• Nenhum resultado encontrado

Storage stability of Jatropha curcas L. oil naturally rich in gamma-tocopherol

N/A
N/A
Protected

Academic year: 2021

Share "Storage stability of Jatropha curcas L. oil naturally rich in gamma-tocopherol"

Copied!
6
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Industrial

Crops

and

Products

j ourna l h o m e pa g e : w w w . e l s e v i e r . c o m / l o c a t e / i n d c r o p

Storage

stability

of

Jatropha

curcas

L.

oil

naturally

rich

in

gamma-tocopherol

Joana

Rodrigues

a

,

Isabel

Miranda

b

,

Leonnardo

Furquim

a

,

Jorge

Gominho

b

,

Manuel

Vasconcelos

c

,

Gonc¸

alo

Barradas

c

,

Helena

Pereira

b

,

Fernando

Bianchi-de-Aguiar

c

,

Suzana

Ferreira-Dias

a,∗

aInstitutoSuperiordeAgronomia,CEER,BiosystemsEngineering,UniversityofLisbon,TapadadaAjuda,1349-017Lisbon,Portugal bInstitutoSuperiordeAgronomia,CEF,CentrodeEstudosFlorestais,UniversityofLisbon,TapadadaAjuda,1349-017Lisbon,Portugal cGALPEnergia,UnidadedeBiocombustíveis,RuaTomásdaFonsecaEdifícioGALPTorreC,1600-209Lisbon,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1August2014

Receivedinrevisedform17October2014 Accepted24October2014

Availableonline14November2014

Keywords: Gamma-tocopherol JatrophacurcasL. Oil Seeds Stability

a

b

s

t

r

a

c

t

JatrophacurcasL.isaninterestingtropicaloilcropforbiodieselproduction.However,seedconservation untiloilextractionmaybeaproblemunderhightemperatureandhumidity.Inthisstudy,Jatrophacurcas L.seedsgrowninMozambiqueandpresenting160mg/kgofgamma-tocopherolintheiroilwerestored for42days,indark,at35◦Cand75%or92%relativehumidity(RH).Alongstorage,theoilwasextracted andanalysedintermsoffattyacidcomposition,tocopherolcontent,acidity,initialandfinaloxidation products(monitoredbyK232andK270values,respectively).

Jatrophaseedspresentedaninitialwatercontentof8.4%andanoilcontentof45.7%(drybasis).The oilwasrichinoleic(41.2%)andlinoleic(38.8%)acids.

Along42daysofstorage,theacidityincreasedfrom0.8%to7.4%and25.3%andK270increasedfrom 0.07to0.25and0.46inoilsfromseedsstoredat75%and92%RH,respectively.Simultaneously,adecrease ingamma-tocopherolcontentwasobserved,whichwasmorepronouncedat92%RHthanat75%RH(96% decreaseversus57%decrease).Gamma-tocopherolshowedtoprotecttheoilagainstoxidationprincipally duringthesecondstageofoxidation.Duringthestorageat35◦C,thefattyacidcompositionoftheoils fromseedskepteitherat75%or92%ofhumidity,didnotsignificantlyvarythroughoutthetest.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Biofuelsareanalternativetofossilfuelssincetheyoffer numer-ousadvantagesfortheenvironmentnamelyreducedemissionsof greenhousegasesandparticles,aswellasforeconomyand devel-opmentviaenergysecurityandstimulationofruraldevelopment (Smeetsetal.,2007;AETSConsortium,2013).

Asotherdevelopingcountries,Mozambiquehasbeen explor-ingthepotentialforrenewableenergytofulfilitsenergydemands (FAO, 2008). A considerable percentage of Mozambican GDP is spent on fuel and energy, which explains the government’s concern in investigating alternative energy sources, including biofuels (World Bank, 2008; Schut et al., 2010). During the lastdecade,theMozambicangovernmentstimulatedfarmersto growJatropha curcas L. on fallow and marginal soils with the

∗ Correspondingauthor.Tel.:+351213653540;fax:+351213653200. E-mailaddress:suzanafdias@mail.telepac.pt(S.Ferreira-Dias).

aim that Mozambique could become an oil exporting country (Schut et al.,2010).Ever since,investment intheagrofuel sec-torincreasedandexpanded,withseveralmultinationalcompanies demonstrating interest in agro-industrial business centred on Jatropha.

J.curcas L.is a drought-resistant shrubor treebelongingto thegenusEuphorbiaceae,whichiscultivatedinCentralandSouth America, South-EastAsia,Indiaand Africa(Giibitzet al.,1999). It grows in semi-arid marginal sites and can be used for ero-sioncontrol(Heller,1996).TheseedkernelofJ.curcasL.contains 43–59%oilwhich in themajorityof genotypescannot beused forediblepurposeswithoutdetoxification,makingitattractivefor biodieselproduction (MtinchandKiefer,1986; Liberalinoetal., 1988;Sharmaetal.,1997;Winketal.,1997;KumarandSharma, 2008;Rodriguesetal.,2013).Infact,someediblevarietiesofJ. cur-cashavebeencultivatedforhumanfoodfromancienttimesinthe mountainsoftheTotonacapan (Mexico),butduetothe“biofuel program”,thesenon-toxicgenotypesareinseriousriskofbeing lost(Kingetal.,2009;Vera-Castilloetal.,2014).

