• Nenhum resultado encontrado

Molecular dynamics simulations of momentum and thermal diffusion properties of near-critical argon along isobars.

N/A
N/A
Protected

Academic year: 2021

Share "Molecular dynamics simulations of momentum and thermal diffusion properties of near-critical argon along isobars."

Copied!
9
0
0

Texto

(1)

The

Journal

of

Supercritical

Fluids

jou rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / s u p f l u

Molecular

dynamics

simulations

of

momentum

and

thermal

diffusion

properties

of

near-critical

argon

along

isobars

Jakler

Nichele

a,b

,

Itamar

Borges

Jr.

a,b

,

Alan

B.

Oliveira

c

,

Leonardo

S.

Alves

a,d,∗ aDefenseEngineeringGraduateProgram,MilitaryInstituteofEngineering,22290-270RiodeJaneiro,Brazil

bChemicalEngineeringDepartment,MilitaryInstituteofEngineering,22290-270RiodeJaneiro,Brazil cDepartmentofPhysics,FederalUniversityofOuroPreto,35400-00OuroPreto,Brazil

dTheoreticalandAppliedMechanicsLaboratory,MechanicalEngineeringDepartment,FluminenseFederalUniversity,24210-240Niterói,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18October2015

Receivedinrevisedform11April2016 Accepted11April2016

Availableonline12April2016 Keywords:

Shearviscosity Bulkviscosity Thermalconductivity

Equilibriummoleculardynamics Stokeshypothesis

a

b

s

t

r

a

c

t

Threebasicdiffusionpropertiesofargon–shearviscosity,bulkviscosityandthermalconductivity–were studiedintheneighborhoodofthecriticalpointusingmoleculardynamics(MD)andtheLennard-Jones potentialenergyfunction.MDsimulationswereperformedalongthe1.0Pcand1.2Pcisobars.Green-Kubo

relationsandaLennard-Jonespairpotentialwereused.FourdifferentsetsofLennard-Jonesparameters wereused.Acomparisonofcomputedshearviscosityandthermalconductivityvalueswithdataavailable fromtheNationalInstituteofStandardsandTechnology(NIST)displayedagoodagreement.Resultsfor bulkviscosityindicatedthatvaluesofthispropertycannotbeneglectedinthisthermodynamicregion, aresultthatviolatesthetraditionalandmuch-assumedStokeshypothesisinclassicalfluidmechanics. Furthermore,itwasshownthatintheneighborhoodofthecriticalregionthebulkviscositycanhave largervaluesthantheshearviscosity.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Fluiddynamicsandheattransfermodelsarestronglyrelated

toaccurate values for transport coefficients. The Navier-Stokes

equation[1]andtheenergyequation[2]incorporateforagiven

substancethreetransport coefficients thatconnect thephysical

dynamicsofmomentumandheattothreeproperties,namely,bulk

viscosity,shearviscosityandthermalconductivity.

Thereareintheliteratureseveraldatasetsthatcollect

exper-imental values of shear and thermal conductivity for simple

substances. Theelectronic tablesfrom theNational Instituteof

StandardsandTechnology(NIST)[3],forinstance,allowthe

solu-tionofagreatnumberoftypicalengineeringproblems.Inthese

cases,thebulkviscosityisgenerallyneglectedbasedonthevalidity

ofStokeshypothesis[4]evenwhenthefluidisneither

incompress-iblenoramonoatomicdilutegas[5].Hence,bulkviscosityvalues

arerarelyfoundintables,technicalworksandengineeringprojects,

eventhoughtheyareneededforthecompletespecificationofthe

Navier-Stokesstresstensor.

∗ Correspondingauthorat:DefenseEngineeringGraduateProgram,Military Insti-tuteofEngineering,22290-270RiodeJaneiro,Brazil.

E-mailaddress:leonardo.alves@mec.uff.br(L.S.Alves).

However,intheneighborhoodofthecriticalpoint,availability

oftransportcoefficientdataisscarce.Moreover,theoryand

exper-imentdisplayanomaliesinthebehaviorofsomethermodynamic

andtransportproperties,usuallyappearsasadivergencetowards

infiniteorzerodependingontheproperty[6–10].Inparticular,

thehighcompressibilityofnear-criticalfluidsreducesthe

accu-racyofexperimentalmeasurements.Forthisclassoffluids,bulk

viscositydataareevenmorelimitedsincetheacousticabsorption

ofsoundwaves–themostusedexperimentaltechnique[11,12]

–issubject tohighlevelsoferror.Toovercomethisdrawback,

Brillouinscatteringwasdeveloped asa promising techniqueto

measurebulkviscosity,thoughitisstillnotwidelyknownandused

[13].

