• Nenhum resultado encontrado

The role of microRNAs in enteroviral infections

N/A
N/A
Protected

Academic year: 2021

Share "The role of microRNAs in enteroviral infections"

Copied!
7
0
0

Texto

(1)

www .e l s e v i e r . c o m / l o c a t e / b j i d

The

Brazilian

Journal

of

INFECTIOUS

DISEASES

Review

article

The

role

of

microRNAs

in

enteroviral

infections

Jing

Wu

a

,

Li

Shen

b

,

Jianguo

Chen

c

,

Huaxi

Xu

a

,

Lingxiang

Mao

b,a,∗

aSchoolofMedicine,JiangsuUniversity,Zhenjiang,JiangsuProvince,China

bDepartmentofClinicalLaboratory,ZhenjiangCenterforDiseaseControlandPrevention,Zhenjiang,JiangsuProvince,China cDepartmentofClinicalLaboratory,ZhenjiangFirstPeople’sHospital,JiangsuProvince,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11February2015 Accepted4June2015

Availableonline3September2015

Keywords:

MicroRNAs Enterovirus Infection

a

b

s

t

r

a

c

t

ThegenusEnterovirus,amemberofthePicornavirusfamily,areRNAvirusesthatcancause poliomyelitis,hand-food-mouth disease, viral meningitis or meningoencephalitis, viral myocarditisandsoon.MicroRNAsareaclassofhighlyconserved,smallnoncodingRNAs recognizedasimportantregulatorsofgeneexpression.RecentstudiesfoundthatMicroRNAs playasignificantroleintheinfectionofEnterovirus,suchasenterovirus71,coxsackievirus B3andotherEnterovirus.Enteroviralinfectioncanaltertheexpressionofcellular MicroR-NAs,andcellularMicroRNAscanmodulateviralpathogenesisandreplicationbyregulating theexpressionlevelofviralor host’sgenes.Herein,thisreviewsummarizestheroleof MicroRNAsinenteroviralinfection.

©2015ElsevierEditoraLtda.Allrightsreserved.

Introduction

MiRNAsareaclassofhighlyconserved,smallnoncodingRNAs molecules,whichcontain18-to25-nucleotides(nt)inalmost alleukaryotes.MiRNAsregulategeneexpressionatthe post-transcriptionallevel, influence importantphysiologicaland pathologicalprocesses.1 Forexample,miR-375canpromote

beta-pancreaticdifferentiationinhumaninducedpluripotent stemcells.2Insometumordiseases,miRNAsholdapivotal

regulatoryrole. MiR-15aand miR-16can induce the devel-opment of multiple myeloma.3 MiRNAs act on mRNAs by

eithertranslation inhibitionormRNAdegradation, depend-ingontheextentofcomplementaritybetweentargetmRNA and miRNA sequence. There are two main mechanisms:

Correspondingauthorat:DepartmentofClinicalLaboratory,ZhenjiangCenterforDiseaseControlandPrevention,Zhenjiang212003,

JiangsuProvince,China.

E-mailaddress:maolingxiang@aliyun.com(L.Mao).

imperfect sequence complementarity between miRNA and mRNA results in translation inhibition,4,5 and perfect sequence complementarity leads to mRNA cleavage.6 The

mechanism may beinfluenced byparameters such as the degreeofsequencehomology,1 targetsitemultiplicity,7 the

freeenergyofbinding,targetsitesecondarystructure,8 and

location ofmRNA.9 MiRNAscandown-regulate the

expres-sion oftheirtarget mRNAspredominantly bybindingto3 untranslatedregion(3UTR)of28mRNA.9,10Recentevidences

showedthatmiRNAcanalsobindtothe5UTR11orcoding

regions12ofthetargetgenetoregulategeneexpression.

More-over,onemiRNAcantargetmultiplemRNAsandonemRNA can be controlledbymultiple miRNAs.9,10,13 In conclusion,

miRNAsplayanimportantroleincelldevelopment, apopto-sis,proliferation,andsignaltransduction.14Additionally,fat

http://dx.doi.org/10.1016/j.bjid.2015.06.011

(2)

and cholesterol metabolism, nerve development, hormone secretion, and immune response may also be affected by miRNAs.15,16

ThegenusEnterovirus(EV),onegroupofthe picornavirus

family,hasthefollowingspeciesaccordingtotheInternational Committeeon TaxonomyofViruses: EV-A, which contains EV71and severalCoxsackievirusgroupA(CVA)viruses; EV-B(CoxsackievirusgroupB(CVB)viruses, CVA9,echoviruses andfew other EV);EV-C (polioviruses(PV)1–3,several CVA andfewotherEV);EV-D(EV-D68,EV-D111,EV70andEV74); EV-E, EV-F, EV-G, EV-H, EV-J, and the rhinoviruses (HRV-A, HRV-B, HRV-C). The polyprotein of EV consists of P1, P2, andP3regions,whichencodestructuralproteins(VP4-VP1) andnon-structural proteins(2A,2B, 2Cand3A,3B, 3C,3D) respectively. EV infected millions of people worldwide in recentyears,resultinginseverecomplication:HFMD,acute hemorrhagicconjunctivitis,myocarditis,aseptic meningitis, severe neonatal sepsis-like disease, acute flaccid paraly-sis, and so on.17 The best known members of the genus

