• Nenhum resultado encontrado

A protein expression system for tandem affinity purification in Xanthomonas citri subsp. citri

N/A
N/A
Protected

Academic year: 2021

Share "A protein expression system for tandem affinity purification in Xanthomonas citri subsp. citri"

Copied!
9
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Genetics

and

Molecular

Microbiology

A

protein

expression

system

for

tandem

affinity

purification

in

Xanthomonas

citri

subsp.

citri

Giordanni

C.

Dantas

a,1

,

Paula

M.M.

Martins

a,1

,

Daniela

A.B.

Martins

b

,

Eleni

Gomes

c

,

Henrique

Ferreira

a,∗

aDepto.deBioquimicaeMicrobiologia,InstitutodeBiociências,UniversidadeEstadualPaulista,RioClaro,SP,Brazil bDepto.deBioquímicaeTecnologiaQuímica,InstitutodeQuímica,UniversidadeEstadualPaulista,Araraquara,SP,Brazil cDepto.deBiologia,UniversidadeEstadualPaulista,SãoJosedoRioPreto,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received7May2015 Accepted23October2015 Availableonline2March2016 AssociateEditor:SolangeInes Mussatto Keywords: Citruscanker Expressionvectors TAP-tag

a

b

s

t

r

a

c

t

Citruscanker,causedbytheGram-negativebacteriumXanthomonascitrisubsp.citri(Xac),is oneofthemostdevastatingdiseasestoaffectcitruscrops.Thereisnotreatmentforcitrus canker;effectivecontrolagainstthespreadofXacisusuallyachievedbytheelimination ofaffectedplantsalongwiththatofasymptomaticneighbors.Anindepth understand-ingofthepathogenisthekeystoneforunderstandingofthedisease;tothiseffectweare committedtothedevelopmentofstrategiestoeasethestudyofXac.Genome sequenc-ingandannotationofXacrevealedthat∼37%ofthegenomeiscomposedofhypothetical ORFs.TostartasystematiccharacterizationofnovelfactorsencodedbyXac,weconstructed integrative-vectorsforproteinexpressionspecifictothisbacterium.Thevectorsallowfor theproductionofTAP-taggedproteinsinXacundertheregulationofthexylosepromoter.In thisstudy,weshowthataTAP-expressionvector,integratedintotheamylocusofXac,does notcompromiseitsvirulence.Furthermore,ourresultsalsodemonstratethatthe polypep-tideTAPcanbeoverproducedinXacandpurifiedfromthesolublephaseofcellextracts.Our resultssubstantiatetheuseofourvectorsforproteinexpressioninXacthuscontributing anoveltoolforthecharacterizationofproteinsandproteincomplexesgeneratedbythis bacteriuminvivo.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:henrique.ferreira@linacre.oxon.org(H.Ferreira).

1 Theseauthorscontributedequallytothiswork.

http://dx.doi.org/10.1016/j.bjm.2016.01.026

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

Citruscanker,oneofthemostimportantdiseasesaffecting cit-ruscropsworldwide,iscausedbyaGram-negativebacterium,

Xanthomonas citri subsp. citri (Xac). The complete genome sequenceofXac,whichwasreportedmorethanadecadeago,1

hassignificantlycontributedtoimprovingourunderstanding ofthemolecularprocessesofthisplantpathogen.2–5 Ofthe

4313XacORFsthathavebeenannotated,nearly63%exhibit homologytogenesofknownfunctionwhereas∼37% corre-spondto hypotheticalORFs thatcould potentially code for novelpolypeptides.1SuchadistributionpatternofORFsisa

commonfeatureinmicrobialgenomesanditishypothesized thatasignificantamountofinformationregardingadaptation andpathogenicitymaybeencodedwithinsuchhypothetical proteins.Thebiggestchallengeincharacterizingthese hypo-theticalORFsisthatthephenotypesgeneratedbythemare usuallyunknown.

Amongtechniquesthathavethepotentialtobeusedfor the characterization of hypothetical proteins we cite: two dimensional (2-D) protein gels allied to mass spectrome-try, DNA microarrays, and next generation sequencing of nucleicacids(NGS).6–15Allofthesemethodsallowfor

high-throughputprocessingofcandidategenes/proteins andthe dataobtainedbyanalyzingpatternsofco-expressionand co-repression(exhibitedbyaparticulargene/polypeptideduring different growth or developmentconditions) in turn helps intheattributionoffunction.Inaddition tothe aforemen-tionedtechniques,invivoproteinlocalizationviafluorescence microscopyhasalsoproventobeapowerfultoolfor annotat-ing functionto unknown proteinfactors.16,17 However,the

mostpromisingtechniques in this field are those that are capableofdemonstratingadirectcontactbetween hypotheti-calproteinsand(an)othercellularfactor(s).Onesuchmethod istheyeast-two-hybrid (YTH)techniqueanditsvariantthe bacterial-two-hybrid(BTH)system.18,19Oneofthefirstmajor

successesoftheYTHsystemwastheconstructionofa com-plexprotein–proteininteractionmapofthehumanpathogen

Helicobacterpylori.20InXacthismethodhasbeenappliedfor

theidentificationand characterizationofseveralpreviously unknownproteincomponentsofthetypeIIIandIVsecretion systems.2,3InspiteoftheobviousvalueandutilityoftheYTH

technique,themethodologysuffersfromcertainserious dis-advantagessuchasthe needtoconstructagenomic/cDNA expressionlibraryoftheorganismunderstudy.Another tech-nique,aninterestingalternative to the YTH/BTHmethods, istheTandemAffinityPurificationstrategy(TAP-tagging).21,22