In order to overcome the aforementioned experimental

limitations, an interesting possibility is performing molecular

simulationsthatcansuitablymodelthenear-criticalstateand

com-putetransportcoefficients.Oneofthesemethodsisequilibrium

moleculardynamics(MD)[14–16].Inthisapproach,fundamental

thermophysicalpropertiessuchasenergy,temperature,pressure

canbedeterminedfromspecificaveragesofthedynamic

evolu-tionofanensembleofmolecules.Otherpropertiesareobtained

using relationsfrom thermodynamics and statisticalmechanics

including time correlations, e.g., transport properties [17].This

methodisusefulintheinvestigationsofphasediagrams[18]and

chemical reactions [19]. In the framework of MD, particle

tra-http://dx.doi.org/10.1016/j.supflu.2016.04.004

(2)

10

20

30

40

1.0

1.2

1.4

1.6

1.8

2.0

η

s

Pa

·s

)

T

r

10

20

30

40

1.0

1.2

1.4

1.6

1.8

2.0

η

s

Pa

·s

)

T

r

10

20

30

40

50

60

1.0

1.2

1.4

1.6

1.8

2.0

η

s

Pa

·s)

T

r

(d)

10

20

30

40

50

60

1.0

1.2

1.4

1.6

1.8

2.0

η

s

Pa

·s)

T

r

(c)

10

20

30

40

50

60

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

η

s

Pa

·s

)

T

r

(e)

Fig.1.Shearviscositycomputedusing104argonatomsintheMDsimulationforP=1.0P

cinarangeofreducedtemperaturesfrom1.0to2.0usingtheLennard-Jonespotential

withdifferentparameterspairs–(a)[25],(b)[26],(c)[29],(d)[30]–and(e)theaveragevalueswitherrorbars.

jectoriesin phase spacedefined bypositions andvelocities are

computedfromtheforcesresultingfromaninteractionpotential

energybetweenpairsofatomsandmolecules.Themostemployed

modelfornon-bondedparticlesistheLennard-Jones(L-J)

poten-tial[20]. It hasa simple mathematical expressionand leadsto

accurateresultsnotably inthestudyofnoblegases.TheL-Jhas

alreadybeenusedtocomputetransportpropertiesof

supercrit-ical fluidsfar fromtheir critical points, transport properties of

near-criticalfluidsusingother approachesand otherproperties

[21–26].

In this work, we investigated transport properties of

near-critical argon using equilibrium MD. The present simulations

are based on Green-Kubo theory and use four different

ver-sionsofargonLennard-Jonespotentialsavailableintheliterature.

The importance of investigating argonin this workis twofold.

First, it is the most abundant noble gas in the atmosphere.

Second, it is an important substance employed for calibration

purposes in laboratoriesbecauseit is chemicallyinert and has

a low cost. The present resultswere compared with available

experimental data, which allows one to estimate their range

of applicability. Due to the scarcity of bulk viscosity

experi-mental values, especial emphasis was given to this transport

propertyinsuchawaythattheycanbeusedinsimulationsof

compressible fluid flow [27] aswell as heat transfer problems

[28].

2. Fundamentals

2.1. MoleculardynamicsandtheLennard-Jonespotential

ThebasisoftheMDtechniqueisthecomputationalsimulation

ofNewton’s equationofmotionfora setofinteractingmoving

particles.Forasystemconsistingofargonatomsinaregularbox,

onlyinteractionsbetweenpairsofnon-bondedatomswere

consid-ered.Inotherwords,many-bodyinteractionsarenotconsidered

explicitly.

Apairpotentialsuitablymodelstheinteractionsbetweenatom

pairs.ThesimplestrealisticmodelforthispurposeistheL-J12-6

potential.ItisatwoparametersmodelgivenbyEq.(1)

ULJ(rij)=



4␧



/rij12−/rij6



, rij≤rc 0, rij>rc (1)

whereε isthedepthofthepotentialwell,is thezero-energy

distance,rij isthedistancebetweenparticlesiandj,andrc isa

cut-offdistancethatplaysanimportantroleinreducingthe

com-putationalcost.Tousethispotentialitisnecessarytocorrectthe

computedvalueofthepotentialinordertoincludethesmall

ener-giesresultingfromlong-rangeinteractionsfartherthanrc[20].The

(3)

10

20

30

40

50

1.0

1.2

1.4

1.6

1.8

2.0

η

s

Pa·

s)

T

r

10

20

30

40

50

1.0

1.2

1.4

1.6

1.8

2.0

η

s

Pa·

s)

T

r

10

20

30

40

50

60

1.0

1.2

1.4

1.6

1.8

2.0

η

s

Pa

·s

)

T

r

(d)

10

20

30

40

50

60

1.0

1.2

1.4

1.6

1.8

2.0

η

s

Pa

·s

)

T

r

(c)

10

20

30

40

50

60

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

η

s

Pa·

s)

T

r

(e)

Fig.2.Shearviscositycomputedusing104argonatomsintheMDsimulationforP=1.2P

cinarangeofreducedtemperaturesfrom1.0to2.0usingLennard-Jonespotential

withdifferentparameterspairs–(a)[25],(b)[26],(c)[29],(d)[30]–and(e)theaveragevalueswitherrorbars.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 Norm a liz ed J p mn co rr e la ti o n t(ps) P = 1.00 Pc Tr = 1.00 Tr = 1.10 Tr = 2.00 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 Norm a liz ed J p mn co rr e la ti o n t(ps) P = 1.20 Pc Tr = 1.00 Tr = 1.10 Tr = 2.00

Fig.3.Correlationsofoff-diagonalstresstensorelementsof104argonatomsintheMDsimulationof1.0P

cand1.2Pcisobarsforthreetemperatures1.00Tc,1.10Tcand2.00Tc

usingLennard-Jonespotentialparametersfrom[25].

termdescribesattractioneffects.Eachi–jpairofparticlesinteracts

viaaforcefijthatcanbecalculatedfrom

fij=−

ULJ(rij) (2)

Themotionof eachparticleisdeterminedfromitsresultant

force. An important feature of MD is that an accurate

poten-tialenergyexpressiongenerallyleadstoaccuratethermophysical

properties. When using the Lennard-Jones 12-6 expression, all

possiblemodelchoicesarerestrictedtoselectingandεvalues

inadditiontoaspecialcareconcerningthercvaluesinallcases.In

ordertoconsideruncertaintiesoftheLJpotentialparametrization

ofargon,fourdifferentpairsofandεandtheirrespectivecritical

constantswereusedandcomparedinthiswork.Theyareshown

inTable1.