EnterovirusarePV,EV7,CV,andechovirus.PVisspreadviathe fecal–oralrouteandrarelyinvadesthecentralnervous sys-tem(CNS).However,intherareinstanceswhenPVinvades the CNS, the resulting damage to motor neurons is strik-ing and often permanent. EV71 and CVA16 are common

etiologicalagents ofHFMD.18 As aneurotropicenterovirus,

EV71can violatethe patient’s nervous system and lead to severe symptoms and even to death.19,20 CV is classified

into two types, CVA and CVB. CVAs are usually prevalent in summer and mainly cause herpetic angina, skin rash, meningitis,paralytic polio lesions,fetal intrauterine infec-tion,andsuffocationduringinfectioninpregnancy.Someof CVAs,suchasCVA16,CVA4,CVA5,CVA9,CVA10,arecausative agents of HFMD as EV71. CVBs are the major pathogens of human viral myocarditis that can result in severe car-diac failureand dilated cardiomyopathy.21,22 Besidesthese,

echoviruses 4 (E4), E16, and E30 are associated with type I diabetes.23 E4,E6, E11, E13, and E30 are related toacute

meningitis/encephalitis,24,25whileE13andE11cancause

non-polioacuteflaccidparalysis.26

Accumulatedevidence hasdemonstrated thatthere are intricateinteractionsbetweenmiRNAsandviruses.MiRNAs canbeinducedandregulatedbyviruses.Forinstance,miR-101 mayserveasapotentialbiomarkerinhepatocellular carci-noma(HCC)patientsbecausemiR-101isdown-regulatedin Hepatitis B virus (HBV)-related HCC tissues.27 HBV X

pro-tein can inhibit miR-205 by hypermethylating of miR-205 promoter.28Meanwhile,manyevidencehasshowedthat

cel-lularmiRNAsplayacrucialroleinregulatingviralreplication and pathogenesisineukaryotes.For example,hsa-miR-29a down-regulatestheexpressionofHIVNefproteinand inter-fereswithHIV-Ireplication.29MiR-198caninhibitHIV-1gene

expressionandreplicationinmonocytes.30Representatively,

miR-122positivelyregulatesHCVinfectionbyincreasingHCV translationandgenomicRNAstabilitythroughdirect interac-tionswiththeviralRNAgenome.31–33Atthesametime,many

researchershavedemonstratedthatmiRNAsplayan impor-tantroleduringEVinfection.However,therearenosummary about the role of miRNAsinvolved inenteroviral infection yet. Thus,this reviewattemptsto providerecent advance-mentsabouttheroleandmachineryofmiRNAsinenteroviral

infection,inordertoincreaseourunderstandingofenteroviral pathogenesis.

The

related

investigations

of

miRNAs

and

EV71

DuetothevirulentpathogenicityofEV71,manyresearches havebeencarriedouttoexploretheroleofmiRNAsduring EV71infection.Ithasbeen verifiedthatcirculatingmiRNAs playanessentialroleinpathogen–hostinteractions. Disrup-tionofmiRNAbiogenesisbyknockingdowntheDGCR8gene, anessentialcofactorformiRNAsbiogenesis,resultedinthe inabilityofEV71tocauseinfection.Theexpressionofmany keygenesrelatedtotheinnateantiviralimmuneresponsein EV71infectedmiRNAsdepletedcellswassignificantlyhigher in comparisonwith controlcells. Ithas been showed that EV71canutilizehostmiRNAstomediatehostimmune sys-temenhancinginfection.34MiRNAcanserveasamolecular

markerforthedetectionofenteroviralinfections.Cuiand col-leaguesfoundthattheexpressionlevelof64miRNAschanged over2-foldinresponsetoEV71infectionbydeepsequencing assay,and42ofthese64miRNAswereup-regulatedandothers weredown-regulated.ManyofthesemiRNAsareassociated withmetabolicprocessandneurologicalprocesses,apoptosis, andimmuneresponseaccordingtotheresultofgeneontology analysis.35 Subsequently,byusingamiRNAarray,thisteam

reported that six miRNAs (miR-148a, miR-143, miR-324-3p, miR-628-3p,miR-140-5p,andmiR-362-3p)inserumcould dis-criminatepatientswithEVinfectionsfromhealthycontrols, andthreemiRNAs(miR-545,miR-324-3p,miR-143)could dis-tinguishEV71fromCVA16infections.36Collectively,miRNAs

arecloselyassociatedwithenterovirualinfection.

SomemiRNAscanmodulatethereplicationofEV71by tar-getingtheviralgenomedirectly.Forexample,Zhengetal.37

foundthatmiRNA-296-5pwaselevatedinEV71-infectedcells byusingacomprehensivemiRNAprofiling.Theypredictedby bioinformaticanalysisthathumanmiR-296-5pcaninhibitthe replicationofEV71bybindingtothecodingregionsofVP3and VP1proteins.ItispredictedthatmiR-23bcantargetthe con-servativesequenceofEV713UTRbybiologicalsoftware.Then itisconfirmedthatmiR-23bcaninhibitthereplicationofEV71 bytargetingEV713UTRbyluciferasereportervectorand miR-23bmimicstransfection.38Yangetal.39screenedthemiRNAs

thatmaytargetEV71genesequencebyusingonline analy-sisprograms,thenverifiedthatmiR373andmiR542-5pcould suppressthereplicationofEV71virusthroughbindingtothe 5-UTRgene.