http://dx.doi.org/10.1016/j.indcrop.2014.10.048

(2)

Thestorage of largevolumesof Jatrophaseedsor oilunder tropicalclimateconditionswithoutlossofqualityisnotaneasy task. Inorder tomaintainstability of Jatrophaoil, a good stor-age method needs to be developed. The degradative reactions takingplace in vegetableoils are mainlyhydrolysis and oxida-tion. Oil oxidation occurs in the presence of catalysts such as light, heat, enzymes, metals and metalloproteins. Autoxidation isthemost commonprocesspromotingoxidative deterioration andisdefinedasthereactionofatmosphericoxygenwithlipids, whichis fasterathigher temperatures.It occursviaa free rad-ical chain reaction. Lipid hydroperoxides have been identified asprimaryproductsofautoxidation(ShahidiandZhong,2005). In thepresence of metals or at hightemperatures, these com-pounds are splitin alkoxyradicals to formaldehydes, ketones, acids,esters,alcohols,andshort-chainhydrocarbons,which origi-nateunpleasantodours,characteristicofrancidfats(ChoeandMin, 2006).

Thepresenceofnaturalantioxidantsinvegetableoils,suchas tocopherols,maydelaythebeginningormayslowtherateoflipid oxidationreaction,eitherbyquenchingfreeradicalreactionsor byscavengingoxygen.Tocopherolsareprimaryor chain break-ingantioxidants,which inhibitorslowdownlipidoxidationby interfering either with chain propagationor withinitiation by donatinghydrogenatoms tolipid peroxylradicals.Tocopherols havetwo principaloxidation mechanisms:(i)theymaybe oxi-disedin aoneelectron-transferreactiontoatocopheryl-radical or(ii)theymayreactwithsingletoxygentoforma hydroperox-ide(Neelyetal.,1988;Krieger-LiszkayandTrebst,2006).These reactionscanbereversed,sinceboththetocopheryl-radicaland thehydroperoxidecanbere-reducedtotocopherolbyascorbate. However,undermildacidicconditions,thehydroperoxideissplit totocopherylquinonewhichis anirreversiblereaction( Krieger-LiszkayandTrebst,2006).Tocopherolsarepowerfulantioxidants sincetheyproducestableantioxidantradicalsandhavethe capac-itytocompetewiththelipidsubstrateforoxygen(VanAardtetal., 2004).

Severalexperimentalworkshavedemonstratedthatoil resis-tance towardsoxidation is a functionof its tocopherolcontent (Emanuel and Lyaskovskaya, 1967; Reintonand Rogstad, 1981; JungandMin,1990;Fusteretal.,1998;Kamal-Eldin,2006).Ina previousstudyperformedbyourgroup(Rodriguesetal.,2013), J.curcasL.oilsamplesfrom12accessionsandgrownunderthe sameedaphoclimatic conditions in Mozambiquewere analysed withrespecttotheiroilcontent,fatty-acidcompositionandsterol andtocopherol composition.Inallthesesamples,only gamma-tocopherol,whichisapowerfulnaturalantioxidant(Kamal-Eldin and Appelqvist, 1996), was detected in contents ranging from 68.3mg/kgto181.8mg/kg.

Storagestabilitytestswerealsoperformedwithseedsfromthe accessionpresentinmostoftheplantationarea,withanaverage contentof89mgofgamma-tocopherolperkgofoil.Thesestudies werecarriedoutundertropicalclimateconditions(28◦Cand35◦C, atrelativehumiditiesof75%and92%)for45days.Theoxidation rateoftheoilintheseedsincreasedwithhighrelativehumidity andtemperature(Rodriguesetal.,2013).Ahigherresistanceto oxidationwouldbeexpectedinoilswithhighergamma-tocopherol content.

The aim of this study was to investigate if Jatropha seed oil, from the accession containing the highest amounts of gamma-tocopherol, presents a higher oxidative resistance dur-ing storage, under tropical conditions, than the oilwith lower content of gamma-tocopherol (89.1mg/kg) used in the previ-ousstudies(Rodrigueset al.,2013).Thus, along 42daystorage of seeds, the oilwas extracted and analysed in terms of fatty acidcomposition,tocopherolcomposition,acidityandoxidation products.

2. Materialsandmethods 2.1. Seedmaterial

J. curcas L. plants were planted in December 2010, in Búzi (19◦56S;34◦24E),Sofalaprovince,incentralMozambique, char-acterisedbya“Tropicalrainyclimate–Aw”(KöppenandGeiger, 1939).Theseedsusedin this studywerecollectedfromplants includedinan internationalbreedingand cultivardevelopment programme carried out by N.V. Quinvita (Ghent,Belgium).The seedswerecollectedmanuallyfromhealthyandripenedfruitsthat wereharvestedfromJanuarytoJuly2013(Rodriguesetal.,2013). Afterharvesting,theseedsweremanuallydehulled,airdrieduntil aseedwatercontentbelow10%,andstoredinperforatedplastic bags,accordingtoQuinvita’sprocedureguide.