InMDsimulationsitispossibletoadopttheconceptof

(4)

0

20

40

1.0

1.2

1.4

1.6

1.8

2.0

κ

(mW/

K

)

T

r

0

20

40

1.0

1.2

1.4

1.6

1.8

2.0

κ

(mW/

K

)

T

r

0

20

40

60

80

1.0

1.2

1.4

1.6

1.8

2.0

κ

(m

W

/m·

K

)

T

r

(d)

0

20

40

60

80

1.0

1.2

1.4

1.6

1.8

2.0

κ

(m

W

/m·

K

)

T

r

(c)

0

20

40

60

80

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

κ

(m

W

/m·

K

)

T

r

(e)

104.921

Fig.4.Thermalconductivityof104argonatomsforP=1.0P

cinarangeofreducedtemperaturesfrom1.0to2.0usingLennard-Jonespotentialwithdifferentparameters

pairs–(a)[25],(b)[26],(c)[29],(d)[30]–and(e)theaveragevalueswitherrorbars.

Table1

ParameterpairsfortheLennard-Jones12-6potentialargonatomsalongwiththeir respectivecriticalconstants.

ModelParameters CriticalConstants Ref.

␴(Å) ␧/kB(K−1) Tc(K) Pc(atm) ␳c(kg/m3)

3.405 119.8 150.86 48.34 535.397 Michelsetal.[25]

3.43 119.3 150.86 – 535.397 Levelt[26]

3.345 125.7 150.86 – 527.265 White[29]

3.3952 116.79 153.00 51.42 532.107 Vrabecetal.[30]

Tc:criticaltemperature;Pc:criticalpressure;␳c:criticaldensity;kB:Boltzmann

constant.

isolatedsystem(e.g.,microcanonicalorNVEensemble),aclosed

system (canonical, isochoric-isothermal or NVT ensemble), an

isobaric-isothermalsystem(NPTensemble),among other

possi-bilities,withoutusingpartitionfunctionsthatmaybedifficultto

compute.Beforephysicalargumentsareconsidered,thechoiceof

anensembleisrelatedtotheuseofaspecificnumericalintegration

schemeoftheequationsofmotion.Eachalgorithmcaninclude

arti-ficialthermostatsorbarostatstocontrolthebasicthermodynamic

variables—N,V,TandP[14].Themathematicalexpressionsusedin

MDandderivedfromstatisticalmechanicstheoryforcomputing

thethermophysicalpropertiesofinterestmustbeobtainedfrom

suitableensembles.

It is also important to avoid edge effects. For this

pur-pose,MDsimulationsofbulksystemsgenerallyemployperiodic

boundaryconditions.Theseartificialboundariesimposedonthe

systemrestrict thesimulation boxsize. Thisapproach is called

minimal-image convention and it states that the characteristic

dimensionofthesimulationbox–thelengthforacubicbox–must

begreaterthantwicethecutoffradiusrc.

2.2. Green-Kuboformulasfortransportproperties

Equilibrium MD employs Green-Kubo formulas [31] for the

computation of shear and bulk viscosity as well as of thermal

conductivity.Thethreecoefficientscouldbeobtained

experimen-tally by perturbing the systemtowards non-equilibrium states

and observing its response that is associated with irreversible

processes. Therefore,in principle,to computethemone should

usenon-equilibriummoleculardynamics(NEMD)insteadof

equi-librium MD. NEMDisbased onthedirectapplication ofa heat

ormomentumfluxonthesimulation box[32,33].On theother

hand,thefluctuationdissipationtheoremallowsthecomputation

oftransportcoefficientsfromthemicroscopicfluctuationsofthe

system.Thistheoremstatesthatsmallfluctuationsofthesystem

arerelatedtointernalrelaxationprocesses.Therefore,transport

coefficientsthencanbecalculatedasintegralsoftime-correlation

functions of the microscopic stress tensor and internal energy

fluxesinanequilibriumstate.

