• Nenhum resultado encontrado

Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulencerelated exoenzymes

N/A
N/A
Protected

Academic year: 2018

Share "Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulencerelated exoenzymes"

Copied!
6
0
0

Texto

(1)

Farnesol

inhibits

in

vitro

growth

of

the

Cryptococcus

neoformans

species

complex

with

no

significant

changes

in

virulence-related

exoenzymes

Rossana

de

Aguiar

Cordeiro

a

,

George

Caˆndido

Nogueira

b

,

Raimunda

Saˆmia

Nogueira

Brilhante

a,

*

,

Carlos

Eduardo

Cordeiro

Teixeira

a

,

Charles

Ielpo

Moura˜o

a

,

De´bora

de

Souza

Collares

Maia

Castelo-Branco

a

,

Manoel

de

Arau´jo

Neto

Paiva

a,b

,

Joyce

Fonteles

Ribeiro

a

,

Andre´ Jalles

Monteiro

c

,

Jose´ Ju´lio

Costa

Sidrim

a

,

Marcos

Fa´bio

Gadelha

Rocha

a,b

aDepartmentofPathologyandLegalMedicine,SchoolofMedicine,SpecializedMedicalMycologyCenter,PostgraduatePrograminMedicalMicrobiology,

FederalUniversityofCeara´,Fortaleza,CE,Brazil

bSchoolofVeterinary,PostgraduatePrograminVeterinaryScience,StateUniversityofCeara´,Fortaleza,CE,Brazil

cDepartmentofStatisticsandAppliedMathematics,FederalUniversityofCeara´,Fortaleza,CE,Brazil

1. Introduction

TheCryptococcusneoformansspeciescomplexisformed bytwodistinctmicroorganisms,C.neoformansandC.gattii, which aresub-classified intoat least twovarieties, five serotypes and eight molecular types (Kwon-Chung and Varma, 2006; Bovers et al., 2008; Lester et al., 2011). Despite sharing several phenotypical and molecular ARTICLE INFO

Articlehistory:

Received6November2011 Receivedinrevisedform4April2012 Accepted5April2012

Keywords:

Farnesol

Cryptococcusneoformansspeciescomplex

Minimuminhibitoryconcentration Phospholipases

Proteases

ABSTRACT

Farnesolisasesquiterpenealcoholthatmodulatescell-to-cellcommunicationinCandida albicans.Inrecentyears,severalstudieshaveshownthatthismoleculepresentsinhibitory effectsagainstnon-albicansCandidaspecies,Paracoccidioidesbrasiliensisandbacteria.The presentstudyaimedatdeterminingtheeffectoffarnesolonthegrowthofstrainsofthe

Cryptococcusneoformansspeciescomplex,throughmicrodilutionassays.Inaddition,the effectoffarnesolonthesynthesisofphospholipaseandprotease–important virulence-associatedenzymes–byC.neoformansandCryptococcusgattiiwasalsoinvestigated.A totalof36strainswerestudied,outofwhich20werefromveterinarysources,8werefrom human cases and 8 were from a reference collection. The minimum inhibitory concentrations(MICs) weredetermined in accordance with theM27-A3 protocol as describedbytheCLSIandfarnesolwastestedataconcentrationrangeof0.29–150mM. Phospholipaseandproteaseactivitieswereevaluatedthroughgrowthoneggyolkagar andspectrophotometry,respectively,afterpre-incubatingthestrainsatdifferentfarnesol concentrations (MIC/4, MIC/2 and MIC). It was observed that farnesol presents an inhibitoryactivityagainstC.neoformansandC.gattii(MICrange:0.29–75.0mM).Although farnesoldidnotsignificantlyalterphospholipaseactivity,atendencyto decreasethis activitywasobserved.Concerningprotease,nostatisticallysignificantdifferenceswere observedwhencomparingtheproductionbeforeandafterpre-incubationatdifferent farnesolconcentrations.Basedonthesefindings,itcanbeconcludedthatfarnesolhasin vitroinhibitoryactivityagainstC.neoformansandC.gattii,buthaslittleimpactonthe productionoftheanalyzedvirulencefactors.

ß2012ElsevierB.V.Allrightsreserved.

* Correspondingauthorat:RuaBara˜odeCaninde´,210,Montese,CEP: 60.425-540,Fortaleza,CE,Brazil.Fax:+558532951736.

E-mailaddress:brilhante@ufc.br(R.S.N.Brilhante).

ContentslistsavailableatSciVerseScienceDirect

Veterinary

Microbiology

j our na l h ome p a ge : w ww . e l se v i e r . com / l oc a te / v e t m i c

0378-1135/$–seefrontmatterß2012ElsevierB.V.Allrightsreserved.