2.2. Seedstoragestabilitytests

Storagestudieswerecarriedoutunderthehighestaverage tem-peratureobservedattheplantationfieldinBúzi(Rodriguesetal., 2013).Thus,intactseedswerestoredat35◦C,at75%or92% rela-tivehumidity(RH)values,inthedark.Thesemoisturevalueswere achievedbycontactingtheseeds,suspendedinaplasticnet,with thevapourphase ofsaturatedsalt solutionsof sodiumchloride (NaCl;RH=75.1%,T=35◦C)orpotassiumnitrate(KNO3;RH=92.3%,

T=35◦C)inclosedglassvessels(Greenspan,1977).Onealiquotof seeds(ca.65g)storedateachtemperatureandhumiditywas col-lectedevery7days,along42daysandtheoilwasextractedand analysed(cf.Sections2.3and2.4).

2.3. Seedoilextraction

Theseedsamplescollectedalongthestorageexperimentswere crushedwithahammer.Theoilcontainedinthefractionwith par-ticleslowerthan 2mmwasextractedinaSoxtecapparatusfor 4h,usingpetroleumetherp.a.(boilingpoint40–60◦C)as extrac-tionsolvent,aspreviouslydescribed(Rodriguesetal.,2013).The extractedseedoilwasstoredinamberglassflasks,at−18◦C,for

subsequentanalysis.

2.4. Chemicalanalysisofseedoil 2.4.1. Acidity

Theacidity(%offreefattyacids,FFA)ofseedoilwasdetermined accordingtoISOstandard660:2009.TheFFAcontentwasassayed bytitrationwitha0.1Nsodiumhydroxideaqueoussolutionusing phenolphthaleinasindicator.Themasspercentagewascalculated onthebasisofthemolecularweightofoleicacid(282.5).Foreach oilsample,theanalysiswascarriedoutatleastintriplicate. 2.4.2. Oxidationcompounds

OilthermoxidationwasindirectlyevaluatedbyUVabsorbance at232nm(K232)andat270nm(K270)of1%(w/v)oilsolutionin isooctane.

2.4.3. Fattyacidcomposition

The analyses of fatty acid profile of Jatropha seed oil were performedaccordingtotheofficialmethodoftheEuropean Com-munity Regulation (1991), as fatty acid methyl esters (FAME) usinga PerkinElmerAutosystem9000gaschromatograph(GC), equippedwithaFIDandafusedsilicacapillarycolumnSPTM-2380 (60m×0.25mm×0.2␮mfilmthickness),aspreviouslydescribed (Rodriguesetal.,2013).Theresultswereexpressedasarea per-centageofeachpeakrelativetothetotalarea.

(3)

Fig.1.Variationoffreefattyacidcontent(%)ofJatrophacurcasL.oilfromseeds storedat35◦Cunderdifferentrelativehumidity(RH=92%andRH=75%)during42 days.

2.4.4. Gamma-tocopheroloilcontent

Tocopherol composition was performed according to ISO 9936:2006,usinga PerkinElmerHPLCsystemequippedwitha PerkinElmerUV/VISLC295 detector,a PerkinElmerSeries200 PumpandaPeltierColumnOvenPerkinElmerSeries200.The col-umnusedwasaLiChroCART®250-4,LiChrospher®,Si60(5m),as

previouslydescribed(Rodriguesetal.,2013). 2.5. Statisticalanalysis

Foreachdataset,one-wayanalysisofvariance(ANOVA)was performed using the programme Statistica, version 6, Statsoft, Tulsa,OK,USA.PosthoccomparisonswerecarriedoutusingFisher LSDtestatapvalueof0.05.

3. Resultsanddiscussion 3.1. Oilacidity

Jatrophaseedsusedinthisstudypresentedaninitialwater con-tentof8.4%andanoilcontentof45.7%(drybasis).Theoilwasrich inoleic(41.2%)andlinoleic(38.8%)acids(Tables1and2),contained 160mg/kgofgamma-tocopherol,andhadanacidityof0.8%,aK232 of1.1andaK270of0.07.

Alongtheexperiments,thequalityofJatrophaoilswas evalu-atedintermsoftheiracidityandcontentofoxidationproducts. Whentheoilistobeusedforbiodieselproduction,itisimportant thatitdoesnothaveahighcontentofoxidationproductsandfree fattyacids,whichinhibitthechemicalalkalinecatalysts.

Fig.1showstheevolutionofacidityinoilsextractedfromseeds storedat35◦Cand75%or92%RH,along42days.Alinearincrease ofacidityoftheoils(by0.17%FFA/day)extractedfromseedsstored at75%RHwasobservedalongthestorage.Fortheoilsfromseeds storedat92%RH,theacidityalsoincreasedlinearlyduringthefirst 28daysofstorage,atarateof0.23%FFA/dayandfrom28to42days ofstorage,aboutasix-foldincreaseinthehydrolysisrate(1.32% FFA/day)wasobserved.Thismaybeduetothepresenceofhigher amountsofwateravailableforthehydrolysisreactionat92%RH. Inpresenceofhighhumidity,after28daysofstorage,growthof storagefungiwereobservedthatweremicroscopicallyidentified asbelongingtoPenicilliumsp.andAspergillussp.(Rodriguesetal., 2013).Thesefungiproduceenzymes,suchaslipases(EC3.1.1.3., triacylglycerolacylhydrolases)thatcatalyseoilhydrolysis.