Shear viscositys is related totheresistanceof thefluid to

(5)

0

20

40

60

1.0

1.2

1.4

1.6

1.8

2.0

κ

(mW

/m·

K

)

T

r

0

20

40

60

1.0

1.2

1.4

1.6

1.8

2.0

κ

(mW

/m·

K

)

T

r

0

20

40

60

80

1.0

1.2

1.4

1.6

1.8

2.0

κ

(mW

/m·

K

)

T

r

(d)

0

20

40

60

80

1.0

1.2

1.4

1.6

1.8

2.0

κ

(mW

/m·

K

)

T

r

(c)

0

20

40

60

80

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

κ

(mW

/m

·K

)

T

r

Average Results for κ and NIST data at 1.00P

c

Fig.5.Thermalconductivityof104argonatomsforP=1.2P

cinarangeofreducedtemperaturesfrom1.0to2.0usingLennard-Jonespotentialwithdifferentparameterpairs

–(a)[25],(b)[26],(c)[29],(d)[30]–and(e)theaveragevalueswitherrorbars.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100 Norm a lize d J Q co rr e la ti o n t(ps) P = 1.00 Pc Tr = 1.00 Tr = 1.10 Tr = 2.00 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100 Norm a lize d J Q co rr e la ti o n t(ps) P = 1.20 Pc Tr = 1.00 Tr = 1.10 Tr = 2.00

Fig.6.Heatfluxcorrelationsof104argonatomsof1.0P

cand1.2Pcisobarsforthreetemperatures1.00Tc,1.10Tcand2.00TcusingLennard-Jonespotentialparametersfrom

[25].

propertyisobtainedbyintegratingtheensembleaverageofthe

timecorrelationfunctionofthestresstensorJpoff-diagonal

ele-ments,whichrepresentthemomentumfluxes,

s= 1 3kBVT



m<n



∞ 0 Jp mn(0)Jmnp (t)dt (3)

wheremandnareindexesrepresentingtheCartesiancoordinates

x,yandzwithm /=n,kBistheBoltzmannconstant,andVandTare

respectivelythevolumeandtemperatureofthesystem.

Thebulkviscositybdescribestheresistanceofafluidto

dilata-tionassumingasmallvolumeelementofconstantshape.Inthe

(6)

10

20

30

40

1.0

1.2

1.4

1.6

1.8

2.0

η

b

Pa·

s)

T

r

10

20

30

40

1.0

1.2

1.4

1.6

1.8

2.0

η

b

Pa·

s)

T

r

10

20

30

40

50

60

1.0

1.2

1.4

1.6

1.8

2.0

η

b

Pa·

s)

T

r

(d)

10

20

30

40

50

60

1.0

1.2

1.4

1.6

1.8

2.0

η

b

Pa·

s)

T

r

(c)

10

20

30

40

50

60

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

η

b

Pa

·s

)

T

r

(e)

206.263 180.856 2777.02 798.348

Fig.7. Bulkviscosityof104argonatomsfor1.0P

cisobarinarangeofreducedtemperaturesfrom1.0to2.0usingLennard-Jonesmodelwithdifferentparameterspairs–(a)

[25],(b)[26],(c)[29],(d)[30]–and(e)theaveragevaluesofbcomparedtotheaveragevaluesofsforthesameisobar.

theensembleaverageofthetimecorrelationfunctionofthestress

tensorJpdiagonalelementsminustheproductPV.Inotherwords,

b= 1 3kBVT



m



∞ 0 (Jp mm(0)−P(0)V)(Jmmp (t)−P(t)V)dt (4)

Thermalconductivity,,physicallyexpressestheabilityofthe

substanceintransferringthermalenergywhensubjectto

temper-aturegradients.Itiscomputedbyintegratingtheensembleaverage

oftimecorrelationfunctionofthemicroscopicheatfluxJQvector,

namely, = 1 3kBVT2



0 JQ(0)·JQ(t)dt (5)

InEqs.(3)and(4),thestresstensorJpcanbecomputedfrom

Jp= N



i=1 mivivi− N



i=1 N



j>i rij−



Uij



 (6)

wheremiisthemassoftheparticlei,Uij theinteraction

poten-tial between particles i and j, and the prime means matrix

transpose.Diagonalelementshavetheindexmequalton.InEq.

(5),theenergyfluxvectoriscalculatedfrom

JQ = 1 V



N i=1 eivi+ 1 2 N



i<j1 (−

Uij·(vi+vj))rij

(7)

whereeiistheenergy,potentialandkinetic,ofparticleiwhereas

v

iisthevelocityofparticlei.

2.3. Near-criticaleffects

Thethermophysicalandrheologicalpropertiesofasubstance

in the neighborhood of the critical point are characterized by

ananomalousbehavior.Thesecriticalanomaliesareobservedas

divergenceseithertozeroorinfinity.Theoryandexperimentshow

thatbulkandshearviscositiesandthermalconductivitydivergeto

infinityinthevicinityofthecriticalpoint[34,23,35–39,21,40,41].

Oneimportantfeatureofthesedivergencesistheiruniversality,

i.e.,theyaredescribedbyuniversalparametersandexpressions

thatdonotdependonthenatureofthefluid.Thesemodelsare

powerlawshavingasingleparameterthatindicatestheseparation

ofeachthermodynamicstatefromthecriticalpoint.Forthetwo

viscositiesandthermalconductivity,thisparameteristhe

temper-aturedifferenceT=T−Tc.However,itisalsoimportanttoidentify

(7)

10

30

50

70

90

1.0

1.2

1.4

1.6

1.8

2.0

η

b

Pa·

s)

T

r

10

30

50

70

90

1.0

1.2

1.4

1.6

1.8

2.0

η

b

Pa·

s)

T

r

10

30

50

70

90

110

1.0

1.2

1.4

1.6

1.8

2.0

η

b

Pa·

s)

T

r

(d)

10

30

50

70

90

110

1.0

1.2

1.4

1.6

1.8

2.0

η

b

Pa·

s)

T

r

(c)

10

30

50

70

90

110

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

η

b

Pa·

s)

T

r

(e)

296.885 (for 1.04Tc)

Fig.8.Bulkviscosityof104argonatomsfor1.2P

cisobarinarangeofreducedtemperaturesfrom1.0to2.0usingLennard-Jonesmodelwithdifferentparameterspairs–(a)

[25],(b)[26],(c)[29],(d)[30]–and(e)theaveragevaluesofbcomparedtotheaveragevaluesofsforthesameisobar.