TAP-taggingwasdevelopedtoaidinthepurificationofactive macromolecular complexes from yeast; it differs from the two-hybridsystemsintheaspectthatitdoesnotrequirethe construction ofprotein expressionlibraries tobe screened withbaits.ThebasisofTAP-taggingis theexpression ofa fusion-proteincomprisingoftheproteinofinterestfusedto aTAP-tageitherattheC-or theN-terminus.Expressionof thisfusionproteininsideacellularenvironmentwhereinthe expressionoftheproteinunderstudyisindigenouscauses the TAP-tagged proteinto interact with other cellular fac-tors in the same fashion as an untagged protein would. Followingcellpropagation,proteincomplexescomprisingof

TAP-protein fusionand theirassociatedcellularfactorsare tobepurifiedandidentifiedbymassspectrometry.The Tap-taggingtechniquehasbeensuccessfullyadaptedtoavariety oforganismsincludingthericepathogenXanthomonasoryzae

pv.oryzae.23–35

Herein,wedescribeaproteinexpressionsystemfor tan-demaffinitypurificationinXac(TAPexpressionvectors).The vectorsinvolvedinthissystemhavethecapabilitytostably integrate into a specificgenomic region (the amy locus)of Xac withoutaltering pathogenicityorvirulence.Finally, we expressedandpurifiedtheTAP-tag fromXac,corroborating theuseofourexpressionvectorsforproteinstudiesinthis bacterium.

Materials

and

methods

Bacterialstrainsandgrowthconditions

TheX.citrisubsp.citriusedinthestudy36,37wasthesequenced

strain 306.1 Escherichia coli strain DH10B (FmcrA

(mrr-hsdRMS-mcrBC) 80lacZM15 lacX74 recA1 endA1 ara139 (ara, leu)7697 galU galK -rpsL (StrR) nupG) was used for

cloning.DH10Bwascultivatedat37◦CinLB38andXacat30C

inNYG(Peptone5g/L,yeastextract3g/Landglycerol20g/L). Fortheamylasetests,solublestarchwasaddedtoNYG-agar atafinalconcentrationof0.2%.Duringthecloningprocedure, ampicillin(20␮g/mL)andkanamycin(10␮g/mL)wereaddedto themediatoallowforselectionofplasmid-carryingcolonies.

Generalmethods

Basicmolecularbiologyexperimentswereconductedasper prescribedprotocols.38ElectrotransformationofXacwas

per-formed as described previously.39 DNA polymerases and

restrictionandmodifyingenzymeswereobtainedfrom Fer-mentas (Thermo Scientific). The construction of pHF5Ca (GenBank FJ562210) has been previously described in the literature40;pHF5Na(GenBankFJ573043)isavariantofpHF5Ca

in which the tap1479 has been replaced by the tap176121

(Fig. 1A). The tap1761 cassette was isolated by PCR using pBS1761astemplate21andtheprimerpairPBS1761F5-TGA

GGATCCATG ATAACTTCGTATAGC ATACandPBS1761R 5-TCATTCTAGACTATAGGGCGAATTGGGTACC. Follow-ingPCR,thepurifiedfragmentwasdigestedwithBamHI/XbaI

andligatedtothebackboneofpre-digestedpHF5Ca.For detec-tingthepresenceofpHF5CaintegratedintotheXacgenome diagnosticPCRwasperformed.Theprimerpairusedforthis purposewas:pxyl5-GTACTTACTATATGAAATAAAATG and1479R5-ATCAAGCTTCAGGTTGACTTCCCCG.

Proteinexpression

StrainsofE.coli/pHF5CaandXacamy::pHF5Cawereactivated bytheinoculationof2–3isolatedcoloniesin3mLofLBorNYG, respectively,alongwiththerequiredantibiotics.The inocu-lumswereculturedfor8hat30◦Cand180rpm.Attheendof thedesignatedgrowthperiod,thecultureswerediluted1:50 (E.coli)or1:10(Xac)inErlenmeyerflaskscontaining50mLLB orNYGbrothplusantibiotics.Culturesweregrownfor14hat

(3)

30◦Cand180rpm.Attheendofthetimeperiod,strainswere againdiluted1:50(E.coli)or1:10(Xac)inErlenmeyerflasks con-taining50mLLBorNYGbroth(forWesternblotting)or500mL LBorNYG(forproteinpurification).Cultureswereincubated at30◦Cand 180rpmtillanOD600 valueof0.5wasreached.

Forinductionofproteinexpression,xylosewasaddedtothe growthmediumtoafinalconcentrationof0.5%;timeperiod forinductionwas1h(E.coli)and4h(Xac)usingconditions identicaltothoseemployedforculturegrowth.Subsequentto induction,cellswereharvestedbycentrifugationat4000×g

for10minfollowedbywashingwithcellwashbuffer(30mM Tris–HCl,200mMNaCl);cellpelletswerestoredat−80◦Ctill

use.

Westernblotting

Totalproteinextractswerepreparedbyresuspending20mg of each cell pellet in100␮L ofSDS-sample buffer. Sample processing,SDS-PAGE,andtransfertoPVDFmembranewas conducted using standard methodology.38 For detection of

theimmobilizedTAP-tag,thePVDFmembranewaswashed withPBS-Tween-20(0.2%)containing5%skimmedmilkand incubated withasecondary antibodycoupled toHRP (rab-bit Anti-Horse IgG; SIGMA A6917) in a dilution of 1:3000. The principle underlying this methodology is that Protein A, which ispart ofthe TAP-tag, isknown tobind IgG iso-types directly. Following incubation with the antibody, the

EcoRI xylR Kan EcoRI EcoRI ori xyIR pxyI pHF5Na 6651bp tap1761 amy Xmal Xmal Xbal BamHI ClaI HincII Sal I Xhol EcoO109I Apal PspOMI Acc65I Kpnl ori Ap Kan Ap pHF5Ca