(2)

characteristics, these species differ from each other concerning ecological and epidemiological aspects (Lin andHeitman,2006;Costaetal.,2010).Theyarethemajor causativeagentsofcryptococcalmeningoencephalitis,the most frequent clinical manifestation of cryptococcosis, whichhasahighmortalityratein developingcountries (Kronstadetal.,2011).

Tosucceedinthehostenvironment,Cryptococcusspp. producealargeamountofvirulencefactors,whichdirectly influencetheinfectivityofan individualstrain(Maand May,2009).Amongthesemainvirulencefactors, hydro-lytic enzymesable todegrade lipids and proteins have gained attention in recent years (Bien et al., 2009; Chayakulkeereeetal.,2011).Phospholipasesaredirectly relatedtothedestabilizationofhostcellmembranes(Ma andMay,2009)andproteaseshavebeenshowntodegrade severalhostmolecules(Chenetal.,1996).

Eventhoughnewantifungaldrugshavebeendeveloped inrecentyears,theavailabilityofantifungalagentswith anticryptococcalactivityisstilllimited.Thisscenariohas motivated the pursuit of new compounds that present antifungalpropertiesagainstCryptococcusspp.Based on this perspective, farnesol, a sesquiterpene alcohol, has beeninvestigated for its antimicrobial potential ( Jabra-Rizketal.,2006;Semighinietal.,2008;Derengowskietal., 2009;Weberetal.,2010;Pammietal.,2011).

Farnesolisfoundinplantextractsandalsoproducedby

Candidaalbicans asa quorum sensingmolecule(Hornby etal.,2001,Derengowskietal.,2009).Thisautoregulatory compoundalters C.albicans morphology and also has a dramaticimpacton fungalgrowth andsurvival(Shirtliff etal.,2009;Weberetal.,2010).Severalstudieshaveshown thatthismoleculealsohasinhibitoryeffectsagainstother pathogens,includingnon-albicansCandidaspecies(Weber etal.,2010),Paracoccidioidesbrasiliensis(Derengowskietal., 2009),Fusariumgraminearum(Semighinietal.,2008)and bacteria(Pammietal.,2011;Brilhanteetal.,2012).

Thepresentstudyaimedatevaluatingtheantifungal potentialoffarnesolagainstC.neoformansandC.gattii.In addition, the effect of farnesol on phospholipase and proteaseactivitieswasalsoinvestigated.

2. Materialandmethods

2.1. Fungalstrains

Atotalof36strainsfromtheculturecollectionofthe SpecializedMedicalMycologyCenterofFederalUniversity ofCeara´ wereincludedinthisstudy,outofwhich20were fromveterinarysources(2fromanimalclinicalcasesand 18frompigeonexcreta)and8fromhumanclinicalcases. Eightinternational reference strainsof Cryptococcus sp. obtained from the Evandro Chagas Clinical Research Institute,Brazil(IPEC/FIOCRUZ)wereusedascontrols:C. neoformansvar.grubiiWM148(serotypeA,VNI/AFLP1);C. neoformansvar.grubiiWM626(serotypeA,VNII/AFLP1A);

C. neoformans WM 628 (serotype AD, VNIII/AFLP2); C. neoformansvar.neoformans WM629(serotype D,VNIV/ AFLP3);C.gattiiWM179(serotypeB,VGI/AFLP4);C.gattii

WM 178 (serotype B, VGII/AFLP6); C. gattii WM 175 (serotypeB,VGIII/AFLP5);andC.gattiiWM779(serotype

C, VGIV/AFLP7), as described byMeyer et al. (2003). In addition,CandidaparapsilosisATCC22019wasincludedas internal qualitycontrolforthesusceptibilitytests(CLSI, 2008).Allisolateswerestoredon2%potatodextroseagar supplementedwithglycerol, at 208C, andwere recov-eredthroughgrowthon2%potatodextroseagarat358C, for2days(Cordeiroetal.,2011).

2.2. Dilutionoffarnesol,amphotericinBandfluconazole

Thestrainsweretestedagainstfarnesol dilutedwith 30%dimethylsulfoxide(DMSO)atthemomentofuse,in order to obtain a stock solution at a concentration of 1892

m

M.Afterwards,thestocksolutionwasdilutedwith RPMI1640toaconcentrationof600

m

M,inwhichDMSO wasataconcentrationofapproximately10%.Thetested concentrationrangewasfrom0.29to150

m

M.

Amphotericin B (Sigma Chemical Corporation, Ger-many)andfluconazole(PfizerPharmaceuticals,USA)were tested against C. parapsilosis ATCC 22019 as internal quality control, and alsoagainst the eight international referenceCryptococcusstrains.Thesedrugs werediluted withsteriledistilledwater,asdescribedbythedocument M27-A3 of the Clinical Laboratory Standards Institute (CLSI, 2008). The tested concentration ranged from 0.03125 to 16

m

g/mL and from 0.125 to 64

m

g/mL, for amphotericinBandfluconazole,respectively.Additionally, theeffectofDMSOontheviabilityofCryptococcusspp.was evaluated,atconcentrationsthatrangedfrom0.05to30%.