Attheendoftheexperiment,theoilfromseedskeptunder92% RHreachedabout25%FFAwhiletheoilfromseedsstoredat75% humiditypresentedamuchloweracidityofabout8%.However, inourpreviousworkperformedwithJ.curcasseedscontaining

0.0 0.5 1.0 1.5 2.0 2.5 0 7 14 21 28 35 42 K2 32 Time (day) R.H.= 75% R.H.= 92% 0.0 0.1 0.2 0.3 0.4 0.5 0 7 14 21 28 35 42 K 27 0 Time (day) R.H.= 75 % R.H. = 92 %

Fig.2.Absorbancesat232nm(K232)andat270nm(K270)intheoilextractedfrom JatrophacurcasL.seedsstoredfor42daysat35◦Cunderdifferentrelativehumidity

values(RH=92%,RH=75%).

loweramounts ofgamma-tocopherol,lowerfinal acidityvalues werefound:17%FFAand1.2%after45daysofseedstorageat35◦C, at92%or75%RH,respectively(Rodriguesetal.,2013).Thehigher acidityintheoilwithhighergamma-tocopherolcontentmaybe explainedbyhigherlevelsoflipasesinseeds,eitherfrominternal orexternalorigin.

AnincreaseinFFAcontentofJatrophaseedoilduringstorageis alsoreportedbyotherauthors.Tadakittisarnetal.(2011)observed anincreaseinFFAinoilfromthreeJatrophaaccessionsfrom dif-ferentregionsofThailand,alongseedstorage.Alinearincreasein acidityfrom7.8to32.1%wasalsoobservedintheoilextractedfrom Jatrophaseedsstoredfor3months,at35◦CandunderaRHvarying from71to75%(Akowuahetal.,2012).AnincreaseofFFAcontent ofJatrophaoil,along72daysstorageofseeds,wasalsoreported (GuptaandRao,2008).

InastudybyWorangetal.(2008),FFAcontentincreasedwith thestoragedurationofJatrophaseedspackedinplasticmaterial. Theincrease inoilaciditywasalsoreportedbySushma(2014) whenJatrophaseedswerecollectedandstoredatroom temper-ature(openaircondition)for15months.

3.2. Oxidationproductsandgamma-tocopherolcontentinoil The evolution of oil oxidation in seeds along the 42 days experimentsat35◦C,underdifferentrelativehumidityvalues,is presentedinFig.2.

A linear increase in K232, related withthe presence of ini-tial products of oxidation, i.e. conjugated hydroperoxides, was observedalongtheexperiment,fortheoilinseedsstoredat75%RH (increaseof0.029absorbanceunits/day).TheK232valueincreased fasterintheoilextractedfromseedskeptat92%ofhumiditythan intheoilfromseedsstoredatlowerRH(75%),duringthefirsttwo weeksofstorage(increaseof0.059absorbanceunits/day).After14

(4)

Table1

Variationinfattyacidcomposition(%)oftheoilextractedfromtheseedsofJatrophastoredat35◦Cand75%RHover42days.C14:0(myristicacid),C16:0(palmiticacid),C16:1

(palmitoleicacid),C17:0(margaricacid),C17:1(heptadecanoicacid),C18:0(stearicacid),C18:1(oleicacid),C18:2(linoleicacid),C20:0(arachidicacid),C18:3(linolenic acid),C20:1(gadoleicacid),C22:0(behenic)andC24:0(lignocericacid).Standarddeviationslowerthan0.01arenotpresented.

Fattyacids Time(day)

0 7 14 21 28 35 42 C14:0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 C15:0 0.10 0.10 0.10 0.20 0.10 0.10 0.10 C16:0 11.60 11.75±0.07 11.35±0.07 11.75±0.07 11.70 11.65 11.80 C16:1 0.60 0.60 0.60 0.60 0.60 0.60 0.60 C17:0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 C17:1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 C18:0 6.60 6.40 6.65±0.07 6.65±0.07 6.70 6.80 6.70 C18:1 41.2 40.5 41.25±0.07 41.65±0.21 41.2 41.8 41.3 C18:2 38.80 39.55±0.07 38.90 38.10±0.28 38.60 37.95±0.07 38.40 C18:3 0.20 0.20 0.20 0.20 0.20 0.20 0.20 C20:0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 C20:1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 C22:0 0.10 0.1 0.10 0.10 0.10 0.10 0.10 C24:0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 Table2

Variationinfattyacidcomposition(%)oftheoilextractedfromtheseedsofJatrophastoredat35◦Cand92%RHover42days.C14:0(myristicacid),C16:0(palmiticacid),C16:1 (palmitoleicacid),C17:0(margaricacid),C17:1(heptadecenoicacid),C18:0(stearicacid),C18:1(oleicacid),C18:2(linoleicacid),C20:0(arachidicacid),C18:3(linolenic acid),C20:1(gadoleicacid),C22:0(behenic)andC24:0(lignocericacid).Standarddeviationslowerthan0.01arenotpresented.