A

6583bp pxyl BamHI tap1479 amy Xbal Xmal Xmal

Fig.1–ExpressionvectorsforTandemAffinitypurificationinXac.(A)SchematicrepresentationofpHF5CaandpHF5Na:the proteinexpressionvectorsforTAP-tagginginXac.EachvectorcarriesadifferentTAP-codingDNA,tap1479andtap1761 respectively,whichproduceTAPfusionstoeithertheC-orN-terminalendsofproteinsunderstudy.Bothvectorsarebased onthepCR2.1-TOPObackbonewhichcarriesapUCreplicationoriginandDNAcassettesforampicillin(Ap)andkanamycin (kan)resistance.(B)DNAsequenceofthexylosepromoterregioncommontopHF5CaandpHF5Nashowingthelocationof theribosomebinding-site(RBS)andthestartcodon(ATG).(C)TheDNAsequencesofthe3-endsoftap1479andtap1761. Underneatheachsequenceistheschematicviewoftheproteinfusionthatcanbeproducedusingthetag.Notethatthe organizationofthemodulesthatcomposetheTAP-tags(CBP,TEV,andProtA)differwithrespecttoTAP1479andTAP1761 (seetext);fortheC-terminalfusions,theTAP1479hasProtAlocatedattheextremeC-terminusofthepolypeptide,while ProtAisatthebeginningoftheproteinintheN-terminalfusions.UniquerestrictionsitesforDNAcloningareshownin black;non-uniquesitesingray.CBP,calmodulinbinding-protein;TEV,TobaccoEtchVirusProteaserecognitionsequence; ProtA,ProteinAfromStaphylococcusaureus;andEK,enterokinaserecognitionssequence(DDDDK,presentonlyinTAP1761); pxyl,xylosepromoter;xylR,thexyloserepressorgene;amy,an800bpfragmentofthealpha-amylasegenefromXac.

(4)

B

C

pxy1 HindIII RBS EcoRI Test protein

N

C

C

N

CBP

C-terminal TAP-tag

TEV ProtA Test protein CBP

N-terminal TAP-tag

TEV ProtA EK tap1479 tap1761 BamHI HindIII HindIII ClaI sfcI xbal SaiI

HincII Xhol ApaI KpnI

xbaI

Fig.1–(Continuación)

westernblotwasdevelopedbyimmersingthemembranein ECLdetectionreagents(AmershamECLWesternBlotting Sys-temkit-GE).Thechemiluminescenceproducedwascaptured onX-rayfilm(Hyperfilm,GE)forfurtheranalysis.

Proteinpurification

Cellpelletsobtainedfrom500mLculturesweredissolvedin pre-chilled10mLTST(50mMTris–HClpH8.0,150mMNaCl, and0.05% Tween20) containingaone-fourthofatablet of EDTA-free protease inhibitors (Roche 1.873.580). Cells were lysedbysonicationusing aVibra-CellVCX 130(Sonics)(10 pulses of 10s each with intervals of 1min) and the soni-catedsampleswerethencentrifugedat48,000×gfor30min at4◦C.Batch binding ofproteins tothe affinity resin was donebyincubatingtheclarifiedsuspensionswith500␮Lof IgG-Sepharose (previously equilibrated in TST;GE 17-0969-01) on an ice bath with gentle agitation through a rotary shaker(120rpm).Aftera2hincubation,resinwastransferred to a 10mL disposable column (Poly-prep BioRad 731-1550) andwashed3–4timeswith20column-volumesofTSTusing

gravity flow. Samples of 100␮L were collected throughout theprocessforSDS-PAGEanalysis.TheTAP-tagwasreleased from the resin byacid elutionusing 0.5M acetic acid (pH 3.4;adjustedwith10Mammoniumacetate).Eluatefractions of 1mL each were precipitated using TCA (3% final) and centrifugedfor10minusingamicrocentrifugeatmaximum speed;proteinpelletswerewashedoncewithabsoluteethanol andthen dissolvedin100␮LofSDSsamplebufferfor SDS-PAGE.

Pathogenicitytests

The plant host used for this study was the sweet orange cultivar‘Bahia’(CitrussinensisL.Osbeck).Orangetreeswere cultivated undergreen-house conditions.Cells tobetested were cultivated in the appropriate medium until OD600

reached∼0.6(∼108CFU/mL).Subsequenttogrowth,cell

sus-pensions ordilutions wereused toinoculateleaveson the abaxialsurfacewiththehelpofhypodermicsyringes(1mL) fittedwithneedles.Symptomswereobservedinthecourseof threeweeksfromthedayofinoculation.

(5)

Results

TheTAPexpressionvectorsforXac

Inthisstudy,thetwoTAPexpressionvectorsusedforXac, pHF5Ca and pHF5Na, carrythe xylose promoter (pxyl),the xylose repressor (xylR), and the TAP encoding sequences

tap1479ortap1761(Fig.1A).Thesecomponentsareseparated byashortstretchofDNAcontainingaRibosomeBindingSite (RBS)whosesequenceisaconsensusforbothBacillussubtilis

aswellasE.coli41(Fig.1B).Thexylosepromoterusedhasbeen

previouslyevaluatedbyourgroupinXacandfoundto func-tionsatisfactorily.17,40 ThetwoTAPsequences,tap1479and

tap1761,encodefortagsusedinTandemAffinityPurification ofproteincomplexesandarecomposedofthreecomponents (Fig.1C):(a)TwodomainsofProteinA(ProtA;Staphylococcus aureus) that is known tohave a strong affinity forIgG; (b) Apeptide that binds calmodulin (CBP); (c)A shortpeptide stretchcontainingtherecognitionsequencefortheprotease TEV (Tobacco Etch Virus) separating the above mentioned components.21,22TheexpressionvectorspHF5CaandpHF5Na

differonlyintheTAP-tagsthattheyencode;pHF5Cacarries thetap1479andisusedfortheexpressionofproteinfusions containingthepeptideTAP1479attheC-terminiwhereasthe pHF5Nacarriesthetap1761andisusedtoproducefusionsof TAP1761totheN-terminiofproteinsofinterest.Additionally, boththevectorsusedareintegrativeastheycarrythe amy106-914fragmentofXacwhichdrivestheirintegrationintotheamy

locusofthebacteriumviaasinglecrossoverevent.Upon inte-gration,theamygeneofXacisdisruptedandthebacterium becomesincapableofdegradingstarch.