There are alsosome miRNAsthat modulate viral repli-cation indirectly by targeting the mediator. Interferon (IFN)-mediated pathway is a crucial part of the cellular responseagainstviralinfection.TypeIIIIFNs,whichinclude IFN-␭1,2,and3,mediateantiviralresponsessimilartoType IIFNs.40There aresomemiRNAsthatmodulateviral

repli-cationinvolvedIFN. MiRNA-548canenhance replicationof EV71 and vesicularstomatitis virus (VSV) by targeting the 3UTR of IFN-␭1 and the levels of endogenous miRNA-548 are down-regulated during viral infection.41 EV71-induced

miR-146acansuppress theexpressionofIRAK1andTRAF6 which are two major elements in IFN production. Thus, EV71-induced miR-146a canenhance viral pathogenesisby

(3)

suppressingIFN production.42 Retinoic acid-induciblegene

I (RIG-I) is an intracellular RNA virus sensor that induces typeIinterferon-mediatedhost-protectiveinnateimmunity against viral infection. There is a novel positive regulator of RIG-I signaling pathway related to miRNA and EV71.43

EV71-inducedmiR-526a positively regulatestypeIIFN pro-duction and inhibits viral replication. The enhancement ofthis antiviral immuneresponse then derived from sup-pressing cylindromatosis (CYLD) expression by miR-526a. Remarkably,virus-inducedmiR-526aupregulationandCYLD downregulation can be blocked by EV71 3C protein. Cells withoverexpressedmiR-526aenhancetheresistancetoEV71 infection. In addition to this, Chang et al. investigated an apoptosis-orientedapproachbyusing mRNA-miRNA profil-ingandbioinformaticanalysis.Theypredictandverifiedthat miR-146a and miR-370 could impact twomajor apoptosis-associatedsignalingpathwaysbydecreasingSonofsevenless homolog 1 (SOS1) and growth arrest and DNA damage-inducible protein 45␤ (GADD45␤) expression, respectively. MiR-146aandmiR-370coordinatetotriggercellapoptosisin EV71infection.44EIF4Eisthecap-dependenttranslation

ini-tiationfactortoshutoffhostproteinsynthesis.MiR-141can facilitateEVinfectionincludingEV71,PV3andCVB3by tar-geting3-UTRofeIF4E.45EV71down-regulatedtheexpression

ofmiR-27asignificantly.FurtherstudyshowedthatmiR-27a couldinhibitEV71replicationbytargetingepidermalgrowth factorreceptor(EGFR).46

Moreover,toexplaintheneurologicalpathogenesisofEV71, Xu et al. did whole-genome joint mRNA and miRNA pro-fileanalysisfromEV71-infectedneuroblastomacellSH-SY5Y. Theyfound thatmiR-1246 wasspecifically up-regulated by EV71inSH-SY5Ycellsandcoulddirectlyboundwiththe3 UTRofdisk-largehomolog3(DLG3)gene,whichisassociated withneurologicaldisorders.47Thisresultmaypartlyexplain

the neurologicalpathogenesis ofEV71. We summarize the functionsandthetargetgenesofthemiRNAsinvolvedinthe infectionofEV71inTable1.

The

related

investigations

of

miRNAs

and

CVB3

CVincludingCVAandCVBmainlyleadstoherpanginaand humanheartdisease,especiallyviralmyocarditis(VMC).Many researcheshavefocusedonmiRNAsrelatedtoCVB3infection becauseCVB3isacommoncauseofmyocarditisanddilated cardiomyopathy.ToevaluatetheusefulnessofmiRNAsinthe pathogenesisofCVB3-inducedVMC,Zhangetal.analyzedthe pairedexpressionprofilesofmiRNAsandmRNAsonheart tis-suesfromCVB3-infectedmice.Theyidentifiedfivedistinctly expressedmiRNAs(miR-146a,miR-21,miR-374,miR-29a*and miR-23a),whichareinvolvedinregulatingseveralimportant innateimmuneandantiviral pathways.Thisstudyshowed thatmiRNAscanregulatethepathogenesisofCVB3-induced VMC.48

There are two miRNAs which can directly regulate the replicationofCVB3bytargetingtheviralsequence.Byusing RNAhybrid2.2andmiRanda3.2asoftware,LinlinWangetal. showedthatthereisaputativemiR-342-5ptarget(nt4989–nt 5015)inthe2C-codingregionofCVB3.Theexperimentinvitro

andamoderatemiR-342-5pabundanceinCVBinfected-Balb/c

mice validated that miR-342-5p can inhibit CVB3 replica-tion by targeting its 2C-coding region.49 Soon after, this

groupreportedthatmiR-10a*cansignificantlyaugmentthe biosynthesis and replication of CVB3 151 by targeting its nt6918–nt6941sequenceofthe3D-codingregion.Thisarticle showsthat152miRNAscouldup-regulatetheexpressionof thetargetgenes.50

TherearealsomanymiRNAswhichcanindirectlyregulate thereplicationofCVB3throughmediator.Zincfingerprotein (ZFP)-148,asa transcriptionfactor,can regulateexpression of many cell cycle regulatory genes and act as antiviral agentsformanyviruses.CVB3infectionup-regulatedmiR-203 through theactivationofPKC/AP-1cascade. Then,miR-203 up-regulated CVB3replication through targeting ZFP-148.51

MiR-155isreducedbyinfiltratinginflammatorymacrophages andTlymphocytesofbothhumanandmice.52–54MiRNA-155,