2.3. Testinginvitrosusceptibilitytofarnesol

Fungalinoculawerepreparedfromculturesgrownon potatodextroseagarat288C,for48h.Sterile0.9%saline (5mL)wasaddedtosterileglassslantsandasampleofthe colony was added to the saline solution, adjusting its turbidity to 0.5 on the McFarland scale (CLSI, 2008). Afterwards,inoculaweredilutedto1:100and1:20with RPMI 1640 medium supplemented with L-glutamine

(HiMedia, Mumbai, India), and buffered to pH 7 with 0.165M morpholinepropanesulfonic acid (MOPS). The final inoculumconcentration was 0.5–2.5103cells/mL

(CLSI,2008;Costaetal.,2010).

The minimum inhibitory concentrations (MICs) of farnesolandthetested drugsagainstC.neformansandC. gattiistrainsweredeterminedthroughthebroth microdilu-tionmethod,in96-wellmicrodilutiontrays,withacapacity of 200

m

L/well. These trays were properly prepared and incubatedat358Cfor72h,whentheywerevisuallyread.The MICforfarnesolwasdefinedasthelowestdrug concentra-tionabletoinhibit80%offungalgrowth,whencomparedto the farnesol-free control wells (Jabra-Rizk et al., 2006). ConcerningamphotericinBandfluconazole,theMICswere definedasthelowestconcentrationscapableofinhibiting 100%and50%offungalgrowth,respectively(CLSI,2008).

2.4. Effectsonphospholipaseandproteaseactivitiesafter exposuretofarnesol

(3)

thestrainswereculturedinRPMI1640medium, contain-ingthreedecreasingconcentrationsoffarnesol(MIC,MIC/ 2andMIC/4),at378C,for48h.Afarnesol-freecontrolfor eachstrainwasalsoincluded.

Phospholipase activity was evaluated according to Sidrim et al. (2010).Initially, the fungal suspensions in RPMImediumcontainingdifferentfarnesolconcentrations werecentrifugedat805g.Then,fromthefungalpellets, yeast inocula were prepared in 0.9% saline, reaching turbidity equivalentto4.0 on theMcFarlandscale. The medium usedwas2% Sabourauddextrose agar, supple-mented with1mol/L of sodium chloride, 0.05mol/L of calciumchlorideand8%sterileeggyolkemulsionat30%. Theemulsionwasheatedto408Candincorporatedinto thesterileSabouraudmediumafteritreacheda tempera-ture of 408C. A volume of 5

m

L of each inoculumwas appliedontoa5-mmsterilizedfilterpaperdisk,whichwas placedontheagarsurface.Theplateswerethenincubated at358Cforsevendays(Sidrimetal.,2010).

The phospholipase activity (Pz) was determined by calculatingtheratiobetweenthediameterofthefungal colonyandthetotaldiameter,includingthecolonyandthe precipitationzone.WhenPz=1,theisolateis phospholi-pasenegative;when1>Pz0.64theisolateispositivefor phospholipaseactivity;andwhenPz<0.64,theisolateis strongly positivefor theenzymaticactivity(Price etal., 1982;Sidrimetal.,2010).

Forproteaseproduction,theanalyseswereperformed according to Cenci et al. (2008), with modifications (Brilhanteetal.,2011).Briefly,thestrainswereincubated inRPMIcontainingdifferentdecreasingfarnesol concen-trations,underslowagitationof150g,for48h,at288C. Afterwards, the material was centrifuged for 15min at 805gtoseparatetheenzymaticextractfromthecells. Then,2mLoftheenzymaticextractwasincubatedat378C with 2mL of 0.3% azoalbumine for 48h. After this procedure, thereaction wasstoppedby theaddition of 10%trichloroaceticacid.Tothereactionmixture,2mLof 0.5M KOH wasadded for posterior spectrophotometric analysisat530nm.Theenzymaticunit(EU)wasdefinedas the amount of enzyme that causes an increase in absorbanceof0.001permLat530nm.

2.5. Statisticalanalysis

Toanalyzetheeffectsoffarnesolonthegrowthofthe strainsandtheactivityofvirulencefactors,thedatawere analyzedthroughunivariateanalysisofvariance.Farnesol MICs wereevaluated consideringspecies and sourceof each strain,whereas phospholipaseandprotease values wereanalyzedbeforeandafterexposuretofarnesol.Inthis analysis,speciesandsourceofstrainswerealso consid-ered. P-values lower than 0.05 indicated statistically significantdifferences.