XacmutantsharboringtheTAPexpressionvectors colonizecitrus

In a previous study, we demonstrated that Xac mutant strainscarryingtheGFPexpressionvectorspPM2aorpPM7g integrated into the amy locus were capable of inducing disease symptoms in citrus plants.17 Herein, in

continua-tion of the previous study, we wanted to evaluate if the presence of the TAP coding DNA altered or affected the virulence/pathogenicity associated with Xac. To test this hypothesis, pHF5Cawas electroporated into Xac;and kanR

transformants (candidates potentially carrying the vector pHF5Ca)were selectedfor furthercharacterization. To cer-tifythatthe TAPexpressionvector hadintegratedintoamy

locus,asetofputativemutantsweretestedfortheirability todegradestarchonatestplate.17Theresultsclearly

demon-stratedthatthecandidatemutantswere deficientinstarch degradationhenceprovingthatpHF5Cawasstablyintegrated intotheamylocusofXacsuchthatthesemutantswereunable toproduce alpha-amylase(datanotshown). Alongside the starchdegradationtest,wealsocarriedoutdiagnosticPCRs onaselectionofsixkanRmutantssoastocertifythe

pres-enceofpHF5Ca(Fig.2).ThediagnosticPCRsdetectedaDNA fragmentof∼640bpcorrespondingtothetap1479inallthe mutantsanalyzed(comparelanes2–7withthepositive con-trolinlane8whereinpHF5CawasusedasDNAtemplate).No

kb

–3.0

–1.0

–0.5

1

2

3

4

5

6

7

8

9

Fig.2–ColonyPCRtodetectthepresenceofpHF5Ca integratedintothechromosomalDNAofXac.Subsequent toelectrotransformationofXacwiththeexpressionvector pHF5Ca,sixkanRmutantswereselectedandsubjectedto

colonyPCRusingtheprimersPBS1479F/Rspecificforthe amplificationofthetap1479(approximately640bp).The PCRampliconswerevisualizedaftermigrationthrougha 0.7%agarosegel.Lane:1,WTXac(negativecontrol);2–7, thesixselectedmutants;8,PCRusingpHF5CaastheDNA template(positivecontrol);and9,DNAmolecularweight marker(1kbDNAladder,NEB).

bandsweredetectedinthenegativecontrol(lane1,wildtype Xac).

InordertoverifyifXacamy::pHF5Cawascapableofcausing diseasesymptomsinasusceptiblehost,twoindependently selectedmutantswereinoculatedintoleavesofsweetorange (Fig.3A–C).Sevendayspost-inoculation, the bordersofthe areainoculatedwithXacclearlyexhibitedthetypical water-soaking symptom associated with the disease (Fig. 3D–F). These areas developedbrownishcanker-like lesionsduring thecourseofthenextthreeweeks(datanotshown).Apoint to noteis thatthe mutantstrains displayedthe same dis-tinct lesion pattern asthe wild type.In contrast, the area inoculatedwithNYG-medium(negativecontrol)showedonly a mild chlorosis. In summary,the resultsobtained in this study clearly demonstrated that the ability to cause dis-ease remained unaffected followingintegration ofthe Xac

amy::pHF5Camutants.

TAP-tagexpression

TheproductionofaTAP-tagcanbedetectedinWestern blot-tingassays byexploitingthe abilityofProtA tobind tothe IgGantibody.42AstrainofE.colicarryingpHF5Ca(multicopy)

vectorandtwoXacamy::pHF5Camutantstrains(harboringa singlecopyoftheexpressioncassetteintegratedintotheamy

locusofXac)werecultivatedandinducedwithxylose.Total protein extractswere separated bySDS-PAGE (Fig. 4A) and transferredontoaPVDFmembranesoastofacilitate detec-tionofTAP1479usingantibodyreactions.Thebandsofthesize expectedfortheTAP1479(∼21kDa)weredetectedforboththe mutantstrainsofXacaswellasforE.colitransformedwith pHF5Ca(Fig.4B,lanes1–2,and5–8).Theresultsalsoshowed

(6)

A

B

C

D

E

F

1 and 2=Xac am

y ::pHF5Ca

1

Xac

Wt

NYG

2

Fig.3–TheintegrationoftheTAPexpressionsystemintothechromosomeofXacdoesnotalteritspathogenicity.Two independentlyselectedmutantsofXacamy::pHF5Ca(1and2)wereinoculatedintoleavesofsweetorangeBahiaalongside thewildtypestrain(Xacwt)andasampleofNYG-medium(negativecontrol).Amapoftheinoculationisshownonthe right-handsideofthefigure.Picturesweretakenimmediatelyafterinoculation(A–C)andalso7dayspost-inoculation(D–F). Thetestwasconductedintriplicate(A–C).

thattheproductionofTAP1479wasresponsivetoinductionby xylose(lanes1and2,5and6,7and8).Forthenegative con-trol,wildtypeXac,nosignalcorrespondingtothebandsize ofTAP1479wasdetected(lanes3and4).Itwasobservedthat

E.coliproducedmoreofthetagthantheXacmutants,aresult thatisconsistentwiththemulticopyconditionofpHF5Cain

E.coli.Theresultsobtainedclearlyshowthattheexpression systemisfunctionalinbothbacteriaandalsothatanintact andactiveProtAmoietywasproducedinXac.

