with the results on the numberofwhitebloodcellsfoundintheperitonealcavityanimals, indicatingapossibleanti-inflammatoryactionofthissystem.

4. Conclusions

As notedin theresultsobtained,5-fluorouracil incorporated intotheCu-BTCMOFappearstobeagreattoolinthetreatmentof cancer,sinceweobtainedarateoptimalencapsulation,together withacontrolledreleaseofdrugfromthenanocarrier.

Nanoparticletherapeuticsisanemergingtreatmentmodalityin cancer and other inflammatory disorders. The National Cancer Institutehasrecognizednanotechnologyasanemergingfieldwith the potential to revolutionize modern medicine for detection, treatment,andpreventionofcancer[29].Moreselectivetherapies,

suchasangiogenesis inhibitors,vascular disrupting agents,and estrogenicHER-2-targetedtherapieshavebeendevelopedtotreat cancer,theseapproacheshaveincreasedpatientsurvivalbecause oftreatmentefficacy[30].

Mostsolidtumorspossessuniquefeatures,includingenhanced angiogenesis, defective vasculature and lymphatic, increased vascular permeability, which stimulate their growth.Rationally designednanoparticlescantakeadvantageofthesetumorfeatures todeliverchemotherapeuticsselectivelyandspecifically[14].

Theseresultstogetherthedeath of cancer cells throughthe mechanismofapoptosisandanti-inflammatoryactivityassociated withdecreasedlevelsofthepro-inflammatorycytokines,directly related to the maintenance of chronic inflammation processes, indicatethissystemasaviablealternativewhenconsideringan idealsystemforcancertreatment,sinceitshowedthecontrolled release properties, low toxicity to normal cells and also an indication of anti-inflammatory activity which couldact as an adjuvanttreatment[30].

Disclosureofinterest

Theauthorshavenotdeclaredanyconflictsofinterest.

References

[1]CaiC,ZhouK,WuY,WuL.Enhancedlivertargetingof5-fluorouracilusing galactosylatedhumanserumalbuminasacarriermolecule.JDrugTarget 2006;14:55–61.

[2]CaoS,RustumYM.Synergisticantitumoractivityofirinotecanin combination-with5-fluorouracilinratsbearingadvancedcolorectalcancer:roleofdrug sequenceanddose.CancerRes2000;60:3717–21.

[3]KubotaT.Recentprogressincombinationtherapyoflow-doseCDDP/5-FUin Japan.Theoreticalbasisforlow-doseCDDP/5-FUtherapy.JpnJCancer Che-mother1999;26:1536–41.

[4]ShapiroWR,GreenSB,BurgerPC,etal.Arandomizedcomparisonof intra-arterialversusintravenouswithorwithoutintravenous5-fluorouracil,for newlydiagnosedpatientswithmalignantglioma.JNeurosurg1992;76:772– 81.

[5]Hutchins LF, GreenSJ,RavdinPM, etal.Randomized, controlledtrial of cyclophosphamide,methotrexate,andfluorouracilversuscyclophosphamide, doxorubicin,andfluorouracilwithandwithouttamoxifenforhigh-risk, node-negativebreastcancer:treatmentresultsofIntergroupProtocolINT-0102.J ClinOncol2005;23:8313–21.

[6]LongleyDB,HarkinDP,JohnstonPG.5-fluorouracil:mechanismsofactionand clinicalstrategies.NatRevCancer2003;3:330–8.

[7]ParkerWB,ChengYC.Metabolismandmechanismofactionof5-fluorouracil. PharmacolTher1990;48:381–95.

[8]FataF,RonIG,KemenyN,O’ReillyE,KlimstraD,KelsenDP. 5-fluorouracil-inducedsmallboweltoxicityinpatientswithcolorectalcarcinoma.Cancer 2000;86:1129–34.

[9]PaoloAD,DanesiR,FalconeA,etal.Relationshipbetween5-fluorouracil disposition,toxicityanddihydropyrimidinedehydrogenaseactivityincancer patients.AnnOncol2001;12:1301–6.

[10]vanKuilenburgABP,HaasjesJ,RichelDJ,etal.Clinicalimplicationsof dihy-dropyrimidinedehydrogenase(DPD)deficiencyinpatientswithsevere 5-fluorouracil-associatedtoxicity:identificationofnewmutationsintheDPD gene.ClinCancerRes2000;6:4705–12.

[11]RahmanZ,KohliK,KharRK,AliM,CharooNA,ShamsherAAA.Characterization of5-fluorouracilmicrospheresforcolonicdelivery.AAPSPharmSciTech 2006;7(2):E1–9.

[12]NairLK,JagadeeshanS,NairSA,VinodKumarGS.Biologicalevaluationof 5-fluorouracilnanoparticlesforcancerchemotherapyanditsdependenceonthe carrier,PLGA.IntJNanomed2011;6:1685–97.

[13]HorcajadaP,ChalatiT,SerreC,GilletB,SebrieC,BaatiT,etal.Porous metal-organicframeworknanoscalecarriersasapotencialplatformfordrugdelivery andimaging.NatMater2010;9:172–8.

[14]NairHB,SungB,YadavVR,KannappanR, ChaturvediMM,AggarwalBB. Deliveryofanti-inflammatorynutraceuticalsbynanoparticlesforthe preven-tionandtreatmentofcancer.BiochemPharmacol2010;80(12):1833–43.

[15]GeranRI,GreenbergNH,MacdolnaldMM,SchumacherAM,AbbottBJ. Pro-tocolsforscreeningchemicalagentsandnaturalproductsagainstanimal tumorsandotherbiologicalsystems.CancerChemother1972[Rep.3. proto-cols16and13].