3. Results

Farnesolpresentedinvitroinhibitoryeffectsagainstthe testedstrains,withMICsvaryingfrom0.29to75

m

Mfor both C. neoformans and C. gattii. MIC50 and MIC90 of farnesolagainstC.neoformanswere9.37

m

Mand75

m

M,

respectively;whileforC.gattiithesevalueswere4.68

m

M and75

m

M,respectively.Regardingantifungals,theMICs againstC.parapsilosisATCC22019were0.5

m

g/mLforAMB and 2

m

g/mL for FLC. As for the reference strains of

Cryptococcussp.theMICsrangedfrom0.0625to1.0

m

g/mL forAMBandfrom4.0to16.0

m

g/mLforFLC.Information regardingsusceptibilitytofarnesolof eachtested strain andantifungalsusceptibilityofcontrolstrainsisshownin Table1.SusceptibilitytestswereperformedwithDMSOas solvent at 1.25%, which presented no inhibitory effect againstCryptococcusstrains.

Furthermore, 18 (50%) out of the 36 tested strains secretedphospholipaseswithoutbeingexposedto farne-sol(control).Whenthe36strainswerepre-incubatedat three different concentrations of this compound, 8 (22.22%), 11 (30.55%) and 11 (30.55%) strains did not exhibit any alteration in phospholipase secretion after exposuretofarnesolconcentrationsofMIC/4,MIC/2and MIC, respectively (Table 2). Under experimental condi-tions,areductioninenzymaticactivitywasobservedin17 (47.22%),14 (38.88%)and 15 (41.66%)strainsafter pre-incubationat MIC/4,MIC/2andMIC offarnesol, respec-tively.Increasedphospholipaseactivitywasobservedin11 (30.55%),11 (30.55%)and 10(27.77%) strainsafter pre-incubationat MIC/4,MIC/2andMIC offarnesol, respec-tively.

Concerningproteaseactivity,18strains(50%)secreted theseenzymeswithoutbeingexposed tofarnesol (con-trol).After pre-incubation at differentconcentrationsof thissesquiterpene,nostatisticallysignificantdifferences wereobservedbetweenthecontrolandthetestedfarnesol concentrations.ThemeanSDvaluesofproteaseactivity (EU) of C. neoformans were as follows: 0.0080.013 for control;0.0170.033forMIC/4;0.0160.031forMIC/2and 0.0260.033forMIC.AsforC.gattii,themeanvalueswere 0.0070.009 for control; 0.0150.024 for MIC/4; 0.0080.008forMIC/2and0.0040.008forMIC.

4. Discussion

Themechanismsthroughwhichfarnesolactsonfungal cellsisstillunknown(Derengowskietal.,2009;Langford etal.,2010),butitisbelievedthatitdamagesthefungal cellmembraneandimpairsergosterolsynthesis, consider-ingthatfarnesolandergosterolsharemanyprecursorsin thesterolbiosyntheticpathway(HornbyandNickeerson, 2004;Navarathnaetal.,2005;Jabra-Rizketal.,2006).In addition,asaneffluxpumpmodulator,farnesolmayaffect membranepermeability throughthedisruptionof cyto-plasmicmembranes(Jinetal.,2010;SharmaandPrasad, 2011).

Thepresentarticleshowedthatfarnesolcanalsoinhibit growth of C. neoformans and C. gattii obtained from veterinarysources.TheMICvaluesforbothspecieswere lowerthanthoseobservedforotherfungalpathogens,such as P. brasiliensis, for which inhibition was achieved at 25

m

M (Derengowski et al., 2009), and C. parapsilosis, whichwasinhibitedby50

m

Moffarnesol(Rossignoletal., 2007).

(4)

2004),thefarnesolMICsforC.neoformansserotypesA,D andAD(GM=6.29

m

M),werehigherthanthoseforC.gattii

serotypes B and C (GM=4.67

m

M). Additionally, the veterinarystrainsofC.neoformansandC.gattiipresented higherMICvalues(GM=10.91and5.30

m

M,respectively)

compared to those of human C. neoformans

(GM=5.56

m

M)andC.neoformansandC.gattiireference strains (GM=2.33 and 3.30

m

M, respectively). In the present study, antifungal susceptibility profiles of C. parapsilosis ATCC 22019 (CLSI, 2008) and Cryptococcus

spp.controlstrainsweresimilartopreviouslydescribed

results(Chongetal.,2010;Hagenetal.,2010;Iqbaletal., 2010;Trillesetal.,2011),hence,validatingtheaccuracyof themethodologyemployedforsusceptibilityassays.