-146b, and -21 were consistently and significantly upregu-lated during VMC both in mice and human. Inhibition of miR-155 byLNA-Anti-miR invivocausedcardiac injuryand dysfunction,decreasedTlymphocyteactivationduringacute myocarditisbecausemiR-155cantargetPU.1(aninhibitorof

dendritic cell antigenpresentationtoT cells). Itisshowed miR-155 isan adversemediatorofcardiac immune activa-tionafterCVB3-inducedVMC.InvivoinhibitionofmiRNA-155 afterCVB3infectionattenuatesmyocardialinflammationand necrosis, so miRNA-155 can serve as a novel therapeutic targetforVMC.53CVB3-inducedmiR-126regulatedCVB3

repli-cation through two signal pathways, cross-talk of ERK1/2 andWnt/␤-cateninpathways.BytransfectingmiRNAmimics andinhibitors,itissuggestedthatmiR-126canregulatethe ERK1/2signalingpathwaysbytargetingEVH1domain contain-ing1(SPRED1).Besides,MiR-126canregulateWnt/␤-catenin pathwaysbytargetinglipoproteinreceptor-relatedprotein6 (LRP6)andWnt-responsiveCdc42homolog1(WRCh1),which enhancedviralcytopathogenicity.Inshort,miR-126promotes CVB3replicationthroughmediatingcross-talkofERK1/2and Wnt/␤-cateninsignalpathwaysbyaimingatthreespecific tar-gets: SPRED1,LRP6, and WRCH1.55 Inthe mouse modelof

CVB3-infectedVMC, miR-1measured byreal-time PCRwas upregulated upon CVB3 infection and its target gene Con-nexin43(Cx43)measuredbywesternblottingwassignificantly down-regulated.MiR-1playsanimportantroleinthe patho-physiology ofVMC and interfereswithcardiac functionby targetingCx43,themainproteinforminggap-junction chan-nelsinventricularmyocardium.56

Interestingly, there are several studies about miRNA-21 involvedinCVB3infection.InCVB3inducedmyocarditis,the expressionofmiR-21wassignificantlydecreased,while pro-grammedcelldeath4(PDCD4)wasincreased.Furtherresearch showedthatmiR-21alleviatedCVB3-inducedmyocarditisand repressedmyocardial apoptosis bytargetingPDCD4.57

MiR-21 and miR-146b were upregulated in CVB3-infected VMC. SilencingofmiR-21andmiR-146bcandecreasetheexpression levels of Th17 and ROR␥t and result in less-severe dam-age.FurtherresearchshowedthatmiR-21andmiR-146bcan regulate pathogenesis ofmurine VMCby regulating TH-17 differentiationthroughtargetingROR␥t,TH-17transcription factor.58 CVB3-upregulatedmiR-21cantriggerheartmuscle

celldamagebydisruptingcardiomyocyteinteractions.MiR-21 suppressedthelevelsofcomponentsincell–cellinteractions

(4)

Table1–MiRNAsinvolvedinEV71infection.

miRNAs Function Target Ref.

miR-296-5p Repressionofviralreplication EV71VP3andVP1-codingregion 37

miR-23b Repressionofviralreplication EV713UTR 38

miR373andmiR542-5p Repressionofviralreplication EV715UTR 39

miRNA-548 EnhancementofreplicationofEV71andVSV IFN-␭1 41

miR-146a Enhancementofviralpathogenesis IRAK1andTRAF6 42

miR-526a Repressionofviralreplication CYLD 43

miR-146aandmiR-370 EnhancementofEV71-inducedcellapoptosis SOS1andGADD45␤ 44

miR-141 EnhancementofEVpropagation eIF4E 45

miR-27a Repressionofviralreplication EGFR 46

miR-1246 Contributiontotheneurologicalpathogenesis DLG3 47

Table2–MiRNAsinvolvedinCVB3infection.

miRNA Function Target Ref.

miR-146a,miR-21,miR-374,miR-29a*,miR-23a RegulationofpathogenesisofCVB3-InducedVMC Unknown 48

miR-342-5p RepressionofCVB3replication CVB32C-codingregion 49

miR-10a* Enhancementofviralreplication CVB33D-codingregion 50

MiR-203 Enhancementofviralreplication ZFP-148 51

MiR-155 Enhancementofmyocardialinflammationresponse PU.1 53

miR-126 Promotionofviralreplication SPRED1,LRP6,andWRCH1 55

miR-1 Interferenceofcardiacfunction Cx43 56

miR-21 AlleviationofCVB3-inducedmyocarditis PDCD4 57

miR-21andmiR-146b Regulationofviralpathogenesis ROP␥t 58

miR-21 Enhancementofviralpathogenesis YOD1andVCL 59

miR-21 Enhancementofviralpathogenesis SPRY1 60

miRNA VerifiedfunctionsofthemiRNA Verifiedtargets Ref.

miR-342-5p Repressionofviralreplication CVB32C-codingregion 38

miR-10a* Enhancementofviralreplication CVB33D-codingregion 39

MiR-203 Enhancementofviralreplication ZFP-148 40

MiR-155 Enhancementofmyocardialinflammationresponse PU.1 42

miR-126 Promotionofviralreplication SPRED1,LRP6,andWRCH1genes 44

miR-1 Involvedinviralmyocarditis Cx43 45

miR-21 AlleviationofCVB3-inducedmyocarditis PDCD4 46

miR-21andmiR-124b Regulationofviralpathogenesis ROP␥t 47

miR-21 Enhancementofviralpathogenesis YOD1andVCL 48

miR-21 Enhancementofviralpathogenesis SPRY1 49

throughtargeting YOD1and vinculin (VCL), whichare two componentsrelatedtotheregulationofcell–cellconnections and cardiac function. The miR-21 expressionduring CVB3 infection may contribute to the pathogenesis of VMC and theinhibitionofmiR-21canreducehostinjury.59MiR-21was