Fattyacids Time(days)

0 7 14 21 28 35 42 C14:0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 C15:0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 C16:0 11.60 11.55±0.07 10.95±0.07 11.60 11.80 11.50 11.80 C16:1 0.60 0.60 0.60 0.60 0.60 0.60 0.60 C17:0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 C17:1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 C18:0 6.60 6.65±0.07 6.60 6.70 6.60 6.60 6.70 C18:1 41.20 41.25±0.07 41.30 40.85±0.07 40.60 41.40 41.25±0.07 C18:2 38.80 38.75±0.07 39.35±0.07 39.05±0.07 39.20 38.70 38.45±0.07 C18:3 0.20 0.20 0.20 0.20 0.20 0.20 0.20 C20:0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 C20:1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 C22:0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 C24:0 0.10 0.10 0.10 0.10 0.10 0.10 0.10

daysstorageanduntiltheendofexperiments,aslowerincreasein

K232wasobservedfortheoilfromseedsat92%RH.Thisis

prob-ablyduetothedecompositionofthehydroperoxidesinsmaller

molecules(finaloxidationproducts).Attheendoftheexperiments,

K232valuesweresimilarforbothoils.

TheK270values,relatedwiththepresenceoffinaloxidation

products(i.e.FFA,aldehydesandketones),increasedfrom0.07to

0.22inoilsfromseedsstoredatbothRH,duringthefirst21days

ofstorage.Fortheoilinseedsstoredat75%R.H.,K270remained

approximatelyconstantthereafter.However,inseedsstoredat92%

RH,alinearincreaseinK270wasobservedsubsequently,reaching

anabsorbancevalueofaround0.46after42daysofstorage.

Similar K232 and K270 values were obtained for the oil

fromseedsstoredat 75%humidity whencompared withthose

previouslyobtainedforJatrophaoilwithloweramountsof

gamma-tocopherol(89mg/kg)(Rodriguesetal.,2013).

Withrespecttotheoilsfromseedsstoredat92%RH,K232and K270valuesoftheoilwithhighercontentofgamma-tocopherol were1.5or2.8timeslowerthanthevaluesobservedfortheoil extractedfromseedsofthepreviousstudy,respectively(Rodrigues et al., 2013). It seems that gamma-tocopherol protects the oil againstoxidationprincipallyduringthesecondstageofoxidation wherehydroperoxidesarebrokendownintosecondaryproducts. Also,thisprotectiveeffectseemstobeparticularlyimportantifthe seedsarestoredunderhighhumidityenvironments.

Theevolutionoftheaveragegamma-tocopherolcontentinthe oil extracted from the seeds along the storage experiments is

Fig.3. Averagegamma-tocopherolcontentoftheoilextractedfromJatrophaseeds storedat35◦Cand75%or92%RHalong42days.Differentlettersindicatesignificant

differencesbasedonFisherLSDtest(p<0.05).

showninFig.3.Asignificantdecreaseingamma-tocopherol con-tent(p<0.05)wasobservedduringthecourseoftheexperimentfor bothrelativehumidities.Thisdecreasemayexplaintheincreasein oxidationproducts(relatedwithK232andK270values)intheoils, observedalong Jatrophaseedstorage.However,thedecreasein gamma-tocopherolcontentwasmorepronouncedat92%RHthan at75%RH(96%decreaseversus57%decreaseongamma-tocopherol content,after42daysofstorage).Probably,thismaybeascribedto thepresenceofhigheramountsofwaterwhichwillpromotethe

(5)

growthoffungithatwillproduceoxidativeenzymesresponsible forlipidoxidation.

Theantioxidantactivityoftocopherolsisnotonlyduetotheir abilitytodonatetheirphenolichydrogenstolipidfree-radicals,but canalsobeexplainedbytheirparticipationincertainside-reactions (Kulåsetal.,2002).

Thefollowingorderforrelativeantioxidantactivityofthe toco-pherolsinvivoisgenerallyaccepted:alpha>beta>gamma>sigma. However, when relative antioxidant activities were compared in vitro, in fats, oils, and lipoproteins, a reversed order was obtained (sigma>gamma∼beta>alpha) (Kamal-Eldin and Appelqvist,1996).Thereasonsbehindthisreversedorderarenot yetclearlyunderstoodbut the“absolute”and “relative”invitro activitiesofthetocopherolsdepend ontheirabsolutechemical reactivitiestowardshydroperoxyandotherfreeradicals,andalso onmanyotherpossiblesidereactions.Thesesidereactionsmay behighlypropagativeandtheirextentgreatlydependson tocoph-erolconcentrations,temperatureandlight,typeofsubstrateand solvent,andonotherchemicalspeciesactingasprooxidantsand synergistsinthesystem(Kamal-EldinandAppelqvist,1996).

Inourstudy,theeffectofgamma-tocopheroloccursinsidethe seed,along storage,andnotintheextractedoil. Thus,asimilar behaviourtothatobservedinvivosystemsistobeexpected.The effectoftocopherolsontheoxidativestabilityofvegetableoils dur-ingstoragehasbeenextensivelyevaluated.However,according toourknowledge,few works have reportedtheeffectof toco-pherolsontheoxidativestabilityofJatrophaoilduringseedstorage (Rodriguesetal.,2013).