Fig.9. Correlationsofdiagonalstresstensorelementsof104argonatomsof1.0P

cand1.2Pcisobarsforthreetemperatures1.00Tc,1.10Tcand2.00TcusingLennard-Jones

potentialparametersfrom[26].

differentpathsleadtodifferentpowerlawcoefficientsthatcould

berelatedthroughanequationofstate[6].Forinstance,alongthe

criticalisochore,onehas

≈◦T+− (8)

s≈s◦T− (9)

where=0.630±0.001,=0.031±0.004and =1.239±0.002are

universalexponentsobtainedfromrenormalizationgrouptheory

[42], with ◦ and s◦ depending on the substance. In

particu-lar,studiesseekingtounderstandthebehaviorofbulkviscosity

nearcriticalconditionsarerare.Fiveofthemostrepresentative

onesbasedeitheronMonteCarlosimulations,oronMDandeven

(8)

importantsinceitcanhelpovercomingthesedifficultiesasshown next.

3. Computationalmethods

The MDsimulations werecarried out usingtheopen source

codeLAMMPS[47].Shearviscosityandthermalconductivitywere

computedintheNVTensembleusinga Nosé-Hooverstyle

non-Hamiltonian equation of motion [48] in order to improve the

control ofthe simulation temperature.In order topreventany

influenceover pressure fluctuations,bulk viscosityvalues were

obtainedintheNVEensembleusingtheVerletalgorithm.

Followingrecent papers focusing onnearcritical MD

simu-lations[9,49],weused104 argonatomsin allsimulations.This

numberofparticlesleadstoabettercontrolofthethermodynamic

stateinthesimulationboxandimprovedstatisticalaverages.The

numericalintegrationofthetimecorrelationfunctionsofthe

trans-portcoefficients(Eqs.(3)–(5))usedthetrapezoidalruleoverall

timesteps.Eachsimulationwasequilibratedfor2ns(2×106time

steps)beforeaverageswerecomputedforatimespanof10ns(107

timesteps).Atimestepof1fswasused.Correlationsofheatand

momentumfluxeswerecomputedforasamplinglengthof200ps

(2×105 timesteps).A largecutoff radiusof8 waschosento

improvetheaccuracyinthecalculationoftheinteractionenergies

andbetterdescribelong-rangecorrelationstypicalofthecritical

region.Thecorrectioninthepotentialforrij>rcwascomputed

inte-gratingaunitaryradialdistributionfunctionforthesedistances

[20].By employinga largevalueoftherc distance,simulations

weremorerealisticforadensefluidanddescribedmoreaccurately

long-rangecorrections.Periodicboundaryconditionswereused.A

temperaturerangefrom1.0Tcupto2.0Tcalongtwoisobars–1.0Pc

and1.2Pc–wasconsidered.ThefourpairsofL-Jparametersshown

inTable1wereusedinthecomputations.Moredetailsaboutthe

simulationprocedurecanbefoundelsewhere[18].

4. Resultsanddiscussion

Figs.1and2showshearviscosityresultsofargonobtainedfrom

theMDsimulationsalongthe1.0Pc and1.2Pc isobarsusingfour

differentsetsofL-Jparameterstakenfromtheliterature(Table1).

Therearenosignificantdifferencesbetweentheresults

com-puted using all the L-J parameter pairs according to Table 1.

Therefore,computationof theshearviscosityisbarelysensitive

tosmallvariationsintheparametersoftheinteractionpotential.

Furthermore,MDsimulationswereabletoreproducethe

behav-ioroftheshearviscositycriticaldivergencequitewell.Figs.1eand

2eshowthatsimulationsareingoodagreementwithNISTdata.

TheresultsobtainedusingMichelsetal.[25]parametersfortheL-J

potentialexhibitabetterdescriptionofthecriticaldivergencein

theshearviscosity.

ToensuretheconvergenceoftheresultsinFigs.1and2,we

present in Fig.3 a setof normalizedJp

mn correlation functions

ofthreerepresentativetemperaturesforbothisobars.Theresults

agreewithdataalreadyreportedinliterature[50].

Figs.4–6showthecomputedthermalconductivityvaluesand

theheatfluxcorrelationfunctionsofargon,asdonefortheshear

viscosity.TheresultsarealsoingoodagreementwiththeNISTdata.

Allparameterspairsleadtosimilarresultswithsmall

discrepan-ciesascomparedtotheaveragevalues.Theparameterpairfrom

Michelsetal.[25]displaysasmootherbehaviorincomparisonto

NISTdataandbetterrepresentedthecriticaldivergence.Theerror

barsaresmallerascomparedtotheshearviscosityones.InFig.6,

thisplotshowscorrelationsupto100psandthesimulations

con-sideredthecorrelationsupto200ps.