significantlyupregulatedincardiacmyocytesfromVMCand dilatedcardiomyopathy (DCM)comparedwithcontrol sam-ples.ByUsingbioinformaticsanalysis,theypredictedmiR-21 couldbindto3UTRofhomolog1(SPRY1).Furtherstudyinvitro

revealed thatthe overexpression ofmiR-21was associated withadecreaseinSPRY1 proteinexpression.These results suggestthat miR-21maycontributetothe pathogenesisof VMCtoDCMbytargetingSPRY1.60Atthesametime, miRNA-21wasalsorelatedwithothervirusesbytargetingadifferent gene.Forexample,miRNA-21wascorrelatedwithherpes sim-plexvirus(HSV)-inducedBehc¸et’sDiseaseinpatientsandin mousemodel.61Moreover,oneoftheHBVproteins,HBxcan

inducemiRNA-21expressioninHBV-inducedhepatocellular carcinoma.Then,HBV infection enhancescell proliferation

via HBx-induced miRNA-21 by targeting programmed cell deathprotein4(PDCD4)andphosphataseandtensin homo-logue(PTEN).62 Wesummarizethefunctionsandthetarget

genes of the miRNAsinvolved inthe infection ofCVB3 in

Table2.

The

related

investigations

of

miRNAs

and

other

EV

TherehavebeenmanyrecentreportsaboutmiRNAsrelated toEV71 andCVB3, including about miRNAsother EV,such asPVandHRV.TheexpressionofmiR-141isupregulatedin cellsinfectedwithPV3andCVB3,besidesEV71.45MiR-141can

shutdownhostproteinsynthesisviamediatingelF4EinPV3 andCVB3infectedcells,becauseeIF4Eisthecap-dependent translation initiation factor for shutting off host protein synthesis.34 ThereplicationofHRVisregulated bymiRNAs

as decrease of mature miRNAs reduced by DICER knock-down increases of HRV-1B replication in humanbronchial epithelial cells. Specific miRNAs binding toviral RNA dur-ingHRVinfectionisdemonstratedbyco-immunoprecipitate test with argonaute 2protein. Finally, out of this groupof miRNAs,miR-128andmiR-155,under-expressedinthe asth-matic epithelium, can affect HRV-1B replication.63 Innate

(5)

immuneresponsescan restrictviralreplication and innate immunereceptors, including toll-like receptorand retinoic acidinduciblegeneI(RIG-I)-likereceptor(RLR),whichactivate IFN system. By using a microarray, several special miR-NAs were found to be regulated by RLR signaling. One of theseRLR-induciblemiRNAs,miR-23b,targetsverylow den-sitylipoproteinreceptor(VLDLR)andLDLR-relatedprotein5 (LRP5).OverexpressionofmiR-23bandanti-miR-23bresulted indown-andup-regulatedproductionofRV1B,respectively. Ithasbeen shownthatRIG-I signalingresultsininhibition of HRV1B infection because RIG-I-inducible miR-23 targets VLDLR,areceptorforviralentryintothecell.64

Conclusions

Emerging evidence has demonstrated that miRNAs play a keyroleininteractionnetworkbetweentheEVandhost.EV infectionscanchangetheexpressionofmiRNAsinthecell. Therefore,miRNAsaffectenteroviralreplicationand patho-genesis. Some miRNAs can regulate the expression of EV genedirectly;somemiRNAscanregulateEVreplication indi-rectlybytargetingamediator.WhenmiRNAsdirectlyacton enterovirus,miRNAscancombinewiththe3UTR,5UTR,VP1, VP3, 2C-coding region, 3D-coding region ofEV to promote orsuppressEVreplication.WhenmiRNAsindirectlyinteract withEV,miRNAscanplayaregulatoryroleonvirusthrough IFN,ZFP-148,orsomeotherimmunesignalingpathwaysand soon.Inconclusion,thereareavarietyofcomplexregulated relationshipbetweenmiRNAsandEV,and miRNAshold an importantbiologicalroleinenteroviralinfection.

AlthoughmanymiRNAsareinvolvedintheregulationof enteroviralinfection,thereisstillincompleteunderstanding aboutthisregulatorynetwork.Basedontheabovereview, miR-NAscanbind tosomeregionsofEVsuchas3UTR, 5UTR, VP1,VP3,2C-codingregion,3D-codingregion.Aretheresome other EV targets of miRNAs?Although many studies have beenreportedabouttheprocessofinteractionbetween miR-NAsandEV71,CVB3,researchesaboutmiRNAsandotherEV arestilllimitedandmoreresearchesareneeded.Inaddition, futurestudiesarerequiredtoexploretheprecisemechanism bywhichmiRNAsinterfereinenteroviralinfection inorder toincrease our understanding ofthe interactions between EVandmiRNA.Forexample,EV71cancauseHFMDandlead tothedevelopmentofsevereneurologicaldiseases.However, theinvolvementofmiRNAsduringthedevelopmentofsevere neurologicaldiseasesisstillunclear.

