• Nenhum resultado encontrado

TEMA (São Carlos) vol.14 número1

N/A
N/A
Protected

Academic year: 2018

Share "TEMA (São Carlos) vol.14 número1"

Copied!
12
0
0

Texto

(1)

½

! " #$

!!

% & ' ' ( ) )* +

, )+* ( - *. / +)

*, (* * ( 0( 1 2' ' 3 ℄

56 * ' ( *

)* '* ,( 7*

*(07* * ,,

* - *. / ' 38℄ 99 * *

) ' )+ , , , * (* *, '

1) ' * + , / 2 6 ) ( )

* ' * : ' 3℄ ;5 ;<*(

* ') (***'(

= * > * ' * *,+

) 0 ( + * ( / $*

2? 6 2? 56 % & ' % &

''* - *. / ) )+2? 6

@ * 1 (*A 2? B6

½

(2)

G(r, t

|

r

, t

)

2

G(r, t

|

r

, t

)

c

1

2

2

G

∂t

2

=

δ(r

r

)

δ(t

t

)

,

r

r

R

2

t

t

R

G(r, t

|

r

, t

) = 0

t < t

.

! "# " $%

!

t

&

2

G(r, ω

˜

|

r

, t

) + (ω/c)

2

G

˜

=

δ(r

r

)

e

i

ωt

/

2π ,

'

˜

G(r, ω

|

r

, t

)

F

t

{

G(r, t

|

r

, t

)

}

=

1

−∞

dt e

i

ωt

G(r, t

|

r

, t

)

.

!

G

=

F

−1

t

{

G

˜

}

= (2π)

−1

/

2

−∞

dω e

−i

ωt

G

˜

# #!&&

(

−∞

,

0)

(0,

)

! &&&

ω

→ −

ω

" & &

G(r, t

|

r

, t

) =

1

0

e

−i

ωt

G(r, ω

˜

|

r

, t

) +

e

i

ωt

G(r,

˜

ω

|

r

, t

)

.

(

)#& &

ω

!"!

*+!&

x

y

r

2

G

˜

=

2

G/∂x

˜

2

+

2

G/∂y

˜

2

δ(r

r

) =

δ(x

x

)δ(y

y

)

$ %

!

y

&

d

2

G

¯

˜

dx

2

(x, k, ω

|

x

, y

, t

)

k

2

ω

2

c

2

¯

˜

G

=

e

i(

ky

+

ωt

)

δ(x

x

)

,

,

¯

˜

G(x, k, ω

|

x

, y

, t

)

F

y

{

G(x, y, ω

˜

|

x

, y

, t

)

}

=

1

−∞

dy e

i

ky

G(x, y, ω

˜

|

x

, y

, t

)

.

- #. ,

# "

x

+

(3)

(x

ε, x

+

ε)

℄!"#

ε

ε

dx

d

2

G

¯

˜

dx

2

(x, k, ω

|

x

, y

, t

)

k

2

ω

2

c

2

ε

ε

dx

G

¯˜

=

e

i(

ky

+

ωt

)

ε

ε

dx δ(x

x

)

.

$ % &! %

! ' (

ε

0

+

! %

d

G/dx

¯˜

x

=

x

#

d

G

¯

˜

dx

(x

′+

, k, ω

|

x

, y

, t

)

d

¯

˜

G

dx

(x

′−

, k, ω

|

x

, y

, t

) =

e

i(

ky

+

ωt

)

.

)*

)+ , '!-.

x

=

x

/

k

=

ω/c

¯

˜

G(x, k, ω

|

x

, y

, t

)

k

=

ω

c

=

c

1

e

(

a

+

b

i)

x

+

c

2

e

−(

a

+

b

i)

x

(x < x

)

d

1

e

(

a

+

b

i)

x

+

d

2

e

−(

a

+

b

i)

x

(x > x

)

.

)0

1'!

k

2

ω

2

/c

2

≡ ±

(a

+bi)

).'

(. 2 !%)*!(

%(

x < x

!

c

1

c

2

! ,

x > x

!

d

1

d

2

$ % %( . ! (

3. 4

¯

˜

G(x, k, ω

|

x

, y

, t

)

!%

!