PurificationoftheTAP-tagfromXac

The TAP-tag detected in the previous section appeared to bearesilientpolypeptide capableofretaining theproperty of IgG-binding even after treatment with SDS and boiling asis mandatoryforsample preparationin SDS-PAGE elec-trophoresis.However,resultsobtainedbywesternblottingdo notguaranteefunction,as thepositive outcomecan easily beexplainedasabyproductofresidualIgGbindingactivity ofProtA.Additionally,fortheproteincomplexesproducedin Xactobeuseful,itisessentialtocheckiftheTAP1479could beproducedinlargeramountsandinasolubleform.Inorder toevaluatethis,anattemptwasmadetopurifyTAP1479by affinityseparation.AnE.colistraincarryingpHF5CaandaXac

amy::pHF5Camutantwerecultivatedandinducedwithxylose. FollowingexpressionoftheTAP-tag,cellswerelysedby son-ication and clarifiedcell extractswere subjected toaffinity chromatography usingIgG-immobilizedresin.TAP1479 was successfullypurifiedfromthesolublephaseofbothextracts (Fig.5;seearrows).AsobservedintheWesternblotting exper-iments,E.coliproducedarelativelyhigheramountofthetag(a tagconcentrationof∼1.4mg/mLwasestimatedforthe sam-pleinlane8)ascomparedtotheyieldfromXac(∼0.2mg/mL, lane7).However,theamountoftagproducedbyXac,though less,shouldsufficeformassspectrometryidentification.The contaminantbandsabovetheTAP1479representdenatured humanIgGwhichwasstrippedoutfrom thematrixbythe acidelutiontogetherwithotherbacterialproteinsthatmight beinteractingwiththeresin.Theseresultscorroboratethe useoftheexpressionvectorspHF5CaandpHF5Naas integra-tion/proteinexpressionsystemsforTAP-tagginginXac.

Discussion

Inthepresentworkwecharacterizedanovelprotein expres-sionsystemintendedforhigh-throughputanalysisofprotein complexes inXac. These vectors are integrativeand allow

(7)

kDa

A

B

–27

–20

kDa

–27

–20

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Fig.4–Westernblottinganalysistodetectexpressionof TAP1479byXacamy::pHF5Camutants.Thefunctionalityof theTAPexpressionsystemwasverifiedbytheabilityofan E.coliDH10Bstrain,withpHF5CaandXackanRmutants,

carryingthevectorintegratedintothechromosome,to producetheTAP1479(approximately21kDa)(detailsofthe inductionprocedurehavebeendescribedin“Materialsand methods”section).(A)Coomassieblue-stained10% SDS-PAGEshowingtheseparationofproteinsfromcell extractsofE.coliandXac;lanes:1,E.coli/pHF5Ca;2, E.coli/pHF5Ca+0.5%xylose;3,Xac(WT);4,XacWT+0.5% xylose;5,Xacamy::pHF5Camutant1;6,Xacamy::pHF5Ca mutant1+0.5%xylose;7,Xacamy::pHF5Camutant2,8; Xacamy::pHF5Camutant2+0.5%xylose;and9,protein molecularweightmarker.(B)X-rayfilmdisplayingbands detectedbytheWesternblottinganalysis.Proteinsina replicaofthegelshowninAweretransferredtoaPVDF membraneandexposedtoasecondaryantibodycoupledto HRP.Lanesarethesameasin(A).Thepositionofthe TAP1479ismarkedwithablackarrowontherighthand sideofthefilm.

fortheproductionoffusionproteinstaggedwiththeTAP-tag eitherattheC-orattheN-terminalends.21,22Integrationof

theexpressionvectorsintothechromosomeofthebacterium mayoccursite-specificallyintotheamylocus(asshownhere) or into the ORF as demonstrated previously in a prelimi-narycharacterizationofpHF5Ca.40Integrationmediatedbya

E. coli/pHF5Ca

Xac amy::pHF5Ca

kDa

A

B

–27

–20

1

2 3

4 5 6 7

8 9 10 11 12 13 14

kDa

–27

–20

1

2

3

4

5

6

7

8

9 10 11 12 13 14

Fig.5–PurificationofTAP1479fromE.coli/pHF5CaandXac amy::pHF5Ca.E.coliDH10BcarryingpHF5CaandakanR mutantofXacharboringpHF5Caintegratedintoits chromosomewereinducedfortheproductionofthe TAP1479.Followingexpression,cellswerelysedand proteinextractssubjectedtoaffinitychromatography throughIgG-sepharose.(A)E.coli/pHF5Ca;and(B)Xac amy::pHF5Ca,Coomassieblue-stained10%SDS-PAGE showingtheseparationofproteinsfromthefractions collectthroughouttheprocess.(A)lane:1,clarifiedlysate;2, flowthrough;3–6,washes(20column-volumeseach);7, proteinmolecularweightmarker;8–14,elutionfractions. (B)Lane:1,clarifiedlysate;2,flowthrough;3–5,washes;6, proteinmolecularweightmarker;7–14,elutionfractions. ThepositionoftheTAP1479ismarkedwithblackarrowsin bothgels.

crossover betweenORFs(ligatedinthevectorand its chro-mosomalcopy)putstheexpressionoftheTAP-taggedpeptide underthecontrolofthenativepromoterofthechromosomal ORF.Hence,useofpHF5Caisrecommendedsoastohavea C-terminalTAP-taggedprotein.Theintegrationintotheamy

locusisthepreferablesiteofintegrationasiteliminatesthe possibilityofperturbationsofchromosomalregions contain-ing the ORFs under investigation.Genome integrationalso guarantees thatthe expressioncassettewillbepropagated asasinglecopypercell,allowingforabettercontrolof pro-teinexpressionunderthexylosepromoter.43,44Finally,inthis

study,wehaveshownthattheintroductionofaTAPcoding DNA intoXac had nodetectable effectonvirulence,which emphasizesandunderlinestheutilityoftheTAP-expression vectorsforproteininteractionstudiesinthisplantpathogen.