Currently, moreand more miRNAshave great potential usefulnesstoserveasbiomarkersforthediagnosisof differ-entdiseases,suchascardiovasculardisease,65glioblastoma,66

and so on. Five miRNAs(miR-197, miR-629, miR-363, miR-132and miR-122)could distinguish varicellapatients from healthycontrolsand from patientswithBordetellapertussis,

measlesvirusandEV.67Importantly,miRNAshavea

poten-tialtherapeuticrole;SPC3649,atargetofmiR-122,isthefirst miRNAs-relateddrugtobetestedinhumanswithhepatitis C.68Thisdiscoveryopenupthepossibilitytodevelop

miRNAs-relateddrugstotackleenteroviraldiseases.Futureresearchis warrantedtoexploretheregulatorynetworkofthemiRNAs

andenterovirus,inordertoexploremiRNAsinthediagnosis andtreatmentofenteroviralinfection.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

Thisstudy was supportedbyScienceandTechnology Sup-port Program (SocialDevelopment) ofZhenjiang(GrantNo. SH2012052),JiangsuProvince“333”Project.

r

e

f

e

r

e

n

c

e

s

1.BartelDP.MicroRNAs:genomics,biogenesis,mechanism,and function.Cell.2004;116:281–97.

2.LahmyR,SoleimaniM,SanatiMH,BehmaneshM,KouhkanF, MobarraN.MiRNA-375promotesbetapancreatic

differentiationinhumaninducedpluripotentstem(hiPS) cells.MolBiolRep.2014;41:2055–66.

3.CorthalsSL,Jongen-LavrencicM,deKnegtY,etal. Micro-RNA-15aandmicro-RNA-16expressionand chromosome13deletionsinmultiplemyeloma.LeukRes. 2010;34:677–81.

4.WuL,FanJ,BelascoJG.MicroRNAsdirectrapiddeadenylation ofmRNA.ProcNatlAcadSciUSA.2006;103:4034–9.

5.MourelatosZ,DostieJ,PaushkinS,etal.miRNPs:anovelclass ofribonucleoproteinscontainingnumerousmicroRNAs. GenesDev.2002;16:720–8.

6.MeisterG,TuschlT.Mechanismsofgenesilencingby double-strandedRNA.Nature.2004;431:343–9.

7.BrownBD,GentnerB,CantoreA,etal.EndogenousmicroRNA canbebroadlyexploitedtoregulatetransgeneexpression accordingtotissue,lineageanddifferentiationstate.Nat Biotechnol.2007;25:1457–67.

8.WesterhoutEM,OomsM,VinkM,DasAT,BerkhoutB.HIV-1 canescapefromRNAinterferencebyevolvinganalternative structureinitsRNAgenome.NucleicAcidsRes.

2005;33:796–804.

9.GuS,JinL,ZhangF,SarnowP,KayMA.Biologicalbasisfor restrictionofmicroRNAtargetstothe3untranslatedregion inmammalianmRNAs.NatStructMolBiol.2009;16:144–50.

10.DoenchJG,SharpPA.SpecificityofmicroRNAtargetselection intranslationalrepression.GenesDev.2004;18:504–11.

11.RobertsAP,LewisAP,JoplingCL.miR-122activateshepatitisC virustranslationbyaspecializedmechanismrequiring particularRNAcomponents.NucleicAcidsRes. 2011;39:7716–29.

12.TayY,ZhangJ,ThomsonAM,etal.MicroRNAstoNanog,Oct4 andSox2codingregionsmodulateembryonicstemcell differentiation.Nature.2008;455:1124–8.

13.HobertO.Generegulationbytranscriptionfactorsand microRNAs.Science.2008;319:1785–6.

14.BartelDP.MicroRNAs:targetrecognitionandregulatory functions.Cell.2009;136:215–33.

15.CullenBR.ViralandcellularmessengerRNAtargetsofviral microRNAs.Nature.2009;457:421–5.

16.ShuklaGC,SinghJ,BarikS.MicroRNAs:processing,

maturation,targetrecognitionandregulatoryfunctions.Mol CellPharmacol.2011;3:83–92.

17.ObersteMS,MaherK,KilpatrickDR,PallanschMA.Molecular evolutionofthehumanenteroviruses:correlationofserotype

(6)

withVP1sequenceandapplicationtopicornavirus classification.JVirol.1999;73:1941–8.

18.LiL,HeY,YangH,etal.Geneticcharacteristicsofhuman enterovirus71andcoxsackievirusA16circulatingfrom1999 to2004inShenzhen,People’sRepublicofChina.JClin Microbiol.2005;43:3835–9.

19.WangYF,ChouCT,LeiHY,etal.Amouse-adaptedenterovirus 71straincausesneurologicaldiseaseinmiceafteroral infection.JVirol.2004;78:7916–24.

20.WongKT,MunisamyB,OngKC,etal.Thedistributionof inflammationandvirusinhumanenterovirus71

encephalomyelitissuggestspossibleviralspreadbyneural pathways.JNeuropatholExpNeurol.2008;67:162–9.

21.KnowltonKU.CVBinfectionandmechanismsofviral cardiomyopathy.CurrTopMicrobiolImmunol. 2008;323:315–35.

22.YajimaT,KnowltonKU.Viralmyocarditis:fromthe perspectiveofthevirus.Circulation.2009;119:2615–24.

23.SarmientoL,FriskG,AnagandulaM,Cabrera-RodeE, RoivainenM,CilioCM.Expressionofinnateimmunitygenes anddamageofprimaryhumanpancreaticisletsbyepidemic strainsofechovirus:implicationforpost-virusislet

autoimmunity.PLoSONE.2013;8:e77850.

24.TakamatsuY,UchidaL,NgaPT,etal.Anapproachfor differentiatingechovirus30andJapaneseencephalitisvirus infectionsinacutemeningitis/encephalitis:aretrospective studyof103casesinVietnam.VirolJ.2013;10:280.

DCOM-20140623.

