• Nenhum resultado encontrado

TEMA (São Carlos) vol.14 número2

N/A
N/A
Protected

Academic year: 2018

Share "TEMA (São Carlos) vol.14 número2"

Copied!
5
0
0

Texto

(1)

Weighted Approximation of Continuous Positive Functions

M.S. KASHIMOTO

Received on August 24, 2012 / Accepted on May 17, 2013

ABSTRACT.We investigate the density of convex cones of continuous positive functions in weighted spaces and present some applications.

Keywords:convex cone, weighted space, Bernstein’s Theorem.

1 INTRODUCTION AND PRELIMINARIES

Throughout this paper we shall assume, unless stated otherwise, that X is a locally compact Hausdorff space. We shall denote byC(X;R)the space of all continuous real-valued functions

on X and byCb(X;R)the space of continuous and bounded real-valued functions onX. The vector subspace of all functions inC(X;R)with compact support is denoted byCc(X;R).

An upper semicontinuous real-valued function f onX is said tovanish at infinityif, for every ε >0, the closed subset{x∈ X: |f(x)| ≥ε}is compact.

In what follows, we shall present the concept ofweighted spacesas developed by Nachbin in [4]. We introduce a setV of non-negative upper semicontinuous functions onX, whose elements are calledweights. We assume that V is directed, in the sense that, givenv1, v2 ∈ V, there exist λ >0 andv∈V such thatv1≤λvandv2≤λv.

LetV be a directed set of weights. The vector subspace ofC(X;R)of all functions f such that

vf vanishes at infinity for eachv∈V will be denoted byCV∞(X;R).

WhenCV∞(X;R)is equipped with the locally convex topologyωV generated by the seminorms

pv:CV∞(X;R) → R+

fsup{v(x)|f(x)| :xX}

for eachv∈V, we callCV∞(X;R)aweighted space.

We assume that for eachxX, there isv∈V such thatv(x) >0.

In the following we present some examples of weighted spaces.

(2)

(a) If V consists of the constant function 1, defined by 1(x) = 1 for all xX, then

CV∞(X;R)isC0(X;R), the vector subspace of all functions inC(X;R)that vanish at

infinity. In particular, ifX is compact thenCV∞(X;R)=C(X;R). The corresponding

weighted topology is the topology of uniform convergence onX.

(b) LetV be the set of characteristic functions of all compact subsets ofX. Then the weighted spaceCV∞(X;R)isC(X;R)endowed with the compact-open topology.

(c) If V consists of characteristic functions of all finite subsets of X, thenCV∞(X;R)is C(X;R)endowed with the topology of pointwise convergence.

(d) IfV = {v ∈C0(X;R): v ≥0}, thenCV∞(X;R)is the vector spaceCb(X;R). The corresponding weighted topology is the strict topologyβ(see Buck [1]).

For more information on weighted spaces we refer the reader to [4, 5].

We setCV+(X;R)= {f CV∞(X;R): f 0}.

A subsetWCV+(X;R)is a convex cone ifλW W, for eachλ0 andW +W W.

We denote by CV+(X;R)

CV+(Y;R) the subset of CV+

∞(X ×Y;R) consisting of all

functions of the form

n

i=1

gi(x)hi(y), xX, yY

wheregiCV∞+(X;R), hiCV∞+(Y;R),i =1, . . . ,n,n ∈N.

LetWCV+(X;R)be a nonempty subset. A functionφ C(X;R), 0φ1, is called a

multiplierofW ifφf +(1−φ)gW for every pair f andgof elements ofW. The set of all multipliers ofW is denoted byM(W). The notion of a multiplier ofW is due to Feyel and De La Pradelle [3] and Chao-Lin [2].

For any xX,[x]M(W) denotes the equivalence class of x, when one defines the following

equivalence relation onX:xt(mod M(W))if, and only if,φ (x)=φ (t)for allφ∈ M(W).

A subset AC(X;R)separates the points ofXif, given any two distinct pointssandtofX,

there is a functionφ∈ Asuch thatφ (s)=φ (t).

Weierstrass’ first theorem states that any real-valued continuous function f defined on the closed interval [0,1] is the limite of a uniformly convergent sequence of algebraic polynomials. One of the most elementary proofs of this classic result is that which uses the Bernstein polynomials of f

(Bnf,x):= n

k=0

n k

f k

n

xk(1−x)nk, x∈ [0,1]

(3)

all polynomials of degree at mostn has the property that Bn(f) ≥ 0 whenever f ≥ 0. Thus Bernstein’s theorem also establishes the fact that each positive continuous real-valued function on[0,1]is the limit of a uniformly convergent sequence of positive polynomials.

Consider a compact Hausdorff spaceX and the convex cone

C+(X;R)= {f C(X;R): f 0}.

A generalized Bernstein’s theorem would be a theorem stating when a convex cone contained in

C+(X;R)is dense in it.

Prolla [6] proved the following result of uniform density of convex cones inC+(X;R).

Theorem 1.1. Let X be a compact Hausdorff space. Let WC+(X;R)be a convex cone

satisfying the following conditions:

(a) given any two distinct points x and y in X , there is a multiplier φ of W such that φ (x)=φ (y);

(b) given any xX , there is gW such that g(x) >0.

Then W is uniformly dense in C+(X;R).

The purpose of this note is to present an extension of this result to weighted spaces and give some applications. The main tool is a Stone-Weierstrass-type theorem for subsets of weighted spaces.

2 THE RESULTS

We need the following lemma, whose proof can be found in [7].

Lemma 2.1.Let W be a nonempty subset of CV∞(X;R). Given any fCV∞(X;R),v∈ V andε >0, the following statements are equivalent:

1. there exists hW such thatv(x)f(x)−h(x)< εfor all xX ;

2. for each xX , there exists gxW such thatv(t)f(t)−gx(t)< εfor all t ∈ [x]M(W).