(8)

Resultobtainedfromthis studyprovedthat theTAP-tag couldbestablyexpressedandpurifiedfromthesolublephase ofXaccellextracts.Currently,weareintheprocessof test-inganumberofTAP-proteinfusions(hypothetical,previously characterized and control factors) in our model organism inanattempttoconductfunctional assignmentsusingthe TAP-taggingstrategy.ApartfromitsuseinTAP-tagging exper-iments,theexpressionvectorspHF5CaandpHF5Nacanalso beappliedforproteinexpressionandpurificationfrom Xan-thomonas spp. thus eliminating the need for heterologous expressioninE.coli.Anexampleofthisapplicationisthe strat-egyforexpressionandpurificationofTAP1479outlinedabove. Another feasible application would be in genetic comple-mentationtestsinvivo.Insuchexperiments,theTAPcoding DNAmayberemovedduringthecloningstepssuchthatthe polypeptideproducedinXacwillnotcarryanytag.

Althoughextensively explored in eukaryotes,the utility oftandemaffinitypurificationforprotein–proteininteraction analysisinprokaryotesislimited.24,26,45–49 TAP-taggingwas

originallyusedinE.coliasatoolforexploringthe biologi-calrolesofcomponentsofproteincomplexesinvolvingACP andothercellularfactors,aswellasforthecharacterization ofYbdB(EntH),athioesteraseproducedinE.coliunderiron starvation.26,45,47,48Abroaderhigh-throughputprotein

inter-actionstudyusingTAP-taghasbeenreportedinE.coliinwhich 857proteinsweretagged24;morethansixhundredproteins

weresuccessfullypurified;ofwhich,530werefoundtobea partofprotein–proteincomplexes.Proteininteractantswere subsequentlyidentifiedbymassspectrometryandthe resul-tantdatawerecompiledtobuildanetworkofprotein–protein associations coveringa vast variety ofbiological activities. Additionally,thenetworkraisedthepossibilityofannotating uncharacterizedfactorswiththeirdesignatedfunction.More recently,TAP-tagginghasbeenusedtolabelfactorsinX.oryzae

pv.oryzae34,35allowingforthequantitativeanalysesof

pro-teinexpressionandsecretion.TAP-labelingwasalsousedby ourgroup,inapreviousstudy,todetecttheexpressionofthe chromosomesegregationproteinParBinXac.40Inconclusion,

theresultsoutlinedabovehavedemonstratedthestabilityof theTAPmoietyandtheexpressionvectorsdescribedherein havethepotentialtodevelopintovaluabletoolsforexploring proteinnetworksinXacespeciallywherefactorsofunknown functionmaybeparticipants.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

GCD and PMMM received scholarships from Fundac¸ão de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2013/19806-5and2006/59494-9)andCAPES/Brazil.Thiswork was funded by FAPESP grant numbers 2004/09173-6, and 2013/50367-8.

r

e

f

e

r

e

n

c

e

s

1.daSilvaAC,FerroJA,ReinachFC,etal.Comparisonofthe

genomesoftwoXanthomonaspathogenswithdifferinghost

specificities.Nature.2002;417:459–463.

2.AlegriaMC,DocenaC,KhaterL,RamosCH,daSilvaAC,

FarahCS.Newprotein–proteininteractionsidentifiedforthe

regulatoryandstructuralcomponentsandsubstratesofthe

typeIIISecretionsystemofthephytopathogenXanthomonas

axonopodisPathovarcitri.JBacteriol.2004;186:6186–6197.

3.AlegriaMC,SouzaDP,AndradeMO,etal.Identificationof

newprotein–proteininteractionsinvolvingtheproductsof

thechromosome-andplasmid-encodedtypeIVsecretion

lociofthephytopathogenXanthomonasaxonopodispv.citri.J

Bacteriol.2005;187:2315–2325.

4.CernadasRA,CamilloLR,BenedettiCE.Transcriptional

analysisofthesweetorangeinteractionwiththecitrus

cankerpathogensXanthomonasaxonopodispv.citriand

Xanthomonasaxonopodispv.aurantifolii.MolPlantPathol.

2008;9:609–631.

5.Galvao-BottonLM,KatsuyamaAM,GuzzoCR,AlmeidaFC,

FarahCS,ValenteAP.High-throughputscreeningof

structuralproteomicstargetsusingNMR.FEBSLett.

2003;552:207–213.

6.JungblutPR,BumannD,HaasG,etal.Comparativeproteome

analysisofHelicobacterpylori.MolMicrobiol.2000;36:710–725.

7.ShinNR,LeeDY,YooHS.Identificationofquorum

sensing-relatedregulonsinVibriovulnificusby

two-dimensionalgelelectrophoresisanddifferentially

displayedreversetranscriptasePCR.FEMSImmunolMed

Microbiol.2007;50:94–103.

8.StelzerS,EganS,LarsenMR,BartlettDH,KjellebergS.