25.YarmolskayaMS,ShumilinaEY,IvanovaOE,DrexlerJF, LukashevAN.Molecularepidemiologyofechoviruses11and 30inRussia:differentpropertiesofgenotypeswithinan enterovirusserotype.InfectGenetEvol.2015;30:244–8.

26.PersuA,BaicusA,StavriS,StavriS,CombiescuM,Combiescu M.Non-polioenterovirusesassociatedwithacuteflaccid paralysis(AFP)andfacialparalysis(FP)casesinRomania, 2001–2008.RoumArchMicrobiolImmunol.2009;68:20–6. DCOM-20090708.

27.FuY,WeiX,TangC,etal.CirculatingmicroRNA-101asa potentialbiomarkerforhepatitisBvirus-related hepatocellularcarcinoma.OncolLett.2013;6:1811–5.

28.ZhangT,ZhangJ,CuiM,etal.HepatitisBvirusXprotein inhibitstumorsuppressormiR-205throughinducing hypermethylationofmiR-205promotertoenhance carcinogenesis.Neoplasia.2013;15:1282–91.

29.AhluwaliaJK,KhanSZ,SoniK,etal.Humancellular microRNAhsa-miR-29ainterfereswithviralnefprotein expressionandHIV-1replication.Retrovirology.2008;5:117.

30.SungTL,RiceAP.miR-198inhibitsHIV-1geneexpressionand replicationinmonocytesanditsmechanismofaction appearstoinvolverepressionofcyclinT1.PLoSPathog. 2009;5:e1000263.

31.JoplingCL,SchutzS,SarnowP.Position-dependentfunction foratandemmicroRNAmiR-122-bindingsitelocatedinthe hepatitisCvirusRNAgenome.CellHostMicrobe.

2008;4:77–85.

32.NiepmannM.ActivationofhepatitisCvirustranslationbya liver-specificmicroRNA.CellCycle.2009;8:1473–7.

33.ShimakamiT,YamaneD,WelschC,HensleyL,JangraRK, LemonSM.BasepairingbetweenhepatitisCvirusRNAand microRNA1223ofitsseedsequenceisessentialforgenome stabilizationandproductionofinfectiousvirus.JVirol. 2012;86:7372–83.

34.LuiYL,TanTL,WooWH,etal.Enterovirus71(EV71)utilise hostmicroRNAstomediatehostimmunesystemenhancing survivalduringinfection.PLoSONE.2014;9:e102997.

35.CuiL,GuoX,QiY,etal.IdentificationofmicroRNAsinvolved inthehostresponsetoenterovirus71infectionbyadeep sequencingapproach.JBiomedBiotechnol.2010;2010:425939.

36.CuiL,QiY,LiH,etal.SerummicroRNAexpressionprofile distinguishesenterovirus71andcoxsackievirus16infections inpatientswithhand-foot-and-mouthdisease.PLoSONE. 2011;6:e27071.DCOM-20120518.

37.ZhengZ,KeX,WangM,etal.HumanmicroRNA hsa-miR-296-5psuppressesenterovirus71replication bytargetingtheviralgenome.JVirol.2013;87: 5645–56.

38.WenBP,DaiHJ,YangYH,ZhuangY,ShengR.MicroRNA-23b inhibitsenterovirus71replicationthroughdownregulationof EV71VPlprotein.Intervirology.2013;56:195–200.

39.YangZ,TienP.MiR373andmiR542-5pregulatethereplication ofenterovirus71inrhabdomyosarcomacells.ShengWu GongChengXueBao.2014;30:943–53.

40.MihmS.ActivationoftypeIandtypeIIIinterferonsin chronichepatitisC.JInnateImmun.2015;7:251–9.

41.LiY,XieJ,XuX,etal.MicroRNA-548down-regulateshost antiviralresponseviadirecttargetingofIFN-lambda1.Protein Cell.2013;4:130–41.

42.HoBC,YuIS,LuLF,etal.InhibitionofmiR-146aprevents enterovirus-induceddeathbyrestoringtheproductionof typeIinterferon.NatCommun.2014;5:3344.

43.XuC,HeX,ZhengZ,etal.DownregulationofmicroRNA miR-526abyenterovirusinhibitsRIG-I-dependentinnate immuneresponse.JVirol.2014;88:11356–68,

http://dx.doi.org/10.1128/JVI.01400-01414.

44.ChangYL,HoBC,SherS,YuSL,YangPC.miR-146aand miR-370coordinateenterovirus71-inducedcellapoptosis throughtargetingSOS1andGADD45beta.CellMicrobiol. 2014;3.

45.HoBC,YuSL,ChenJJ,etal.Enterovirus-inducedmiR-141 contributestoshutoffofhostproteintranslationbytargeting thetranslationinitiationfactoreIF4E.CellHostMicrobe. 2011;9:58–69.

46.ZhangL,ChenX,ShiY,etal.miR-27asuppressesEV71 replicationbydirectlytargetingEGFR.VirusGenes. 2014;49:373–82.

47.XuLJ,JiangT,ZhaoW,etal.ParallelmRNAandmicroRNA profilingofHEV71-infectedhumanneuroblastomacells revealtheup-regulationofmiR-1246inassociationwith DLG3repression.PLoSONE.2014;9:e95272.

48.ZhangQ,XiaoZ,HeF,ZouJ,WuS,LiuZ.MicroRNAsregulate thepathogenesisofCVB3-inducedviralmyocarditis. Intervirology.2013;56:104–13.

49.WangL,QinY,TongL,etal.MiR-342-5psuppresses coxsackievirusB3biosynthesisbytargetingthe2C-coding region.AntiviralRes.2012;93:270–9.