Now we state the main result.

Theorem 2.1.Let WCV+

∞(X;R)be a convex cone satisfying the following conditions:

(a) given any two distinct points x and y in X , there exists a multiplierφ of W such that φ (x)=φ (y);

(b) given any xX , there exists gW such that g(x) >0.

(4)

Proof. Let x be an arbitrary element of X. Condition (a) implies that [x]M(W) = {x}. By

condition (b), there existsgW such thatg(x) >0. Then, for any fCV+(X;R),v V

andε >0, we have

v(x)

f(x)− f(x) g(x)g(x)

=0< ε.

SinceW is a convex cone, gf((xx))gW. Then, it follows from Lemma 2.1 that there existshW

such thatv(t)f(t)−h(t)< εfor alltX.

Corollary 2.1.Let X and Y be locally compact Hausdorff spaces. Then

CV+(X;R)CV+(Y;R)

is dense in CV+(X×Y;R).

Proof. It follows from Urysohn’s Lemma [8] that for any two distinct elements(s,t)and(u, v) of X ×Y, there exist functionsh1 ∈ Cc(X;R)andh2 ∈ Cc(Y;R), 0 ≤ h1,h2 ≤ 1, such thatϕ(x,y):=h1(x)h2(y)is a multiplier ofCV∞+(X;R)

CV+(Y;R)andϕ(s,t)=1 and

ϕ(u, v)=0. Hence, condition (a) of Theorem 2.1 is satisfied.

By using Urysohn’s Lemma again, given (x,y) ∈ X ×Y, there exist φ ∈ Cc(X;R) and ψ∈Cc(Y;R)such thatφ (x)=1 andψ (y)=1 so thatφ (x)ψ (y) >0,

φψ ∈CV+(X;R)CV+(Y;R).

Then, condition (b) of Theorem 2.1 is satisfied. Hence, the assertion follows by Theorem 2.1.

Example 2.1. ConsiderCV+(R;R), whereV is the set of characteristic functions of all

com-pact subsets ofR. Letψ C(R;R), 0ψ1, be a one-to-one function. LetW be the set of

all functionsgof the form

g(x)=

i+jn

bi jψ (x)i(1−ψ (x))j, x∈R

where eachbi j is a non-negative real number andi,j,nare non-negative integers numbers. Note thatWCV+(R;R)is a convex cone.

Sinceψ ∈ M(W)andW contains positive constant functions, it follows from Theorem 2.1 that

W is dense inCV+(R;R).

Example 2.2.Letabe a fixed positive real number. LetWbe the set of all functions of the form

f(x)eax,x ∈ [0,∞), fC+b([0,∞);R).

Clearly, W is a convex cone contained in C0+([0,∞);R). The function eax, x ∈ [0,),

belongs toW and is a multiplier ofW that separates the points ofX. Hence, by Theorem 2.1W

(5)

RESUMO.Investigamos a densidade de cones convexos de func¸ ˜oes cont´ınuas positivas em

espac¸os ponderados e apresentamos algumas aplicac¸˜oes.

Palavras-chave: cone convexo, espac¸o ponderado, Teorema de Bernstein.

REFERENCES

[1] R.C. Buck. Bounded continuous functions on a locally compact space.Michigan Math. J.,5(1958), 95–104.

[2] M. Chao-Lin. Sur l’approximation uniforme des fonctions continues.C. R. Acad. Sci. Paris Ser. 1. Math.,301(1985), 349–350.

[3] D. Feyel & A. De La Pradelle. Sur certaines extensions du Th´eor`eme d’Approximation de Bernstein.

Pacific J. Math.,115(1984), 81–89.

[4] L. Nachbin. “Elements of Approximation Theory”. Van Nostrand, Princeton, NJ, 1967, reprinted by Krieger, Huntington, NY (1976).

[5] J.B. Prolla. “Approximation of Vector-Valued Functions”. Mathematics Studies,25, North-Holland, Amsterdam (1977).

[6] J.B. Prolla. A generalized Bernstein approximation theorem. Math. Proc. Camb. Phil. Soc., 104(1988), 317–330.

[7] J.B. Prolla & M.S. Kashimoto. Simultaneous approximation and interpolation in weighted spaces.

Rendi. Circ. Mat. di Palermo, Serie II – Tomo LI (2002), 485–494.

Referências

Documentos relacionados

Apresenta fatores de risco importantes e bem conhecidos como por exemplo a idade compreendida entre os 40 e os 65 anos, o sexo masculino e a obesidade, mas não devemos

Em relação aos critérios de mensuração, contrariamente ao esperado, não se obteve evidência de que os investidores profissionais investam mais em demonstrações

Em 2008 e 2009 as duas Instituições de Microfinanças com maior carteira, a Organização das Mulheres de Cabo Verde (OMCV) e a Associação de Apoio à Autopromoção da Mu- lher

A premissa para o desenvolvimento deste projeto passa pela criação de uma solução de e-commerce transversal a todas as fases do ciclo de vida dos produtos disponíveis para um

A partir da necessidade de implementar a melhoria dos processos de produção, este artigo teve por objetivo a aplicação do método DMAIC (Define, Measure,

O estágio foi realizado em duas fases, a primeira foi na produção do Festival de Cinema do Estoril 2010, produzido pela Leopardo Filmes e teve a duração de dois meses (de 6 de Outubro

O cuidador familiar e o idoso em sua totalidade aprendem a conviver com a condição de dependência, com dinâmicas sociais construídas nos significados do cuidar,

Para que o controle social tenha efetividade, o Estado, por um lado, tem que criar mecanis-.. mos em sua estrutura e em seu ordenamen- to jurídico que possibilitem e assegurem aos