Finally,Figs.7–9collectsMDbulkviscosityresultsfor argon

andthesetofcorrelationfunctionsusedtocomputethem.Since

thesedataarenotavailableinNISTtables,theycanbeespecially

useful.Onceagain,allfourpairsofL-Jparametersleadtosimilar

results,butinthiscasetheL-JparametersfromWhite[29]showed

aclearlysmootherbehaviorandabetterdescriptionofthe

criti-caldivergence.Largedeviationswerefoundintheaveragevalueof

bulkviscosityresults.Thesedeviationsareconsiderablylargerthan

deviationsreportedforshearviscosityandthermalconductivity.

Moreover,Fig.9showsthatthediagonalstresstensorcorrelations

exhibitabetterconvergenceifcomparedtothermalconductivity

correlations.Thecorrelationanalysisofthebulkviscositysuggests

thatthis propertyiseasiertocomputeascomparedtothermal

conductivityevennearthecriticalpoint.

AnotherimportantfeatureinFigs.7and8isthenon-zerovalue

ofthebulkviscosityfarfromthecriticaltemperature.AtTr=2.0

(≈300K)thispropertyreachesvaluesaround30␮Paswithan

aver-agedeviationof±5␮Pasconsideringtheresultsobtainedfromall

setofL-Jparameters.Thisresultshowsthateventhoughargonis

amonoatomicgas,theStokeshypothesisaswellasthekineticgas

theoryassumptions[52]donotholdandthuscannotbeused.

Fur-thermore,thispropertyhasthesameorderofmagnitudeofthe

shearviscosityvaluesand,hence,cannotbeneglectedin

simula-tionsofthemomentumconservationequations.

Figs.7eand8ecomparebothviscositiesobtainedusing

aver-agesovertheMDresultsandthefoursetsofL-Jparametersateach

Trvalue.Theseresultsindicatethatbulkviscosityvaluesare

actu-allylargerthantheirshearcounterpartsforthethermodynamic

statesconsideredhere.Thisisanimportantfindingbecause

classi-calfluidmechanicsanalysisneglectsthebulkviscosity[53].From

thesefiguresweproposeanempiricalrelationbetweenboth

vis-cositiesateachisobar:oneshoulduseb≈1.3satthe1.0Pcisobar

andb≈1.6satthe1.2Pcisobar.Therefore,thetraditional

assump-tionofneglectingthisdifferencecannotbeaprioriassumedinthe

neighborhoodofthecriticalpoint.

5. Conclusions

Inthisworkitwasshownthatmoleculardynamicssimulations

usingtheLennard-Jonespotentialtodescribethepotentialenergy

betweenargonatomsallowonetoobtainaccuratevaluesofboth

shearviscosityandthermalconductivityalongisobarsinthe

neigh-borhoodofthecriticalpoint.Thecomputedpropertieswereingood

agreementwithexperimentaldatacollectedintheNISTdatabase.

Thisgoodagreementleadsustocomputealsothebulkviscosity

inthesamethermodynamicregioneventhoughNISTdataisnot

availableinthiscase.

Intheneighborhoodofthecriticalpoint,theresultsforbulk

vis-cosityobtainedwithmoleculardynamicsshowthat:(a)shearand

bulkviscositiesdivergealongthesameisobarwithsimilar

behav-ior;(b)bulkviscositydoesnotgotozeroawayfromthecritical

pointinspiteofbeingclosetoit,thuscontradictingStokes

hypoth-esisandkinetictheoryevenforamonoatomicdilutegas;(c)bulk

viscosityisnotonlyofthesameorderofmagnitudeasshear

viscos-itynearthecriticalpoint,butitisactuallylargerthanitscounterpart

inthisregion.

The present approach of usingmolecular dynamicsto

com-pute diffusionproperties of a fluid in the neighborhood of the

criticalpointisgeneralandwehaveshownthatcanbeusedto

(9)

complicatedandpracticalsystems(e.g.,N2).Investigationsalong

theselinesareunderwayinourgroup.

Thecompletesetofresultsforthetransportpropertiesis

avail-ableasanexcelfileintheSupplementarymaterialofthiswork.

Acknowledgements

L.S.deB.A.thanksBrazilianagenciesFAPERJ(throughgrants

E-26/110.846/2011and E-26/111.670/2012),CNPq (throughGrant

MCT/CNPq14-481072/2012-8)andCapes. I.B.and J.N.thankthe

sameagenciesforsupportofthisresearchaswelltheBrazilian

Army.L.S.deB.A.acknowledgesthefinancial supportfromthe

UnitedStatesAirForce(throughtheSOARDgrant

FA9550-13-1-0178). A.B.O. thanksCNPq(through Grants303820/2013-6 and

459852/2014-0)aswellaspartialfinancialsupportfrom

PROPP-UFOP(throughAuxílioaPesquisadores2015Grant).Wewouldlike

alsotothanktherefereesforthevaluablesuggestionsconcerning

dataanalysis.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,

intheonlineversion,athttp://dx.doi.org/10.1016/j.supflu.2016.04.

004.

References

[1]P.K.Kundu,I.M.Cohen,D.R.Dowling,FluidMechanics,6thed.,Academic Press,London,2015.

[2]D.W.Hahn,M.N.Özisik,HeatConduction,3rded.,JohnWiley&Sons,New York,2012.