In recent years, several studies have shown the antifungal potential of farnesol in vitro against many pathogens (Derengowski et al., 2009; Liu et al., 2010; Weber etal.,2010; Pammiet al.,2011; Brilhanteetal., 2012).Nevertheless,theinvivoeffectofthiscompound– andthereforeitspotentialasanewantifungaldrug–isstill a matterofdebate.Asillustration,onestudyhasshown thatC.albicanscellspretreatedwithfluconazolewereable Table 1

Minimuminhibitoryconcentration(MIC)offarnesolagainststrainsoftheCryptococcusneoformansspeciescomplex.

Collectionnumber Specie Serotype Source FNS FLC AMB

CEMM03-2-067 C.neoformans A Veterinary 0.29 – –

CEMM-05-1-044 C.neoformans A Human 0.58 – –

CEMM-05-1-045 C.neoformans A Human 0.58 – –

CEMM-05-1-048 C.neoformans A Human 2.34 – –

CEMM-05-3-002 C.neoformans A Veterinary 2.34 – –

CEMM05-1-090 C.neoformans A Veterinary 2.34 – –

CEMM-05-1-043 C.neoformans A Human 4.68 – –

CEMM-05-1-050 C.neoformans A Veterinary 4.68 – –

CEMM-05-1-047 C.neoformans A Human 9.37 – –

CEMM-05-1-046 C.neoformans A Human 18.75 – –

CEMM-05-1-042 C.neoformans A Human 18.75 – –

CEMM-05-3-003 C.neoformans A Veterinary 37.5 – –

CEMM03-2-075 C.neoformans A Veterinary 37.5 – –

CEMM03-2-078 C.neoformans A Veterinary 37.5 – –

CEMM-05-1-049 C.neoformans A Human 75.0 – –

CEMM-05-3-001 C.neoformans A Veterinary 75.0 – –

CEMM03-2-061 C.neoformans A Veterinary 75.0 – –

CEMM05-3-033 C.gattii B Veterinary 0.29 – –

CEMM05-2-093 C.gattii B Veterinary 0.58 – –

CEMM05-3-032 C.gattii B Veterinary 1.17 – –

CEMM05-1-099 C.gattii B Veterinary 1.17 – –

CEMM-03-2-074 C.gattii B Veterinary 4.68 – –

CEMM03-2-066 C.gattii B Veterinary 4.68 – –

CEMM05-2-087 C.gattii B Veterinary 4.68 – –

CEMM05-3-030 C.gattii B Veterinary 18.75 – –

CEMM05-2-091 C.gattii B Veterinary 37.5 – –

CEMM03-2-079 C.gattii B Veterinary 75.0 – –

CEMM05-3-031 C.gattii B Veterinary 75.0 – –

WM626 C.neoformans A Reference 0.58 4.0 1.0

WM148 C.neoformans A Reference 1.17 16.0 0.0625

WM629 C.neoformans D Reference 2.34 8.0 0.5

WM628 C.neoformans AD Reference 18.75 4.0 0.5

WM178 C.gattii B Reference 0.58 4.0 1.0

WM779 C.gattii C Reference 1.17 16.0 1.0

WM179 C.gattii B Reference 4.68 16.0 0.0625

WM161 C.gattii B Reference 37.5 16.0 1.0

FNS,farnesol(mM);FLC,fluconazole(mg/mL);AMB,amphotericinB(mg/mL);(–),nottested.

Table 2

PhospholipaseactivityofCryptococcusstrainsfollowingexposuretofarnesol.

Farnesol concentration

C.neoformans C.gattii

PZ MeanSD

Noalterationa (n)

Decreased activityb(n)

Increased activityc(n)

PZ MeanSD

Noalterationa (n)

Decreased activityb(n)

Increased activityc(n)

MIC/4 0.940.13 6 12 3 0.750.23 2 5 8

MIC/2 0.890.20 5 9 7 0.920.14 6 5 4

MIC 0.850.22 4 9 8 0.900.19 7 6 2

PZ,phospholipaseactivity;SD,standarddeviation.

aNovariationinenzymaticactivitythroughouttheexperiment,regardlesstheintensityoftheresponse. b Enzymaticactivityvariationfrompositiveorstronglypositivetonegative.

(5)

tosecretehigherconcentrationsoffarnesolandweremore lethal in a mouse model (Navarathna et al., 2005). However, according to Hisajima et al. (2008), farnesol protectsagainst candidiasisinmice.Althoughwecould not predictthe invivo effectof farnesol during crypto-coccosis, the present study expands the list of fungal pathogensthatareinhibitedinvitrobythiscompound.The greatsusceptibilityofCryptococcustofarnesolpointstothe antifungalpotentialofthiscompoundinvivo.