F

−1

y

{

G

¯

˜

}

= ˜

G

#

˜

G(x, y, ω

|

x

, y

, t

) =

1

−∞

dk e

−i

ky

G(x, k, ω

¯˜

|

x

, y

, t

)

.

)5

6%! 7%#

k

ω

)% !

a

b

! !

ab

= 0

6! 7!

k

% 1

!%

)5%( -

k

8. . 7 9 + (! . -

k

.!

ab

= 0

: (

a >

0

1 ! 7

a

0

( %!

a

= 0

( # $

S

.

k

8. .

a

= 0

-%

ω/c

ω/c

(-! 9 + ( .

%.

S

).!%. $%

¯

˜

G(x, k, ω

|

x

, y

, t

)

%()0

(4)

a

= 0

!

k

=

ω/c

a

=

b

= 0

" # $

k

=

ω/c

% &'

( %

G

¯˜

) ! %

c

2

=

d

1

= 0

x

→ ±∞

*+$

x

=

x

G(x

′+

, k, ω

|

x

, y

, t

) =

G(x

′−

, k, ω

|

x

, y

, t

)

%

d

2

¯

˜

G(x, k, ω

|

x

, y

, t

) =

c

1

e

(

a

+

b

i)

x

(x

x

)

c

1

e

2(

a

+

b

i)

x

e

−(

a

+

b

i)

x

(x

x

)

.

,$ - . %

c

1

=

e

(

a

+

b

i)

x

e

i(

ky

+

ωt

)

4

π

(

a

+

b

i)

%

+ '/

¯

˜

G(x, k, ω

|

x

, y

, t

) =

e

i(

ky

+

ωt

)

4π(a

+

bi)

×

e

−(

a

+

b

i)(

x

x

)

(x

x

)

e

−(

a

+

b

i)(

x

x

)

(x

x

)

,

¯

˜

G(x, k, ω

|

x

, y

, t

) =

e

k

2

ω

2

/c

2

|

x

x

|

+ i(

ky

+

ωt

)

k

2

ω

2

/c

2

,

%

Re

k

2

ω

2

/c

2

>

0

a >

0

0%& $/

˜

G(x, y, ω

|

x

, y

, t

) =

1

−∞

dk

k

2

ω

2

/c

2

e

−|

X

|

k

2

ω

2

/c

2

i(

kY

ωt

)

,

1

%

X

x

x

Y

y

y

$ 1

##

k

=

k

x

+ ik

y

k

#

ζ

=

φ

+ iu

%

¾

/

k

=

ω

c

cos

ζ

=

ω

c

cos(φ

+ iu) =

ω

c

cos

φ

cosh

u

k

x

+ i

ω

c

sin

φ

sinh

u

k

y

,

2

%

k

x

=

(ω/c) cos

φ

cosh

u

k

y

= (ω/c) sin

φ

sinh

u .

¾

k

= (

ω/c

) cos(

φ

+ i

u

)

k

= (

ω/c

) sin(

φ

+ i

u

)

φ

[

π/

2

, π/

2]

u

(

−∞

,

)

(5)

I

U

X

K

Y

K

COS

W

K

C

[

PLANE

[

PLANE

K

S

!"#$" %

φ

[0, π]

u

(

−∞

,

)

ζ

&

k

& " '

φ

=

!

= 0, π/2

π

$ !

φ

=

φ

1

< π/2

φ

=

φ

2

> π/2

$ (

u

=

(

= 0)

!

u

=

u

1

>

0

u

=

u

2

<

0

$" )*

k

& * !"$

φ

=

φ

0

(

= 0, π/2

π)

u

=

u

0

(

= 0)

' (

!

φ

0

< π/2

$ !