50.TongL,LinL,WuS,etal.MiR-10a*up-regulates

coxsackievirusB3biosynthesisbytargetingthe3D-coding sequence.NucleicAcidsRes.2013;41:3760–71.

51.HemidaMG,YeX,ZhangHM,etal.MicroRNA-203enhances coxsackievirusB3replicationthroughtargetingzincfinger protein-148.CellMolLifeSci.2013;70:277–91.

52.RodriguezA,VigoritoE,ClareS,etal.Requirementof bic/microRNA-155fornormalimmunefunction.Science. 2007;316:608–11.

53.CorstenMF,PapageorgiouA,VerhesenW,etal.MicroRNA profilingidentifiesmicroRNA-155asanadversemediatorof cardiacinjuryanddysfunctionduringacuteviralmyocarditis. CircRes.2012;111:415–25.

54.O’ConnellRM,TaganovKD,BoldinMP,ChengG,BaltimoreD. MicroRNA-155isinducedduringthemacrophage

inflammatoryresponse.ProcNatlAcadSciUSA. 2007;104:1604–9.

55.YeX,HemidaMG,QiuY,HansonPJ,ZhangHM,YangD. MiR-126promotescoxsackievirusreplicationbymediating cross-talkofERK1/2andWnt/beta-cateninsignalpathways. CellMolLifeSci.2013;70:4631–44.

(7)

56.XuHF,DingYJ,ShenY-W,etal.MicroRNA-1repressesCx43 expressioninviralmyocarditis.MolCellBiochem. 2012;362:141–8.

57.HeJ,YueY,DongC,XiongS.MiR-21confersresistance againstCVB3-inducedmyocarditisbyinhibiting PDCD4-mediatedapoptosis.ClinInvestMed.2013;36: E103–11.

58.LiuYL,WuW,XueY,etal.MicroRNA-21and-146bare involvedinthepathogenesisofmurineviralmyocarditisby regulatingTH-17differentiation.ArchVirol.2013;158:1953–63.

59.YeX,ZhangHM,QiuY,etal.Coxsackievirus-inducedmiR-21 disruptscardiomyocyteinteractionsviathedownregulation ofintercalateddiskcomponents.PLoSPathog.

2014;10:e1004070.DCOM-20141210.

60.XuHF,DingYJ,ZhangZX,etal.MicroRNA21regulationofthe progressionofviralmyocarditistodilatedcardiomyopathy. MolMedRep.2014;10:161–8.DCOM-20150113.

61.ChoiB,KimHA,SuhCH,ByunHO,JungJY,SohnS.The relevanceofmiRNA-21inHSV-inducedinflammationina mousemodel.IntJMolSci.2015;16:7413–27.

62.DamaniaP,SenB,DarSB,etal.HepatitisBvirusinducescell proliferationviaHBx-inducedmicroRNA-21inhepatocellular

carcinomabytargetingprogrammedcelldeathprotein4 (PDCD4)andphosphataseandtensinhomologue(PTEN). PLoSONE.2014;9:e91745.

63.BondaneseVP,Francisco-GarciaA,BedkeN,DaviesDE, Sanchez-ElsnerT.IdentificationofhostmiRNAsthatmay limithumanrhinovirusreplication.WorldJBiolChem. 2014;5:437–56.

64.OudaR,OnomotoK,TakahasiK,etal.Retinoicacid-inducible geneI-induciblemiR-23binhibitsinfectionsbyminorgroup rhinovirusesthroughdown-regulationoftheverylowdensity lipoproteinreceptor.JBiolChem.2011;286:26210–9.

65.SayedAS,XiaK,SalmaU,YangT,PengJ.Diagnosis,prognosis andtherapeuticroleofcirculatingmiRNAsincardiovascular diseases.HeartLungCirc.2014;16.

66.LiX,LiuY,GranbergKJ,etal.TwomatureproductsofMIR-491 coordinatetosuppresskeycancerhallmarksinglioblastoma. Oncogene.2014;21.

67.QiY,ZhuZ,ShiZ,etal.DysregulatedmicroRNAexpressionin serumofnon-vaccinatedchildrenwithvaricella.Viruses. 2014;6:1823–36.

68.BaekJ,KangS,MinH.MicroRNA-targetingtherapeuticsfor hepatitisC.ArchPharmRes.2014;37:299–305.

Referências

Documentos relacionados

Outra limitação importante está relacionada com o facto de termos utilizado para o estudo o teste normal de PCR e não o teste mais sensível da PCR de alta sensibilidade, que

No código do bot desenvolvido para este projeto, são tomadas precauções para que antes dos dados do utilizador serem persistidos na base de dados, os mesmos estejam no formato

Majestade, como Mestre da Ordem: e esta só tem no Ultramar o direito espiritual do padroado e só esta é a que exercita, como se disse na 1." questão: e assim os Ordinários

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

redução com a aplicação da concentração a 10% para a cultivar AS 3730 IPRO (Quadro 1), enquanto que para o restante das cultivares avaliadas não foram detectadas

The three compounds showed activity in the early stages of viral replication presenting virucidal activity and binding to cellular receptors, preventing the adsorption of

Laser capture microdissection (LCM) was used to study miRNA profiles in motor neurons of spinal cord tissue from SOD1 G93A mice, the best characterized model of ALS.. In

3,4 And it is the difference in the dynamics of viral replication and pathogenesis of HIV infection in children that determines the different guidelines for antiretroviral therapy