It has been shown that phospholipaseand protease production by Cryptococcus spp. is a strain-dependent phenomenon, presenting great frequency and intensity variation (Ma and May, 2009). In the present study, incubationwithfarnesolwasabletochangetheenzymatic secretion in a strain-dependent manner: some isolates were not affected by the compound, whereas others showedan increase ordecrease inenzymatic activities. Statistical differences among groups were not detected and the net effect of farnesol on the test strains was insignificant.

5. Conclusion

Thisstudyshowed,forthefirsttime,thatfarnesolhas aninhibitoryeffectonstrainsoftheC.neoformansspecies complex, with no relevant change in the secretion of virulence-related exoenzymes.These findingscreatethe perspective forfurther investigationof themechanisms throughwhichthismoleculeinhibitsCryptococcusspp.and thepotentialuseofthiscompoundasanalternativeforthe treatmentofcryptococcosisinthefuture.

Acknowledgements

ThisworkwassupportedbygrantsfromtheNational Council for Scientific and Technological Development (CNPq; Brazil; Processes 302574/2009-3 and 562296/ 2010-7).WewouldliketothanktheMycologyLaboratory oftheEvandroChagasClinicalResearchInstituteinRiode Janeiro(IPEC/FIOCRUZ)forprovidingthereferencestrains fromitscryptococcalculturecollection.

References

Bien,C.M., Chang,Y.C.,Nes,W.D.,Kwon-Chung,K.J.,Espenshade,P.J., 2009.Cryptococcusneoformanssite-2proteaseisrequiredfor viru-lenceandsurvivalinthepresenceofazoledrugs.Mol.Microbiol.74, 672–690.

Bovers,M.,Hagen,F.,Boekhout,T.,2008.DiversityoftheCryptococcus

neoformansCryptococcus gattii species complex. Rev. Iberoamer.

Micol.25,4–12.

Brilhante,R.S.N.,Paiva,M.A.N.,Sampaio,C.M.S.,Teixeira,C.E.C., Castelo-Branco,D.S.C.M.,Leite,J.J.G.,Moreira,C.A.,Silva,L.P.,Cordeiro,R.A., Monteiro,A.J.,Sidrim,J.J.C.,Rocha,M.F.G.,2011.Yeastsfrom

Macro-brachiumamazonicum:afocusonantifungalsusceptibilityand

viru-lencefactorsofCandidaspp.FEMSMicrobiol.Ecol.76,268–277. Brilhante,R.S.N.,Valente,L.G.A.,Rocha,M.F.G.,Bandeira,T.J.P.G.,Cordeiro,

R.A.,Lima,R.A.C.,Leite,J.J.G.,Ribeiro,J.F.,Pereira,J.F.,Castelo-Branco, D.S.C.M.,Sidrim,J.J.C.,2012.Sesquiterpenefarnesolcontributingto increasedsusceptibilitytob-lactamsinstrainsofBurkholderia

pseu-domallei.Antimicrob.AgentsChemother.,http://dx.doi.org/10.1128/

AAC.05885-11.

Cenci, E.,Francisci,D.,Belfiori, B.,Pierucci,S.,Baldelli,F.,Bistoni,F., Vecchiarelli,A.,2008.Tipranavirexhibitsdifferenteffectson oppor-tunisticpathogenicfungi.J.Infect.56,58–64.

Chayakulkeeree,M.,Johnston,S.A.,Oei,J.B.,Lev,S.,Williamson,P.R., Wilson,C.F.,Zuo,X.,Leal,A.L.,Vainstein,M.H.,Meyer,W.,Sorrell, T.C.,May,R.C.,Djordjevic,J.T.,2011.SEC14isaspecificrequirement forsecretionofphospholipaseB1andpathogenicityofCryptococcus

neoformans.Mol.Microbiol.80,1088–1101.

Chen,L.,Blank,E.S.,Casadevall,A.,1996.Extracellularproteinaseactivity

ofCryptococcusneoformans.Clin.Diagn.Lab.Immunol.3,570–574.

Chong,H.S.,Dagg,R.,Malik,R.,Chen,S.,Carter,D.,2010.Invitro suscept-ibilityoftheyeastpathogenCryptococcustofluconazoleandother azolesvarieswithmoleculargenotype.J.Clin.Microbiol.48,4115– 4120.

CLSI,2008.ReferenceMethodforBrothDilutionAntifungalSusceptibility TestingofYeasts,3rded.ClinicalandLaboratoryStandardsInstitute, Wayne,PA(M27-A3).

Cordeiro,R.A.,Costa,A.K.F.,Brilhante,R.S.N.,Lima,R.A.C.,Castelo-Branco, D.S.C.M.,Ribeiro,J.F.,Monteiro,A.J.,Rocha,F.A.C.,Sidrim,J.J.C.,Rocha, M.F.G.,2011.PCR-REAasanimportanttoolfortheidentificationof

CryptococcusneoformansandCryptococcus gattiifromhuman and

veterinarysources.Vet.Microbiol.154,180–184.