φ

0

> π/2

$

k

x

(ω/c) cos

φ

0

2

k

y

(ω/c) sin

φ

0

2

= 1

!

u

0

>

0

$ !

u

0

<

0

$

k

x

(ω/c) cosh

u

0

2

+

k

y

(ω/c) sinh

u

0

2

= 1

)*!"$

φ

= 0

π

+

−∞

(ω/c)

(ω/c)

*' ,

φ

=

π/2

* +,

u

= 0

* +

ω/c

ω/c

"

COS

W

C

G

W

C

COS

G

COSH

W

U

C

³

x

COSH

W

U

C

m

x

W

C

x

W

C

x

x

x

Q

Q

x

G

x

x

G

I

Å

X

K

Y

K

I

COS

I

X

Y

W

K

K

C

G

U

G

G

U

U

COSH

W

U

C

³

x

COSH

W

U

C

m

x

!"#$ '

( * ' " !-

φu

&

."$

(6)

COS

W

C

G

C

X

x

COSH

W

2

C

U

2

X

K

Y

K

G

Å

K

K

C

X

x

%

%

U

G

U

£

¦¦¤

¦¦¥

U

G

U

G

£

¦¦¤

¦¦¥

U

U

G

G

£

¦¦¤

¦¦¥

U

U

G

Q

£

¦¦¤

¦¦¥

#

%

ƒ

(

ƒ

%

C

E

1

u

=

u

0

= cosh

−1

(cR/ω)

φ

!"

φ

0

!

H

φ

=

φ

0

u

!

u

0

u

0

E

2

u

=

u

0

φ

!

φ

0

π

# !

$

z(k)

k

2

ω

2

/c

2

=

±|

z(k)

|

exp[i arg

z(k)]

% &

!

!

k

2

ω

2

/c

2

=

±

i (ω/c) sin

ζ

=

±

i (ω/c) sin(φ

+ iu)

.

' "'

dk

k

2

ω

2

/c

2

=

(ω/c) sin

ζ dζ

±

i (ω/c) sin

ζ

=

i

=

i (dφ

+ idu) =

(

du

+ idφ)

(

−|

X

|

k

2

ω

2

/c

2

i (kY

ωt

) =

−|

X

|

±

i

ω

c

sin(φ

+ iu)

i

ω

c

cos(φ

+ iu)Y

ωt

=

i

ω

c

|

X

|

(sin

φ

cosh

u

+ i cos

φ

sinh

u)

i

ω

c

(cos

φ

cosh

u

i sin

φ

sinh

u)Y

ωt

=

ω

c

± |

X

|

cos

φ

+

Y

sin

φ

sinh

u

+ i

ω

c

(

∓|

X

|

sin

φ

+

Y

cos

φ) cosh

u

+

ct

,

f

(φ, u)

≡ −|

X

|

k

2

ω

2

/c

2

i (kY

ωt

) =

(7)

ω

c

g(φ) sinh

u

+ i

ω

c

g

(φ) cosh

u

+

ct

,

g(φ)

≡ ±|

X

|

cos

φ

+

Y

sin

φ .

C

!" # "

E

1

$

H

E

2

%"

C

$$ &

˜

G(r, ω

|

r

, t

) =

1

E

1

+

H

+

E

2

e

f

(

φ,u

)

dk/

k

2

ω

2

/c

2

∓(−

du

+i

)

=

±

1

i

φ

0

0

dφ e

f

(

φ,u

0

)

u

0

u

0

du e

f

(

φ

0

,u

)

+ i

π

φ

0

dφ e

f

(

φ,

u

0

)

.

φ

0

φ

C

R

= (ω/c) cosh

u

0

→ ∞

u

0

→ ∞

!

u

0

→ ∞

Ref

(φ,

±

u

0

) =

±

(ω/c)

g(φ) sinh

u

0

→ −∞

g(φ)

<

0

"

φ

g(φ)

>

0

#

g(φ

0

) = 0

g

0

)

>

0

.

$

%& !

φ

0

g(φ

0

)

g

0

)

g

0

)

$ '

(

g(φ

0

) =

±|

X

|

cos

φ

0

+

Y

sin

φ

0

= 0

X

2

cos

2

φ

0

=

Y

2

sin

2

φ

0

X

2

(1

sin

2

φ

0

) =

Y

2

sin

2

φ

0

X

2

= (X

2

+

Y

2

) sin

2

φ

0

,

sin

φ

0

)&

φ

0

(0, π)

cos

φ

0

sin

φ

0

=

|

X

|

cos

φ

0

=

Y

sin

φ

0

/

|

X

|

=

Y /ρ ,

ρ

=

X

2

+

Y

2

=

(x

x

)

2

+ (y

y

)

2

=

|

r

r

|

+(,

C

cos

φ

0

<

0

Å

0

W

C

COS

G

2

Å

X

K

Y

K

G

%

%

C

X

x

n2

Å

cos

φ

0

φ

0

> π/2

-

C

& +

4

g

0

) =

∓|

X

|

sin

φ

0

+

Y

cos

φ

0

=

X

2

Y

2

=

(X

2

+

Y

2

)/ρ

=

ρ .