Diwanietal.(2009)observedthattheadditionofnatural antiox-idants obtainedfromEgyptian Jatrophacrude rootextracts,on Jatrophaoilanditsbiodieselpromotedhigheroxidationstability thanthatobservedwiththeadditionofalpha-tocopherol.

Antioxidantsmayhavedifferenteffectsontheformationand decompositionofhydroperoxides.Inastudyonfishoilstability alongstorage,thetocopheroltype andconcentrationshowedto affectnotonlytheoverallformationofvolatilesecondary oxida-tionproducts,butalsothecompositionofthisgroupofoxidation products(Kulåsetal.,2002).Theeffectsofindividualtocopherols andtocopherolmixturesontheoxidativestabilityofcornoilwere evaluatedbyHuangetal.(1995).Inthisstudy,gamma-tocopherol showedtopromotetheformationofhydroperoxidesbut,whenin veryhighconcentrations(5g/kgoil),itstronglyinhibited hydroper-oxidedecomposition.Conversely,inthepresenceoftocopherols, therateofhydroperoxidesbreakdownandinductionoffurther oxi-dationwasmarkedlyinhibitedinrapeseedoilstoredat40◦Cinthe dark.Aconcentrationaslowas11mgofgamma-tocopherolper kgofrapeseedoilwasenoughtomarkedlyinhibithydroperoxide andsecondaryproductformation(Lampietal.,1997).The antioxi-dantpropertiesofalpha-andgamma-tocopherolsintheoxidation ofrapeseedoilat40◦C,inthedark,for16dayswasalso evalu-ated(Lampietal.,1999).Invitro,atconcentrationshigherthan 100mg/kg, gamma-tocopherolisbetterantioxidant than alpha-tocopherol.

3.3. Fattyacidcompositionofoils

ThefattyacidcompositionofJatrophaoilextractedfromthe seedsstoredat35◦Cunder75%or92%humidity,wasevaluated alongthe42daysstorageexperiments(Tables1and2).As previ-ouslyreported(Rodriguesetal.,2013),thisisahighlyunsaturated oil,richinoleic(c.a.41%)andlinoleic(c.a.38.8%)acidsanditalso contains11.6%ofpalmiticacidand6.6%ofstearicacid.Duringthe storageat35◦C,thefattyacidcompositionoftheoilfromseeds kepteitherat75%or92%ofhumidity,didnotsignificantlyvary throughoutthetest(Tables1and2).Fattyacidcompositionand theproportionsofdifferentfattyacidsofoilseedsduringstorageare

dependentonthedegradationrateofdifferentfattyacids(Khanand Shahidi,2000).InastudybyBaleˇsevi ´c-Tubi ´cetal.(2007),sunflower seedswerestoredunderuncontrolledconditionsfor12months. Duringthat periodoftime,theautooxidationoflipidsoccurred andledtomodificationsin fattyacidcomposition oftheseeds. Althougholeicacidcontentdidnotsignificantlyvary,linoleicacid contentwasdrasticallyreducedfrom23%,infreshsunflowerseeds, to5.49%attheendoftheexperiment.

4. Conclusions

ThestorageofJ.curcasL.seedsundertropicalclimateconditions of high temperature and humidity is difficult without affect-ingoilquality.However,thehighcontentofgamma-tocopherol (160mg/kgofoil)inJatrophaoilshowedtopromoteahigh resis-tancetooxidationduringseedstorage.

Alongstorage,adecreaseingamma-tocopherolcontentinthe oilwasobserved,whichmayexplaintheincreaseinoxidation prod-ucts.High humidityconditionspromotedthegrowthofstorage fungisuchasPenicilliumsp.andAspergillussp.,whichwerealso responsibleforoildegradation,viahydrolysisandenzymatic oxi-dation.

IfJ.curcasoilextractionfromtheseedsisnotpossible imme-diatelyafterharvest,J.curcasgenotypesrichingamma-tocopherol mustbechosen,inordertoavoidahighextentofoiloxidation.

Thecontrolofstorageconditionsoftheseeds(temperatureand humidity)isextremelyimportantinordertopreservethequality andtheyieldofJatrophaoil,witheconomicbenefits.

Acknowledgements

This work was supported by the Project “Development of advancedbiofuels”fundedbyFAIand Petrogal,Portugal,bythe StrategicProjectPEst-OE/AGR/UI0239/2014ofCEF,ForestResearch Centre, and the Strategic Project PEst-OE/AGR/UI0245/2014 of CEER,BiosystemsEngineering,tworesearchunitssupportedbythe nationalfundingofFCT—Fundac¸ãoparaaCiênciaeaTecnologia, Portugal.

References

AETSConsortium,February2013.Assessingtheimpactofbiofuelsproductionon developingcountriesfromthepointofviewofPolicyCoherencefor Develop-ment–Finalreport.

Akowuah,J.O.,Addo,A.,Kemausuor,F.,2012.Influenceofstoragedurationof Jat-rophacurcasseedonoilyieldandfreefattyacidcontent.J.Agric.Biol.Sci.7(1), 41–45.