[16]www1.inca.gov.br/inca/arquivos/bioterio.pdf.

[17]UchoˆaFT,SilvaTG,LimaMCA,GaldinoSL,Pitta IR,CostaTD.Preclinical pharmacokineticandpharmacodynamicevaluationofthiazolidinonePG15: ananti-inflammatorycandidate.JPharmPharmac2009;61:339–45.

[18]AggarwalBB.Sinallingpathways oftheTNFsuperfamily:adouble-edged sword.NatRevImmunol2003;3(9):745–56.

Fig.7.Peritonitistestleukocytesnumberdosesof5-FU+Cu-BTC.

Table3

Effectof5-FU+CuBTContheNOproductioninthecarrageenantest.

Treatment NO(mM)

Controlgroup 21.303.62

Dexamethasone 1.770.44a

25mg/kg(5-FU+Cu-BTC) 0,780.07a

75mg/kg(5-FU+Cu-BTC) 0,630.02a

Dataareexpressedbymeanstandarddeviation(meanstandarddeviation).

aStatisticallysignificantdifferencecomparedtocontrol(P < 0.05).

Table4

Effectof5-FU+CuBTContheTNF-aeIL-1bproductionsinthecarrageenantest

inducedperitonitis.

Compound TNF-a(pg/mL) IL-1b(pg/mL)

Control 502.113.31 751.0015.04

Dexamethasone 126.3913.15a 289.35

18.62a

75mg/kg(5-FU+Cu-BTC) 117.3937.86a 238.70

5.62a

25mg/kg(5-FU+Cu-BTC) 300.926.11a 617.18

12.62a

Dataareexpressedbymeanstandarddeviation(meanstandarddeviation).

aStatisticallysignificantdifferencecomparedtocontrol(P

(7)

[19]CamposJ,Domı´nguezJF,GalloMA,EspinosaA.Fromaclassicapproachin cancerchemotherapy towards differentiation therapy: acyclic and cyclic seven-membered5-fluorouracilO,N-acetals.CurrPharmDes2000;6:1797.

[20]ChuiSSY, LoSMF,Charmant JPH, Orpen AG,Williams ID. Achemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999;26:1148–50.

[21]DhawaleSC,BankarAS,PatroMN.Formulationandevaluationporous micro-spheresof5-fluorouracilforcolontargeting.IntJPharmTechRes2010;2:1112–8.

[22]AggarwalBB,ShishodiaS,SandurSK,PandeyMK,SehtiG.Inflammationand cancer:howhotisthelink?BiochemPharmac2006;2:1605–21.

[23]AnselHC,AllenJrLV,PopovichNG.Formasfarmaceˆuticase sistemasde liberac¸a˜odefa´rmacos, 8thed.,PortoAlegre:Artmed;2007.

[24]Longhi-balbinotDT,LanznasterD,BaggioCH,SilvaMD,CabreraCH,Facundo VA,etal.Anti-inflammatoryeffectoftriterpene3b,6b,16b -trihydroxylup-20(29)-eneobtainedfromCombretumleprosumMart&Eichinmice.JEthnoph 2012;142(1):59–64.

[25]AminAR,KucukO,KhuriFR,ShinDM.Perspectivesforcancerpreventionwith naturalcompounds.JClinOncol2009;27:2712–25.

[26]ItzkowitzSH,YioX,Inflammation,cancerIV.Colorectalcancerin inflamma-toryboweldisease:theroleofinflammation.AmJPhysiolGastrointestLiver Physiol2004;287:G7–17.

[27]DaneseS,MantovaniA.Inflammatoryboweldiseaseandintestinalcancer:a paradigmoftheYin-Yanginterplaybetweeninflammationandcancer. Onco-gene2010;29:3313–23.

[28]KawasakiES,PlayerA.Nanotechnology,nanomedicine,andthedevelopment ofnew,effectivetherapiesforcancer.Nanomedicine2005;1:101–9.

[29]AnandP,SundaramC,JhuraniS,KunnumakkaraAB,AggarwalBB.Curcumin andcancer: an‘‘old-age’’disease withan‘‘age-old’’solution.CancerLett 2008;267:133–64.

Imagem

Fig. 1 shows the FTIR spectra of the precursors and the product obtained. In the infrared spectrum of Cu-BTC, there is a very strong band centered at 3450 cm 1 assigned to the OH stretching from water molecules
Fig. 3. Thermal analysis curves TG (A) and DTG (B) for 5-FU; Cu-BTC and Cu-BTC/5- Cu-BTC/5-FU.
Fig. 5. Dissolution profile of 5-fluorouracil from Cu-BTC MOF.
Fig. 7. Peritonitis test leukocytes number  doses of 5-FU + Cu-BTC.

Referências

Documentos relacionados

So, does this mean that if we block the activity of caspases we will prevent every sign of apoptosis and therefore keep the cells alive? The answer is yes in two situations: a)

Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry.. Novel approach for simultaneous evaluation of cell phenotype,

Re- garding the mechanism of action, 10a and 14i induced the death of HL-60 cells by induction of apoptosis, which was demonstrated by morphological analysis (volume

The study of the mechanism of action of cordiaquinones L and M, in human leukemia cells (HL%60) showed induction of cell death by apoptosis, and these effects were related

In the process of apoptosis, cell death is induced by the activation of a genetically and biochemically regulated cell death system, involving the participation of

Foram avaliados: parâmetros plasmáticos, níveis séricos de vitamina B12 (nos vegetarianos), índice de massa corporal, circunferência da cintura, composição corporal, motivos para

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Green tea polyphenols induce cell death in breast cancer MCF-7 cells through induction of cell cycle arrest and mitochondrial-mediated apoptosis. J Zhejiang Univ Sci B 2017; 18: 89