(8)

±

k

2

ω

2

/c

2

!

g

0

) =

ρ

" #

f

0

, u) =

ω

c

g(φ

0

)

0

sinh

u

+ i

ω

c

g

0

)

ρ

cosh

u

+

ct

= iω

ρ

c

cosh

u

+

t

.

$

% & '

(

˜

G(r, ω

|

r

, t

) =

1

−∞

du e

i

ω

[

ρ

c

cosh

u

+

t

]

.

)

* +

F

−1

t

G(r, t

|

r

, t

)

=

1

2

−∞

du

0

e

i

ω

[

ρ

c

cosh

u

−(

t

t

)

] +

e

−i

ω

[

ρ

c

cosh

u

−(

t

t

)

]

=

1

−∞

du

1

π

0

cos

ω

ρ

c

cosh

u

(t

t

)

.

,&

T

t

t

' - .$℄0 $1

δ

[ (ρ/c) cosh

u

T

] =

δ

[ (ρ/c) (cosh

u

cT /ρ) ] = (c/ρ)

δ

(cosh

u

cT /ρ)

,

v

= cosh

u

2

G(r, t

|

r

, t

) =

1

2

0

du

c

ρ

δ

cosh

u

cT

ρ

=

c

2πρ

1

dv

v

2

1

δ

v

cT

ρ

=

c

2πρ

(cT /ρ)

2

1

×

0

cT /ρ <

1

ρ/c

+

T <

0

1

cT /ρ >

1

ρ/c

+

T >

0

U

(−

ρ/c

+

T

)

,

U

(τ)

03

τ <

0

τ >

0

%

&

G(r, t

|

r

, t

) =

G(ρ, T

) =

1

U

(

ρ/c

+

T

)

(ρ/c)

2

+

T

2

[

ρ

≡ |

r

r

|

, T

t

t

]

,

3

4 5 6 5

0 54 .

0 ℄ .)$+0 " (℄# 5 #

7 5 8 9

(9)

!

"# $! % #&

t < t

⇒ −

ρ

c

+

T

=

ρ

c

+

t

t

<

0

<

0

⇒ U

(

ρ/c

+

T

<

0

) = 0

G(r, t

|

r

, t

) = 0

.

'(#& )"#

G(r, t

|

r

, t

) = 0

t > t

,

* !

"(% (""+ )

( " " & ( ,!

(% # ( #"

" "# $!("

! * ! ) * (" !

* ! "%

C

" - . %(

COS

W

C

G

C

X

x

2

2

X

K

Y

K

G

Å

C

X

x

Å

U

U

G

G

£

¦¦¤

¦¦¥

U

U

G

G

£

¦¦¤

¦¦¥

U

U

G

Q

£

¦¦¤

¦¦¥

U

G

U

£

¦¦¤

¦¦¥

-& ) ,!

) ,! -" (

-!"&

˜

G(r, ω

|

r

, t

) =

±

1

i

φ

0

0

dφ e

f

(

φ,

u

0

)

u

0

u

0

du e

f

(

φ

0

,u

)

+ i

π

φ

0

dφ e

f

(

φ,u

0

)

,

* !

f

(φ, u)

"# *! /!(("0

±

1 ""

k

2

ω

2

/c

2

(10)

(ω/c)

g(φ) sinh

u

0

→ −∞

g(φ)

>

0

g(φ)

<

0

g(φ

0

) = 0

g

0

)

<

0

! "

#!$ !

±

% !

u

0

→ ∞

&' (%!

f

0

) = iω[(

ρ/c) cosh

u

+

t

]

!

ρ

ρ

! )& *!

ρ

ρ

+!$

G(r, t

|

r

, t

) =

c

2πρ

(cT /ρ)

2

1

×

0

cT /(

ρ)

<

1

ρ/c

T <

0

1

cT /(

ρ)

>

1

ρ/c

T >

0

U

(−

ρ/c

T

)

G(r, t

|

r

, t

) =

G(ρ, T

) =

1

U

(

ρ/c

T

)

(ρ/c)

2

+

T

2

.