Costa,A.K.F.,Sidrim,J.J.C.,Cordeiro,R.A.,Brilhante,R.S.N.,Monteiro,A.J., Rocha,M.F.G.,2010.Urbanpigeons (Columbalivia)asapotential sourceofpathogenicyeast:afocusonantifungalsusceptibilityof

CryptococcusstrainsinNortheastBrazil.Mycopathologia169,207–

213.

Derengowski,L.S.,De-Souza-Silva,C.,Braz,S.V.,Mello-De-Sousa,T.M., Ba´o,S.N.,Kyaw,C.M.,Silva-Pereira,I.,2009.Antimicrobialeffectof farnesol,aCandidaalbicansquorumsensingmolecule,on

Paracocci-dioidesbrasiliensisgrowthandmorphogenesis.Ann.Clin.Microbiol.

Antimicrob.8,13.

Hagen,F.,Illnait-Zaragozi,M.T.,Bartlett,K.H.,Swinne,D.,Geertsen,E., Klaassen, C.H., Boekhout, T., Meis, J.F., 2010. In vitro antifungal susceptibilitiesandamplifiedfragmentlengthpolymorphism geno-typingofa worldwidecollectionof 350clinical, veterinary, and environmentalCryptococcusgattiiisolates.Antimicrob.Agents Che-mother.54,5139–5145.

Hisajima,T.,Maruyama,N.,Tanabe,Y.,Ishibashi,H.,Yamada,T., Maki-mura,K.,Nishiyama,Y.,Funakoshi,K.,Oshima, H.,Abe,S.,2008. Protectiveeffectsoffarnesolagainstoralcandidiasisinmice. Micro-biol.Immunol.52,327–333.

Hornby,J.M.,Jensen,E.C.,Lisec,A.D.,Tasto,J.J.,Jahnke,B.,Shoemaker,R., Dussault,P.,Nickerson,K.W.,2001.Quorumsensinginthedimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol.67,2982–2992.

Hornby,J.M.,Nickeerson,K.W.,2004.Enhancedproductionoffarnesolby

Candidaalbicanstreatedwithfourazoles.Antimicrob.Agents

Che-mother.48,2305–2307.

Iqbal,N.,DeBess,E.E.,Wohrle,R.,Sun,B.,Nett,R.J.,Ahlquist,A.M.,Chiller, T.,Lockhart,S.R.,CryptococcusgattiiPublicHealthWorkingGroup, 2010.Correlationofgenotypeandinvitrosusceptibilitiesof

Crypto-coccusgattiistrainsfromthePacificNorthwestoftheUnitedStates.J.

Clin.Microbiol.48,539–544.

Jabra-Rizk,M.A.,Shirtliff,M.,James,C.,Meiller,T.,2006.Effectoffarnesol

onCandidadubliniensisbiofilmformationandfluconazoleresistance.

FEMSYeastRes.6,1063–1073.

Jin,J.,Zhang,J.Y.,Guo,N.,Sheng,H.,Li,L.,Liang,J.C.,Wang,X.L.,Li,Y.,Liu, M.Y.,Wu,X.P.,Yu,L.,2010.Farnesol,apotentialeffluxpumpinhibitor

inMycobacteriumsmegmatis.Molecules15,7750–7762.

Kronstad,J.W.,Attarian,R.,Cadieux,B.,Choi,J.,D’Souza,C.A.,Griffiths,E.J., Geddes,J.M.H.,Hu,G.,Jung,W.H.,Kretschmer,M.,Saikia,S.,Wang,J., 2011.Expandingfungalpathogenesis:Cryptococcusbreaksoutofthe opportunisticbox.Nat.Rev.Microbiol.9,193–203.

Kwon-Chung,K.J.,Varma,A.,2006.Domajorspeciesconceptssupport one,twoormorespecieswithinCryptococcusneoformans? FEMS YeastRes.6,574–587.

Langford,M.L.,Hasim,S.,Nickerson,K.W.,Atkin,A.L.,2010.Activityand toxicity of farnesol towards Candidaalbicans are dependent on growthconditions.Antimicrob.AgentsChemother.54,940–942. Lester,S.J.,Malik,R.,Bartlett,K.H.,Duncan,C.G.,2011.Cryptococcosis:

updateandemergenceofCryptococcusgattii.Vet.Clin.Pathol.40,4–17. Lin,X.,Heitman,J.,2006.ThebiologyoftheCryptococcusneoformans

speciescomplex.Annu.Rev.Microbiol.8,69–105.