[3]NationalInstituteofStandardsandTechnologyThermophysicalPropertiesof FluidSystems,2011(Available:)http://webbook.nist.gov/chemistry/fluid/. [4]G.G.Stokes,Onthetheoriesofinternalfrictionoffluidsinmotion,Trans.

CambridgePhilos.Soc.8(1845)287–305.

[5]M.Gad-el-Hak,Stoke’shypothesisforanewtonian,isotropicfluid,J.Fluids Eng.117(1995)3–5.

[6]P.Carlès,Abriefreviewofthethermophysicalpropertiesofsupercritical fluids,J.Supercrit.Fluids53(2012)2–11.

[7]D.Beysens,J.Straub,D.Turner,Phasetransitionsandnear-critical phenomena,in:H.U.Walter(Ed.),FluidSciencesandMaterialsSciencein Space,Springer-Verlag,Berlin,1987,pp.221–256.

[8]H.E.Stanley,IntroductiontoPhaseTransitionsandCriticalPhenomena, OxfordUniversityPress,Oxford,1971.

[9]D.Bolmatov,V.V.Brazhkin,K.Trachenko,Thermodynamicbehaviourof supercriticalmatter,Nat.Commun.4(2013)2331.

[10]T.M.Yigzawe,R.J.Sadus,Intermolecularinteractionsandthethermodynamic propertiesofsupercriticalfluids,J.Chem.Phys.138(2013)194502.

[11]R.E.Graves,B.M.Argrow,Bulkviscosity:pasttopresent,J.Thermophys.Heat Transf.13(1999)337–342.

[12]J.A.Cowan,P.W.Ward,Ultrasonicattenuationandthebulkviscosityofliquid argonnearthecriticalpoint,Can.J.Phys.51(1973)2219–2224.

[13]X.He,H.Wei,J.Shi,J.Liu,S.Li,W.Chen,X.Mo,Experimentalmeasurementof bulkviscosityofwaterbasedonstimulatedBrillouinscattering,Opt. Commun.285(2012)4120–4124.

[14]S.B.Frenkel,B.Smit,UnderstandingMolecularSimulation,2nded.,Academic Press,SanDiego,2002.

[15]K.Binder,Computersimulationsofcriticalphenomenaandphasebehaviour offluids,Mol.Phys.108(2010)1797–1815.

[16]P.T.Cummings,Molecularsimulationofnear-criticalandsupercriticalfluids, in:E.Kiran,J.M.H.Levelt-Sengers(Eds.),SupercriticalFluids:Fundamentals andApplications,KluwerAcademicPublishers,Dordrecht,1994,pp.387–409.

[17]D.A.McQuarrie,StatisticalMechanics,UniversityScienceBooks,MillValley, 2000.

[18]J.Nichele,L.S.deB.Alves,I.BorgesJr.,EquationofStatefornearcriticalargon obtainedviamoleculardynamics,HighTemp.—HighPressures43(2014) 385–400.

[19]E.Martínez-Nú ˜nez,I.BorgesJr.,S.A.Vázquez,Associationrateconstantsfor theCH3+NO→CH3NOreactionbyclassicaltrajectoryandCVTST calculations,J.Phys.Org.Chem.15(2002)123–129.

[21]S.Roy,S.K.Das,Transportphenomenainfluids:finite-sizescalingforcritical behavior,Europhys.Lett.94(2011)36001.

[22]T.Hamanaka,R.Yamamoto,A.Onuki,Moleculardynamicssimulationofheat conductioninnear-criticalfluids,Phys.Rev.E71(2005)011507.

[23]O.C.Nwobi,L.N.Long,M.M.Micci,Moleculardynamicsstudiesoftransport propertiesofsupercriticalfluids,in:Proceedingsofthe35thAIAAAerospace SciencesMeeting&Exhibit,Reno-NV,1997,pp.1–11.

[24]R.L.Rowley,M.M.Painter,Diffusionandviscosityequationsofstatefora Lennard-Jonesfluidobtainedfrommoleculardynamicssimulations,Int.J. Thermophys.18(1997)1109–1121.

[25]A.Michels,H.Wijker,H.K.Wijker,Isothermsofargonbetween0◦Cand150C andpressuresupto2900atmospheres,Physica15(1949)627–633.

[26]J.H.M.Levelt,Thereducedequationofstate,internalenergyandentropyof argonandxenon,Physica26(1960)361–377.

[27]P.C.Teixeira,L.S.deB.Alves,Pistoneffectcharacteristictimedependenceon equationofstatemodelchoice,in:ProceedingsofCHT-12,ICHMTDigital Library,Bath,2012.

[28]L.S.deB.Alves,Anintegraltransformsolutionforunsteadycompressibleheat transferinfluidsneartheirthermodynamiccriticalpoint,Therm.Sci.17 (2013)673–686.

[29]J.A.White,Lennard-Jonesasamodelforargonandtestofextended renormalizationgroupcalculations,J.Chem.Phys.111(1999)9352–9356.

[30]J.Vrabec,J.Stoll,H.Hasse,Asetofmolecularmodelsforsymmetric quadrupolarfluids,J.Phys.Chem.B105(2001)12126–12133.

[31]R.Zwanzig,Time-correlationfunctionsandtransportcoefficientsinstatistical mechanics,Annu.Rev.Phys.Chem.16(1965)67–102.