Baleˇsevi ´c-Tubi ´c,S.,Tati ´c,M.,Miladinovi ´c,J.,Pucarevi ´c,M.,2007.Changesoffatty acidsandvigorofsunflowerseedduringnaturalaging.Helia30(47),61–68.

Choe,E.,Min,D.B.,2006.Mechanismsandfactorsforedibleoiloxidation.Compr. Rev.FoodSci.FoodSaf.5,169–186(InstituteofFoodTechnologists).

Diwani,G.E.,Rafie,S.E.,Hawash,S.,2009.Protectionofbiodieselandoilfrom degra-dationbynaturalantioxidantsofEgyptianJatropha.Int.J.Environ.Sci.Technol. 6(3),369–378.

Emanuel,N.M.,Lyaskovskaya,Y.N.,1967.TheInhibitionofFatOxidationProcesses. PergamonPressLtd.,HeadingtonHillHall,Oxford4&5FitzroySquare,London.

FAO,2008.Soaringfoodprices:facts,perspectives,impactsandactionsrequired. In:ProceedingsoftheHigh-LevelConferenceonWorldFoodSecurity:The Chal-lengesofClimateChangeandBioenergy,Rome,Italy.

Fuster,M.D.,Lampi,A.M.,Hopia, A.,Kamal-Eldin,A.,1998.Effectsofalfa-and gamma-tocopherolontheautoxidationofpurifiedsunflowertriacylglycerols. Lipids33,715–722.

Giibitz,G.M.,Mittelbach,M.,Trabi,M.,1999.Exploitationofthetropicaloilseed plant,JatrophacurcasL.Bioresour.Technol.67,73–82.

Greenspan,L.,1977.Humidityfixedpointsofbinarysaturatedaqueoussolutions.J. Res.Natl.Bur.Stand.Sect.A81,89–96.

Gupta,R.M.,Rao,D.G.,2008.Effectofstoragetimeonyieldandfreefattyacid(FFA) contentofrawJatrophaoil.In:32ndNationalSystemsConference(NSC2008), Roorkee,India,December17–19,pp.440–443.

Heller,J.,1996.Physicnut.JatrophacurcasL.Promotingtheconservationanduseof underutilizedandneglectedcrops.1.InstituteofPlantGeneticsandCropPlant Research,Gatersleben/InternationalPlantGeneticResourcesInstitute,Rome.

(6)

Huang,S.,Frankel,E.N.,German,J.B.,1995.Effectsofindividualtocopherolsand tocopherolmixturesontheoxidativestabilityofcornoiltriglycerides.J.Agric. FoodChem.43(9),2345–2350.

Jung,M.Y.,Min,D.B.,1990.Effectsof␣-,␥-,and␦-tocopherolsonoxidativestability ofsoybeanoil.J.FoodSci.55,1464–1465.

Kamal-Eldin,A.,2006.Effectoffattyacidsandtocopherolsontheoxidativestability ofvegetableoils.Eur.J.LipidSci.Technol.58,1051–1061.

Kamal-Eldin,A.,Appelqvist,L.Å.,1996.Thechemistryandantioxidantpropertiesof tocopherolsandtocotrienols.Lipids31,671–701.

Khan,M.A.,Shahidi,F.,2000.Oxidativestabilityofstrippedandnonstrippedborage andeveningprimroseoilsandtheiremulsionsinwater.J.Am.OilChem.Soc.77 (9),963–969.

King,A.J.,He,W.,Cuevas,J.A.,Freudenberger,M.,Ramiaramanana,D.,Graham,I.A., 2009.PotentialofJatrophacurcasasasourceofrenewableoilandanimalfeed. J.Exp.Bot.60(10),2897–2905.

Köppen,W.,Geiger,R.,1939.HandbuchderKlimatologie.Borntraeger,Berlin.

Krieger-Liszkay,A.,Trebst,A.,2006.Tocopherolisthescavengerofsingletoxygen producedbythetripletstatesofchlorophyllinthePSIIreactioncentre.J.Exp. Bot.57(8),1677–1684.

Kulås,E.,Olsen,E.,Ackman,R.G.,2002.Effectof␣-,␥-,and␦-tocopherolonthe distributionofvolatilesecondaryoxidationproductsinfishoil.Eur.J.LipidSci. Technol.104,520–529.

Kumar,A.,Sharma,S.,2008.Anevaluationofmultipurposeoilseedcropfor indus-trialuses(JatrophacurcasL.).Areview.Ind.Crop.Prod.28,1–10.

Lampi,A.M.,Hopia,A.,Piironen,V.,1997.Antioxidantactivityofminoramounts of ␥-tocopherol in natural triacylglycerols. J. Am. Oil Chem. Soc. 74, 549–555.

Lampi,A.M.,Kataja,L.,Kamal-Eldin,A.,Vieno,P.,1999.Antioxidantactivitiesof ␣-and␥-tocopherolsintheoxidationofrapeseedoiltriacylglycerols.JAOCS76(6), 749–755.

Liberalino,A.A.,Bambirra,E.A.,Moraes-Santos,T.,Vieira,E.C.,1988.Jatrophacurcas L.seeds:chemicalanalysisandtoxicity.Arq.Biol.Technol.31,539–550.