, -. &# !$

t > t

⇒ −

ρ

c

T

=

ρ

c

(t

t

)

>

0

<

0

⇒ U

(

ρ/c

T

<

0

) = 0

G(r, t

|

r

, t

) = 0

.

-. /( 0 & 1

K

ω/c

α

e

i

ωt

/

2

t

ω

!

Γ

(r

|

r

)

G(r, ω

˜

|

r

, t

)

#! ' 0

-.

Γ

(r

|

r

)

/(0$

2

Γ

(r

|

r

) +

K

2

Γ

=

α δ(r

r

)

.

3 !

4 *!

ρ

ρ

G

˜

=

Γ

) 2 ( '

/' ( 0 +! ! 5 ℄ 78 !

9 3 !1'&

Γ

(r

|

r

) =

α

−∞

du e

±i

cosh

u

=

(

αi/4)

H

0

(1)

(Kρ)

+

(αi/4)

H

0

(2)

(Kρ)

.

,

&&

5 ℄:* 3 +! '

, /(

0#!

(11)

! " #$

%&'( ) (#

*!+ #, &'

"

-" ! " # $ "&

$ . /

"&( "" "

,+&-" ! " #$

$ &"

-" ( ""( "

'&( "

"( ' ( ("

"( ' & "( *0%℄

, " ( "( "

!+ (" $

* ' " 02℄&

(( -" "

& &

"( '( (" &

"(("

( & & "

"( & + ( !+

&

" 03℄& $ 3%

34& 04℄& & ""

( " -" &(

ρ

=

|

r

r

|

&

5 $ #&'

δ(ρ)

& / $

+

ρ

= 0

& " "6 "( "(

ρ

0

ρ

→ ∞

*77+

"!+

8-" ! " #

/ $ "( "

0)℄&9,&:&)&"

-" ( "

-" ( " ( (

" "

z

&

; 0℄& ) < *

$&

G(r, t

|

r

, t

)

&

! " # $&

Γ

(r

|

r

)

& & " "

& " -" ( "&

( * ( "(

! " # $ (

" $& "

Γ

(r

|

r

) =

t

−∞

G(r, t

|

r

, t

)

e

i

ω

0

(

t

t

)

dt

(12)

! !

℄ "# $% "& ' () (*+

,-./0( 121

3℄ % # $4 ( - 5+, (

64 17

℄ 6*8$4 4 ( -9

(( :; ,<=>? 1@@

A℄ # * $ 5- / 5

4 A % =+9>?33

B℄ *"*C$"&' 5-=54 +

<8:6(DD#6'3

@℄ %> % $"& ' E ( - %

===+= =7=+9#3@

7℄ '# 8 $5 5- = %

(+8 %C 17@

2℄ 8(8$5'5-8#;( =* 12A

1℄ (448' $4 ( -4"+8

# >? 1B

℄ 6 "& 8 F (

+

> G3 H A

℄ ">,$5 #'-=%

0(D 1AA

Referências

Documentos relacionados

An expression for interval-valued intuitionistic version of the Atanassov’s intu- itionistic fuzzy index is introduced in Section 3, in order to study properties of IvIFIs, which

Then, the main objective of the paper is to present the FGM long-term bivariate survival copula model assuming promotion time models as marginal distributions, and to de-

F reire, Conservation laws for self-adjoint rst order evolution equations,

However, from our previous results regarding the bidimensional Lane-Emden systems (and it still holds to the multidimensional case), such a particular system naturally arise as

In the context of the present work, and based in a previous result (op. [13]), we extend for octonions the concept of a 2L-periodical function, that we will call Octonionic

Para finalizar, apresentamos o artigo da ´area de computac¸˜ao cient´ıfica: “A faster pixel-decimation. method for block motion estimation

In despite of several results in the literature to compute inverse solutions in the hyper- bolic heat transfer with a number of different methods, and recovery initial conditions on

What makes the SK algorithm more convenient in such cases is that, in addition to dividing the treatments in groups without overlapping, its result also uses a probabilistic