UnravellingtheroleoftheToxR-liketranscriptional

regulatorWmpRinthemarineantifoulingbacterium

Pseudoalteromonastunicata.Microbiology.2006;152:1385–1394.

9.WangJ,YingT,WangH,etal.2-DreferencemapofBacillus

anthracisvaccinestrainA16Rproteins.Proteomics.

2005;5:4488–4495.

10.GoncalvesER,HaraH,MiyazawaD,DaviesJE,EltisLD,Mohn

WW.Transcriptomicassessmentofisozymesinthebiphenyl

pathwayofRhodococcussp.strainRHA1.ApplEnviron

Microbiol.2006;72:6183–6193.

11.HeYW,XuM,LinK,etal.Genomescaleanalysisofdiffusible

signalfactorreguloninXanthomonascampestrispv.

campestris:identificationofnovelcell-cell

communication-dependentgenesandfunctions.Mol

Microbiol.2006;59:610–622.

12.deSouzaAA,TakitaMA,Coletta-FilhoHD,etal.Analysisof

geneexpressionintwogrowthstatesofXylellafastidiosaand

itsrelationshipwithpathogenicity.MolPlantMicrobeInteract.

2003;16:867–875.

13.QiaoJ,HuangS,TeR,WangJ,ChenL,ZhangW.Integrated

proteomicandtranscriptomicanalysisrevealsnovelgenes

andregulatorymechanismsinvolvedinsaltstressresponses

inSynechocystissp.PCC6803.ApplMicrobiolBiotechnol.

2013;97:8253–8264.

14.QiaoJ,ShaoM,ChenL,etal.Systematiccharacterizationof

hypotheticalproteinsinSynechocystissp.PCC6803reveals

proteinsfunctionallyrelevanttostressresponses.Gene.

2013;512:6–15.

15.KumarA,BimolataW,KannanM,KirtiPB,QureshiIA,Ghazi

IA.Comparativeproteomicsrevealsdifferentialinductionof

bothbioticandabioticstressresponseassociatedproteinsin

riceduringXanthomonasoryzaepv.oryzaeinfection.Funct

IntegrGenom.2015;15:425–437.

16.MeileJC,WuLJ,EhrlichSD,ErringtonJ,NoirotP.Systematic

(9)

proteininBacillussubtilis:identificationofnewproteinsat

theDNAreplicationfactory.Proteomics.2006;6:2135–2146.

17.MartinsPM,LauIF,BacciM,etal.Subcellularlocalizationof

proteinslabeledwithGFPinXanthomonascitrissp.citri:

targetingthedivisionseptum.FEMSMicrobiolLett.

2010;2010:23.

18.FieldsS,SongO.Anovelgeneticsystemtodetect

protein–proteininteractions.Nature.1989;340:245–246.

19.KarimovaG,PidouxJ,UllmannA,LadantD.Abacterial

two-hybridsystembasedonareconstitutedsignal

transductionpathway.ProcNatlAcadSciUSA.

1998;95:5752–5756.

20.RainJC,SeligL,DeReuseH,etal.Theprotein–protein

interactionmapofHelicobacterpylori.Nature.

2001;409:211–215.

21.PuigO,CasparyF,RigautG,etal.Thetandemaffinity

purification(TAP)method:ageneralprocedureofprotein

complexpurification:agenericproteinpurificationmethod

forproteincomplexcharacterizationandproteome

exploration.Methods.2001;24:218–229.

22.RigautG,ShevchenkoA,RutzB,WilmM,MannM,Seraphin

B.Agenericproteinpurificationmethodforproteincomplex

characterizationandproteomeexploration.NatBiotechnol.

1999;17:1030–1032.

23.BurckstummerT,BennettKL,PreradovicA,etal.Anefficient

tandemaffinitypurificationprocedureforinteraction

proteomicsinmammaliancells.NatMethods.

2006;3:1013–1019.

24.ButlandG,Peregrin-AlvarezJM,LiJ,etal.Interaction

networkcontainingconservedandessentialprotein

complexesinEscherichiacoli.Nature.2005;433:531–537.

25.DawsonSC,PhamJK,HouseSA,SlawsonEE,CronemboldD,

CandeWZ.Stabletransformationofanepisomal

protein-taggingshuttlevectorinthepiscinediplomonad

Spironucleusvortens.BMCMicrobiol.2008;8:71.

26.GullyD,MoinierD,LoiseauL,BouveretE.Newpartnersof

acylcarrierproteindetectedinEscherichiacolibytandem

affinitypurification.FEBSLett.2003;548:90–96.

27.KamilJP,CoenDM.Humancytomegalovirusproteinkinase

UL97formsacomplexwiththetegumentphosphoprotein

pp65.JVirol.2007;81:10659–10668.

28.MayerD,BaginskyS,SchwemmleM.Isolationofviral

ribonucleoproteincomplexesfrominfectedcellsbytandem

affinitypurification.Proteomics.2005;5:4483–4487.

29.MeimaME,WeeningKE,SchaapP.Vectorsforexpressionof

proteinswithsingleorcombinatorialfluorescentprotein

andtandemaffinitypurificationtagsinDictyostelium.Protein

ExprPurif.2007;53:283–288.

30.NakagawaT,KuroseT,HinoT,etal.Developmentofseriesof

gatewaybinaryvectors,pGWBs,forrealizingefficient

constructionoffusiongenesforplanttransformation.JBiosci

Bioeng.2007;104:34–41.

31.RohilaJS,ChenM,CernyR,FrommME.Improvedtandem

affinitypurificationtagandmethodsforisolationofprotein

heterocomplexesfromplants.PlantJ.2004;38:172–181.