Mtinch,E.,Kiefer,J.,1986.DiePurgiernuB(JatrophacurcasL.–Botanik,Okologie, Anbau,Ernteprodukt,Verwendungsalternativen,wirtschaftlicheUberlegungen, Diplomarbeit.UniversitiitHohenheim.

Neely,W.C.,Martin,M.,Barker,S.A.,1988.Productsandrelativereactionratesofthe oxidationoftocopherolswithsingletmolecularoxygen.Photochem.Photobiol. 48,423–428.

Reinton,R.,Rogstad,A.,1981.Antioxidantactivityoftocopherolsandascorbicacid. J.FoodSci.46,970–971.

Rodrigues,J.,Miranda,I.,Gominho,J.,Vasconcelos,M.,Barradas,G.,Pereira,H., Bianchi-de-Aguiar,F.,Ferreira-Dias,S.,2013.Variabilityinoilcontentand compositionandstoragestabilityofseedsfromJatrophacurcasL.grownin Mozambique.Ind.CropsProd.50,828–837.

Schut,M.,Slingerland,M.,Locke,A.,2010.BiofueldevelopmentsinMozambique. Updateandanalysisofpolicy,potentialandreality.EnergyPolicy38,5151–5165.

Shahidi,F.,Zhong,Y.,2005.Lipidoxidation:measurementmethods.In:Fereidoon Shahidi(Ed.),Bailey’sIndustrialOilandFatProducts,vol.6,Sixthed.JohnWiley &SonsInc.

Sharma,G.D.,Gupta,S.N.,Khabiruddin,M.,1997.CultivationofJatrophacurcasas afuturesourceofhydrocarbonandotherindustrialproducts.In:Gubitz,G.M., Mittelbach,M.,Trabi,M.(Eds.),BiofuelsandIndustrialProductsfromJatropha curcas.DBVGraz,pp.19–21.

Smeets,E.M.W.,Faaij,A.P.C.,Lewandowski,I.M.,Turkenburg,W.C.,2007.A bottom-upassessmentandreviewofglobalbioenergypotentialsto2050.Prog.Energy Combust.Sci.33,56–106.

Sushma,2014.AnalysisofoilcontentofJatrophacurcasseedsunderstorage condi-tion.J.Environ.Biol.35,571–575.

Tadakittisarn,S.,Janchai,P.,Vaithanomsat,P.,Apiwatanapiwat,W.,2011.Effectof ripeningstageandtemperatureonfreefattyacidcontentofJatrophacurcasoil duringstorage.Nat.Sci.45,275–283.

VanAardt,M.,Duncan,S.E.,Long,T.E.,O’Keefe,S.F.,Marcy,J.E.,Sims,S.R.,2004.Effect ofantioxidantsonoxidativestabilityofediblefatsandoils:thermogravimetric analysis.J.Agric.FoodChem.52,587–591.

Vera-Castillo, Y.B., Cuevas,J.A.,Valenzuela-Zapata, A.G.,Urbano, B., González-Andrés,F.,2014.Biodiversityandindigenousmanagementoftheendangered non-toxicgermplasmofJatrophacurcasL.intheTotonacapan(Mexico),andthe implicationsforitsconservation.Genet.Resour.CropEvol.61,1263–1278.

Wink,M.,Koschmieder,C.,Sauerwein,M.,Sporer,F.,1997.PhorbolestersofJ. curcas—biologicalactivitiesandpotentialapplications.In:Gubitz,G.M., Mittel-bach,M.,Trabi,M.(Eds.),BiofuelsandIndustrialProductsfromJatrophacurcas. DBVGraz,pp.160–166.

Worang,R.L.,Dharmaputra,O.S.,Syarief,R.,Miftahudin,2008.Thequalityofphysic nut(JatrophacurcasL.)seedspackedinplasticmaterialduringstorage.Biotropia 15,25–36.

Imagem

Fig. 1. Variation of free fatty acid content (%) of Jatropha curcas L. oil from seeds stored at 35 ◦ C under different relative humidity (RH = 92% and RH = 75%) during 42 days.
Fig. 3. Average gamma-tocopherol content of the oil extracted from Jatropha seeds stored at 35 ◦ C and 75% or 92% RH along 42 days

Referências

Documentos relacionados

Nesse contexto, trazer uma idéia de cultura ampliada permitiu marcar uma identidade política deste projeto, no qual a partir daquela ampliação se tornava possível a

Among oilseed plants, physic nut (Jatropha curcas L.) stands out for its yield potential, superior to traditional oil- seeds, and for the physiochemical characteristics of its oil,

Esse trabalho tem como principal objetivo analisar como a obra Grande Sertão: Veredas de Guimarães Rosa foi adaptada para a Graphic Novel homônima produzida por Eloar Guazelli Filho

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Desenvolver uma proposta arquitetônica de um Centro de Convivência Universitária para a UNIJUÍ – Campus Ijuí, a fim de promover melhorias na qualidade de vida dos

The aim of this work was to study the influence of pH, temperature and biosurfactants type on emulsifier stability from diesel oil in water and the biosurfactant by

The aim of the paper is to test stability and biophysical properties of oil in water (o/w) and water in oil (w/o) cosmetic emulsions with the addition of selected vegetable