[32]G.Galliéro,C.Boned,A.Baylaucq,Moleculardynamicsstudyofthe Lennard-Jonesfluidviscosity:applicationtorealfluids,Ind.Eng.Chem.Res. 44(2005)6963–6972.

[33]D.J.Evans,ThermalconductivityoftheLennard-Jonesfluid,Phys.Rev.A34 (1986)1449–1453.

[34]B.J.Bailey,K.Kellner,Thethermalconductivityofargonnearthecritical point,Br.J.Appl.Phys.18(1967)1645–1647.

[35]H.J.M.Hanley,R.D.McCarty,J.V.Sengers,Viscosityandthermalconductivity coefficientsofgaseousandliquidoxygen,in:NASACr-2440,Universityof Maryland,1974.

[36]B.A.Younglove,H.J.M.Hanley,Theviscosityandthermalconductivity coefficientsofgaseousandliquidargon,J.Phys.Chem.Ref.Data15(1986) 1323–1337.

[37]K.Meier,ComputerSimulationandInterpretationoftheTransport CoefficientsoftheLennard-JonesModelFluid,UniversityoftheFederal ArmedForcesHamburg,Hamburg,2002(Thesis).

[38]L.P.Kadanoff,J.Swift,Transportcoefficientsneartheliquid-Gascriticalpoint, Phys.Rev.166(1968)89–101.

[39]B.W.Tiesinga,E.P.Sakonidou,H.R.vanderBerg,Thethermalconductivityof argoninthecriticalregion,J.Chem.Phys.101(1994)6944–6963.

[40]A.E.Nasrabad,R.Laghaei,B.C.Eu,Moleculartheoryofthermalconductivityof theLennard-Jonesfluid,J.Chem.Phys.124(2006)084506.

[41]R.Vogelsand,C.Hoheisel,Thermalconductivityandshearviscosityofliquid andfluidargon.Anextendedcomparisonbetweenexperimentaland moleculardynamicsdata,Phys.Chem.Liq.18(1988)141–149.

[42]J.V.Sengers,J.G.Shanks,Experimentalcritical-exponentvaluesforfluids,J. Stat.Phys.137(2009)857–877.

[43]K.Meier,A.Laesecke,S.Kabelac,TransportcoefficientsoftheLennard-Jones modelfluid.III.Bulkviscosity,J.Chem.Phys.122(2005)014513.

[44]A.Onuki,Bulkviscositynearthecriticalpoint,J.Phys.Soc.Japan66(1997) 511–513.

[45]G.A.Fernández,J.Vrabec,H.Hasse,Amolecularsimulationstudyofshearand bulkviscosityandthermalconductivityofsimplerealfluids,FluidPhase Equilib.221(2004)157–163.

[46]M.S.Zabaloy,V.R.Vasquez,E.A.Macedo,Viscosityofpuresupercriticalfluids, J.Supercrit.Fluids36(2005)106–117.

[47]S.J.Plimpton,Fastparallelalgorithmsforshort-rangemoleculardynamics,J. Comput.Phys.117(1995)1–19.

[48]W.Shinoda,M.Shiga,M.Mikami,Rapidestimationofelasticconstantsby moleculardynamicssimulationunderconstantstress,Phys.Rev.B69(2004) 134103.

[49]V.V.Brazhkin,Y.D.Fomin,A.G.Lyapin,V.N.Ryzhov,E.N.Tsiok,Widomlinefor theliquid-GastransitioninLennard-Jonessystem,J.Phys.Chem.B115(2011) 14112–14115.

[50]K.Meier,A.Laesecke,S.Kabelac,TransportcoefficientsoftheLennard-Jones modelfluid.I.Viscosity,J.Chem.Phys.121(2004)3671–3687.

[51]F.Müller-Plathe,Asimplenonequilibiurmmoleculardynamicsmethodfor calculatingthethermalconductivity,J.Chem.Phys.106(1997)

6082–6085.

[52]W.G.Vincenti,C.H.Kruger,IntroductiontoPhysicalGasDynamics,Krieger, Malabar-FL,1965,pp.pp.407–412.

[53]R.B.Bird,W.E.Stewart,E.N.Lightfoot,TransportPhenomena,2nded.,John Wiley&Sons,NewYork,2002.

Referências

Documentos relacionados

RESUMO Avaliou-se o comportamento de 36 cavalos estabulados, das raças Brasileiro de Hipismo, Lusitano, Puro Sangue Inglês e Mestiços, nas condições em que são criados no 1º

Além disso, o Facebook também disponibiliza várias ferramentas exclusivas como a criação de eventos, de publici- dade, fornece aos seus utilizadores milhares de jogos que podem

The efect of blend ratio and use of compatibilizer on swelling, mechanical and thermal properties were studied in terms eiciency using common weight DEA.. Experimental Details

Although the majority of participants realized that the service attitude of the medical staffs in the Public Class-A hospitals and the humane care were insufficient in

However, the thermophysical properties of the workpiece and tool electrode (thermal and electrical conductivity, thermal expansion, heat to vaporize from

É necessário que sua formação lhe dê sustentação para atender às necessidades encontradas no dia a dia da profissão, deixando-lhe atento a novas metodologias

Tais factores, aliados ao entendimento de que escrever implica uma constante interacção entre “pensar, escribir y reescribir”, bem como distanciamento e avaliação do