32.VanLeeneJ,WittersE,InzeD,DeJaegerG.Boostingtandem

affinitypurificationofplantproteincomplexes.TrendsPlant

Sci.2008;13:517–520.

33.ZhouD,RenJX,RyanTM,HigginsNP,TownesTM.Rapid

taggingofendogenousmousegenesbyrecombineeringand

EScellcomplementationoftetraploidblastocysts.Nucleic

AcidsRes.2004;32:e128.

34.KimS,NguyenTD,LeeJ,etal.Homologousexpressionand

T3SS-dependentsecretionofTAP-taggedXo2276in

Xanthomonasoryzaepv.oryzaeinducedbyriceleafextract

anditsdirectinvitrorecognitionofputativetargetDNA

sequence.JMicrobiolBiotechnol.2013;23:22–28.

35.KimSH,LeeSE,HongMK,etal.Homologousexpressionand

quantitativeanalysisofT3SS-dependentsecretionof

TAP-taggedXoAvrBs2inXanthomonasoryzaepv.oryzae

inducedbyriceleafextract.JMicrobiolBiotechnol.

2011;21:679–685.

36.SchaadNW,PostnikovaE,LacyG,etal.Emended

classificationofxanthomonadpathogensoncitrus.SystAppl

Microbiol.2006;29:690–695.

37.SchaadNW,PostnikovaE,LacyGH,etal.Reclassificationof

Xanthomonascampestrispv.citri(exHasse1915)Dye1978

formsA,B/C/D,andEasX.smithiisubsp.citri(exHasse)sp.

nov.nom.rev.comb.nov.,X.fuscanssubsp.aurantifolii(ex

Gabriel1989)sp.nov.nom.rev.comb.nov.,andX.alfalfae

subsp.citrumelo(exRikerandJones)Gabrieletal.,1989sp.

nov.nom.rev.comb.nov.;X.campestrispvmalvacearum(ex

smith1901)Dye1978asX.smithiisubsp.smithiinov.comb.

nov.nom.nov.;X.campestrispv.alfalfae(exRikerandJones,

1935)dye1978asX.alfalfaesubsp.alfalfae(exRikeretal.,

1935)sp.nov.nom.rev.;and“var.fuscans”ofX.campestrispv.

phaseoli(exSmith,1987)Dye1978asX.fuscanssubsp.

fuscanssp.nov.SystApplMicrobiol.2005;28:494–518.

38.SambrookJ,FritschEF,ManiatisT.MolecularCloning:A

Laboratorymanual.2nded.ColdSpringHarbor,NY:Cold

SpringHarborLaboratoryPress;1989.

39.FerreiraH,BarrientosFJA,BaldiniRL,RosatoYB.

ElectrotransformationinthreepathovarsofXanthomonas

campestris.Appl.Microbiol.Biotechnol.1995;43:651–655.

40.UcciAP,MartinsPM,LauIF,BacciMJr,BelasqueJJr,Ferreira

H.AsymmetricchromosomesegregationinXanthomonascitri

ssp.citri.MicrobiologyOpen.2014;3:29–41.

41.RochaEP,DanchinA,ViariA.TranslationinBacillussubtilis:

rolesandtrendsofinitiationandtermination,insightsfrom

agenomeanalysis.NucleicAcidsRes.1999;27:3567–3576.

42.WeserS,GerlachM,KwakDM,CzerwinskaM,GodeckeA.

DetectionofTAP-taggedproteinsinWesternblot,confocal

laserscanningmicroscopyandFACSusingtheZZ-domain.J

BiochemBiophysMethods.2006;68:189–194.Epub2006June15.

43.Gueiros-FilhoFJ,LosickR.Awidelyconservedbacterialcell

divisionproteinthatpromotesassemblyofthetubulin-like

proteinFtsZ.GenesDev.2002;16:2544–2556.

44.LewisPJ,MarstonAL.GFPvectorsforcontrolledexpression

andduallabellingofproteinfusionsinBacillussubtilis.Gene.

1999;227:101–110.

45.BattestiA,BouveretE.Acylcarrierprotein/SpoTinteraction,

theswitchlinkingSpoT-dependentstressresponsetofatty

acidmetabolism.MolMicrobiol.2006;62:1048–1063.

46.BattestiA,BouveretE.Improvementofbacterialtwo-hybrid

vectorsfordetectionoffusionproteinsandtransferto

pBAD-tandemaffinitypurification,calmodulinbinding

peptide,or6-histidinetagvectors.Proteomics.

2008;8:4768–4771.

47.GullyD,BouveretE.Aproteinnetworkforphospholipid

synthesisuncoveredbyavariantofthetandemaffinity

purificationmethodinEscherichiacoli.Proteomics.

2006;6:282–293.

48.LeducD,BattestiA,BouveretE.Thehotdogthioesterase

EntH(YbdB)playsaroleinvivoinoptimalenterobactin

biosynthesisbyinteractingwiththeArCPdomainofEntB.J

Bacteriol.2007;189:7112–7126.

49.ZeghoufM,LiJ,ButlandG,etal.SequentialPeptideAffinity

(SPA)systemfortheidentificationofmammalianand

bacterialproteincomplexes.JProteomeRes.2004;3:

Referências

Documentos relacionados

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

As diferenças específicas do Conselho Europeu em relação ao Conselho da União Europeia previsto pelos artigos 202.º e seguintes do TCE são consideráveis: (a)

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

A infestação da praga foi medida mediante a contagem de castanhas com orificio de saída do adulto, aberto pela larva no final do seu desenvolvimento, na parte distal da castanha,

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-

1997 avaliaram o grau de severidade da ramulose em cinco genótipos de algodão e em 20 híbridos F1, em condições de campo em Viçosa-Minas Gerais e constataram que a variedade