Liu,P.,Luo,L.,Guo,J.,Liu,H.,Wang,B.,Deng,B.,Long,C.A.,Cheng,Y.,2010. Farnesolinducesapoptosisandoxidativestressinthefungal

patho-genPenicilliumexpansum.Mycologia102,311–318.

Ma,H.,May,R.C.,2009.VirulenceinCryptococcusspecies.Adv.Appl. Microbiol.67,131–190.

(6)

Navarathna,D.H.M.L.P.,Hornby,J.M., Hoerrmann,N.,Parkhurst,A.M., Duhamel,G.E.,Nickerson,K.W.,2005. Enhancedpathogenicity of

Candidaalbicanspre-treatedwithsubinhibitoryconcentrations of

fluconazoleinamousemodelofdisseminatedcandidiasis.J. Anti-microb.Chemother.56,1156–1159.

Pammi,M.,Liang,R.,Hicks,J.M.,Barrish,J.,Versalovic,J.,2011.Farnesol decreasesbiofilmsofStaphylococcusepidermidisandexhibitssynergy withnafcillinandvancomycin.Pediatr.Res.70,578–583. Price,M.F.,Wilkinson,I.D.,Gentry,L.O.,1982.Platemethodfordetectionof

phospholipaseactivityofCandidaalbicans.Sabouraudia22,201–207. Rossignol,T.,Logue,M.E.,Reynolds,K.,Grenon,M.,Lowndes,N.F.,Butler, G.,2007.TranscriptionalresponseofCandidaparapsilosisfollowing exposuretofarnesol.Antimicrob.AgentsChemother.51,2304–2312. Sharma,M.,Prasad,R.,2011.TheQuorum-Sensingmoleculefarnesolisa modulatorofdrugeffluxmediatedbyABCmultidrugtransporters andsynergizeswithdrugsinCandidaalbicans.Antimicrob.Agents Chemother.55,4834–4843.

Semighini,C.P.,Murray,N., Harris,S.D., 2008.Inhibitionof Fusarium

graminearumgrowthanddevelopmentbyfarnesol.FEMSMicrobiol.

Lett.279,259–264.

Shirtliff,M.E.,Krom,B.P.,Meijering,R.A.,Peters,B.M.,Zhu,J.,Scheper, M.A.,Harris,M.L.,Jabra-Rizk,M.A.,2009.Farnesol-induced

apopto-sis in Candida albicans. Antimicrob. Agents Chemother. 53,

2392–2401.

Sidrim,J.J.C.,Maia,D.C.B.S.C.,Brilhante,R.S.N.,Soares,G.D.P.,Cordeiro, R.A.,Monteiro,A.J.,Rocha,M.F.G.,2010.Candidaspeciesisolatedfrom thegastrointestinaltract ofcockatiels(Nymphicushollandicus):in

vitro antifungalsusceptibility profileand phospholipase activity.

Vet.Microbiol.145,324–328.

Trilles,L.,Fernandez-Torres,B.,Lazera,M.S.,Wanke,B.,Guarro,J.,2004.In

vitroantifungalsusceptibilityofCryptococcusgattii.J.Clin.Microbiol.

42,4815–4817.

Trilles,L.,Meyer,W.,Wanke,B.,Guarro,.J.,Laze´ra,M.,2011.Correlation ofantifungalsusceptibilityandmoleculartypewithinthe

Crypto-coccus neoformans/C. gattii species complex. Med. Mycol. 50,

328–332.

Weber,K.,Schulz,B.,Ruhnke,M.,2010.Thequorum-sensingmolecule

Referências

Documentos relacionados

Tanto ao nível das células esfoliadas, como nas amostras de biópsia verifica-se uma maior associação da infeção por VPH com o cancro da orofaringe, sendo um aumento

(2014) apresenta três aplicações reais de domínios diferentes que utilizam o Chiron e exploram os dados coletados pela proveniência para avaliar a configuração de

A consistência dos dados é indispensável em qualquer tipo de banco de dados, sendo de suma importância em inventários florestais antes da realização de

The selected fault model is used in most common fault scenarios for microprocessor based critical systems [8] and consists of single bit-flip faults in random memory elements,

Recent studies have observed symptoms of leaf spot in pecan ( Carya illinoinensis ) associated with species of the Cladosporium cladosporioides complex ( C.. Therefore, the

Several regulatory sequences have been identified in the CR of the vertebrate’s species and have been shown that this region contains H-strand origin, H- strand

Frente as necessidades de uma demanda de serviços e cuidados específicos voltadas para a populção idosa, percebeuse de acordo com a vivência e percepção dos acadêmicos da área

A estrutura de custos tem vindo a aumentar nos últimos anos (contratação de pessoal e outros bens e serviços) em face do aumento da actividade da empresa. No entanto, a